Update on the Quest for an Earth-Like Planet Update on the Quest for An

Total Page:16

File Type:pdf, Size:1020Kb

Update on the Quest for an Earth-Like Planet Update on the Quest for An LEAD ARTICLE by Hugh Ross, PhD UpdateUpdate onon thethe QuestQuest forfor anan Earth-LikeEarth-Like PlanetPlanet uring the Middle Ages and especially in DArthurian legend, the quest for the Holy Grail, the cup from which Jesus drank at the Last Supper, became the consuming passion of nobles. They were driven by belief that the cup possessed miraculous healing powers. Today, many astronomers passionately pursue a different Holy Grail. Their quest—to find a planet sufficiently like Earth to support life, perhaps even advanced life. The discovery of such a planet could, some believe, hold the power to deliver humanity from our cosmic loneliness, from our isolated existence on this pale blue dot. NEW REASONS TO BELIEVE | 4 | VOL 3/NO 4 | November 2011 GEOPHYSICS Hugh Ross Many of these modern-day Galahads and Lancelots, been able to measure the characteristics of nearly 700 aware that life arose as soon as the late heavy confirmed planets (at the date of this publication).6 bombardment subsided enough for liquid water to remain, assume that wherever liquid water exists, Of these confirmed and measured planets, 373 are life exists also. Such reasoning explains astronomer at least as massive as Jupiter or more so (Jupiter = Steven Vogt’s excitement at a recent news conference 317.4 Earth masses); 239 are less massive than Jupiter announcing the (presumed) discovery of Gliese 581g, but more massive than Uranus (Uranus =14.5 Earth a planet with a predicted surface temperature (at two masses); 77 are “super Earths,” more massive than Earth longitudes only) that would allow for the presence of but less massive than Uranus. Only one is less massive liquid water. Vogt exclaimed, “[G]iven the ubiquity and than Earth (by fifty times), and it orbits a pulsar. Six of propensity of life to flourish wherever it can, my own the planets have yet undetermined mass. personal feeling is that the chances of life on this planet Holy Grail pursuers fix their gaze on the super-Earths. are 100 percent.”1 The three smallest are HD 20794c, Kepler-11f, and Since that announcement, Bayesian analysis (application Gliese 581e, which range from two to two-and-a-half of a statistical technique) has negated the existence times Earth’s mass. All three are hot planets orbiting too of Gliese 581g.2 And, at the same time, two noted close to their host stars to permit the presence of liquid astronomers have challenged the familiar ubiquity- or frozen water. Two larger super-Earth planets, Gliese of-life hypothesis.3 It’s one thing, they note, for life 581d and HD 85512b, may possibly be more favorable to to arise just as soon as conditions would allow for its water’s presence. survivability, but it’s another for that initial, relatively While Gliese 581d is at least seven times more massive simple life to give rise to a species (in just 3.8 billion than Earth, it orbits a star much less massive than years) sufficiently advanced to research and the Sun at a distance of about 20 million miles and recognize its (first life’s) early emergence. receives only 35% of the energy Mars receives Using the same Bayesian analysis technique, from the Sun. Given its mass, Gliese these astronomers concluded that life must 581d likely possesses a thick be “arbitrarily rare in the universe.”4 atmosphere. Two How do astronomers go about their quest of finding and determining the features of other planets? They use one of these two methods: the radial velocity method and the transit method. The radial velocity method calibrates the degree to which a distant planet’s gravity alters the position of its host star as it orbits that star. This method works best in detection of huge planets positioned relatively close to their host stars. The transit method, on the other hand, measures the degree to which a planet dims our view of its host star’s light when passing in front of that star. This method works only if the plane of the planet’s orbit is aligned with the telescope’s line of sight. But this method can detect both large and small planets.5 Figure 1: Artist’s Conception of a Distant Planetary System To date, researchers have identified about 1,800 planet credit: NASA/G. Bacon (STScI), candidates outside our own solar system and have iStockphoto.com NEW REASONS TO BELIEVE | 5 | VOL 3/NO 4 | november 2011 GEOPHYSICS Hugh Ross different research teams have calculated that if Gliese This conclusion is consistent with the Bible’s message 581d contains the expected level of carbon dioxide in that God supernaturally designed the Sun, the Earth, its atmosphere, CO2 would trap enough heat from the our planetary partners, and Earth’s earlier life-forms host star to sustain a temperature above water’s freezing to provide a suitable (though temporary) home for point.7 However, Gliese 581d is tidally locked to its host humanity. And, if we consider the angels, humans are star; therefore a liquid-water-permitting temperature, not really alone in the universe. Better yet, the Creator if it exists anywhere on the planet’s surface, would be Himself of this wondrous habitat has personally visited, present at only two tiny locations. in human form, bearing the name Immanuel,11 which means “God with us.” And He made a promise to those The possibility of an extremely heavy atmosphere who worship Him: “I will never leave you or forsake around Gliese 581d seems reasonable. Heavy you.”12 atmospheres appear to be the norm for super-Earths. Even planets orbiting so close to their host stars as to endnote reach temperatures of 2,000+°K (and thus drive off 1. Steven Vogt as quoted by Terrence Aym in “Alien Life on New Planet most of their atmospheric constituents) would possess Gliese 581g 100 Percent Certain,” Helium (October 4, 2010). atmospheres exponentially thicker than Earth’s.8 2. Philip C. Gregory, “Bayesian Re-Analysis of the Gliese 581 Exoplanet System,” Monthly Notices of the Royal Astronomical Society 415 (August 2011): 2523–45; Mikko Tuomi, “Bayesian Re-Analysis of the Radial (As one research team observed, super-Earths, because Velocities of Gliese 581. Evidence in Favour of Only Four Planetary of their very thick atmospheres, would be more Companions,” Astronomy & Astrophysics 528 (April 2011): L5. appropriately termed “mini-Neptunes.”9) 3. David S. Spiegel and Edwin L. Turner, “Life Might Be Rare Despite Its Early Emergence on Earth: A Bayesian Analysis of the Probability of Abiogenesis,” arXiv:1107.3835v1 (July 19, 2011), submitted to Ultra-thick atmospheres do not necessarily rule out Proceedings of the National Academy of Sciences, USA. the existence of archaea or bacteria on a planet’s 4. Spiegel and Turner, 1. surface, but they certainly rule out advanced life. Lungs 5. Jean Schneider, an astronomer at the Paris Observatory, maintains an cannot function for very long in atmospheric pressures interactive extra-solar planet catalog. exceeding Earth’s by even just three times. Furthermore, 6. Lisa Kaltenegger, Antígona Segura, and Subhanjoy Mohanty, “Model Spectra of the First Potentially Habitable Super-Earth—Gl581d,” thick atmospheres imply lots of water, far too much Astrophysical Journal 733 (May 20, 2011): 35; Robin D. Wordsworth et water for continents and oceans to coexist. Then there is al., “Gliese 581d Is the First Discovered Terrestrial-Mass Exoplanet in the matter of partner planets. The existence of advanced the Habitable Zone,” Astrophysical Journal Letters 733 (June 1, 2011): L48. life requires more than an exact Earth twin. It requires a 7. Bryce Croll et al., “Broadband Transmission Spectroscopy of the Super- planet accompanied by nearly exact analogues of Earth’s Earth GJ 1214b Suggests a Low Mean Molecular Weight Atmosphere,” seven planetary partners.10 Astrophysical Journal 736 (August 1, 2011): 78; Joshua N. Winn et al., “A Super-Earth Transiting a Naked-Eye Star,” Astrophysical Journal Letters 737 (August 10, 2011): L18. Planets roughly the size, mass, and distance from their 8. Lisa Kaltenegger, S. Udry, and F. Pepe, “A Habitable Planet around HD host stars as Earth may eventually be found and may 85512b?” August 17, 2011), arXiv:1108.3561. even prove abundant. However, Earth-like planets with 9. Hugh Ross, “Elemental Evidence of Earth’s Divine Design,” New Reasons the same atmospheric conditions, ocean-to-continent to Believe, vol. 2, no. 2 (2010): 6–8. ratios, and elemental abundances as Earth, with a star as 10. Hugh Ross, “The Remarkable Design of the Solar System’s Turbulent Youth, Parts 1-5,” Today’s New Reason To Believe (May 30–June 27, luminous and stable as the Sun, and with the necessary 2011). suite of planetary partners, are either extremely rare or, 11. Isaiah 7:14, 8:8, Matthew 1:23 (NIV). more likely, altogether nonexistent (unless specifically 12. Hebrews 13:5 (NIV). designed by the Creator). Listen to Jeff Zweerink talk more about the Gliese 581g discovery on the Science News Flash podcast (Oct. 14, 2010). NEW REASONS TO BELIEVE | 6 | VOL 3/NO 4 | november 2011.
Recommended publications
  • Colors of Extreme Exo-Earth Environments
    Colors of Extreme Exo-Earth Environments Siddharth Hegde1,* and Lisa Kaltenegger1,2 1Max Planck Institute for Astronomy, Heidelberg, Germany; 2Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA. *E-mail: [email protected]; [email protected] Abstract The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the habitable zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. In this paper, we explore potentially detectable surface features on rocky exoplanets and their connection to, and importance as, a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible waveband as a first step in the characterization of rocky exoplanets to prioritize targets for follow-up spectroscopy. Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4-0.9 !m) that can be distinguished remotely. These detectable surface features can be linked to the extreme niches that support extremophiles on Earth and provide a link between geomicrobiology and observational astronomy. This paper explores how filter photometry can serve as a first step in characterizing Earth-like exoplanets for an aerobic as well as an anaerobic atmosphere, thereby prioritizing targets to search for atmospheric biosignatures.
    [Show full text]
  • Universidade De São Paulo Instituto De Astronomia E Geofisica Mestrado Profissional Em Ensino De Astronomia
    UNIVERSIDADE DE SÃO PAULO INSTITUTO DE ASTRONOMIA E GEOFISICA MESTRADO PROFISSIONAL EM ENSINO DE ASTRONOMIA JOSÉ IVAN SPINARDI ELABORAÇÃO DE UMA SEQUÊNCIA DIDÁTICA EM ASTROBIOLOGIA PARA O ENSINO FUNDAMENTAL 2 SÃO PAULO 2017 “Versão corrigida. O original encontra-se disponível na Unidade.” JOSÉ IVAN SPINARDI ELABORAÇÃO DE UMA SEQUÊNCIA DIDÁTICA EM ASTROBIOLOGIA PARA O ENSINO FUNDAMENTAL 2 Dissertação apresentada ao Instituto de Astronomia e Geofísica da Universidade de São Paulo obtenção do título de mestre em ensino de Astronomia. Área de concentração: Ensino de Astronomia. Orientador: Prof. Dr. Amâncio Cesar Santos Friaça SÃO PAULO 2017 “O materialismo dialético ensina que a matéria nunca permanece em repouso, mas, pelo contrário, está em constante movimento, desenvolve-se e, evoluindo, eleva-se a níveis cada vez mais altos e adquire formas de movimento cada vez mais complexas. Ao elevar-se de um degrau ao outro, a matéria adquire novos atributos. Um deles é a vida cujo surgimento marca uma etapa, um escalão determinado do desenvolvimento histórico da matéria. Durante o decorrer desse desenvolvimento é que surgiu a vida, como uma nova qualidade.” Alexander Oparin “Se não existe vida fora da Terra, então o Universo é um grande desperdício de espaço” Carl Sagan “Há vidas sim em outros planetas, porém, não desenvolvidas.” Um aluno da 8ª série A. AGRADECIMENTOS À minha família. Ao meu sobrinho Luiz Lucas pelo suporte em informática. Às educadoras Erika Reyes Molina e Giovanni Scataglia Botelho Paz, pelo apoio e confiança. À Professora Maria Helena Pereira, da EMEF João Guimaraes Rosa, pela cessão de suas aulas para a aplicação das atividades.
    [Show full text]
  • Hunting for Transits of Super-Earth GJ 581E 2 June 2011
    Hunting for transits of Super-Earth GJ 581e 2 June 2011 terrestrial-mass exoplanet in the habitable zone". They found that, despite the small amount of light Gliese 581d receives from its star, a carbon dioxide atmosphere could maintain temperatures above the freezing point of water at the surface. If the orbital inclination of a planetary system is just right, then one or more planets may be observed to cross (transit) the disk of the star, dimming the brightness of the star by a tiny fraction. By measuring this effect, it is possible to derive the Artist's concept of Gliese 581 e. Image: size of the planet. JohnVanVliet/Wikipedia. If Gliese 581e transits its host star, then it must have a radius smaller than 1.4 times that of the Earth since a larger planet would have been (PhysOrg.com) -- An international team of detected by MOST. In terms of composition, this astronomers has ruled out transits of a water-rich suggests that planet e does not have a hydrogen or or hydrogen-helium atmosphere planet for Gliese helium atmosphere, nor does it contain more than 581e. The host star itself is relatively quiet which 25% water. Therefore it must be a solid rocky means good news for the potential habitability of at planet. However, if the planet does not transit, its least one of its planets. size and therefore its composition cannot be constrained, but the inclination of its orbit can. The study was conducted using observations acquired by MOST (Microvariability & Oscillations "Although transits were not detected for Gliese of STars), Canada's only space telescope.
    [Show full text]
  • Thea Kozakis
    Thea Kozakis Present Address Email: [email protected] Space Sciences Building Room 514 Phone: (908) 892-6384 Ithaca, NY 14853 Education Masters Astrophysics; Cornell University, Ithaca, NY Graduate Student in Astronomy and Space Sciences, minor in Earth and Atmospheric Sciences B.S. Physics, B.S. Astrophysics; College of Charleston, Charleston, SC Double major (B.S.) in Astrophysics and Physics, May 2013, summa cum laude Minor in Mathematics Research Dr. Lisa Kaltenegger, Carl Sagan Institute, Cornell University, Spring 2015 - present Projects Studying biosignatures of habitable zone planets orbiting white dwarfs using a • coupled climate-photochemistry atmospheric model Searching the Kepler field for evolved stars using GALEX UV data • Dr. James Lloyd, Cornell University, Fall 2013 - present UV/rotation analysis of Kepler field stars • Study the age-rotation-activity relationship of 20,000 Kepler field stars using UV data from GALEX and publicly available rotation⇠ periods Dr. Joseph Carson, College of Charleston, Spring 2011 - Summer 2013 SEEDS Exoplanet Survey • Led data reduction e↵orts for the SEEDS High-Mass stars group using the Subaru Telescope’s HiCIAO adaptive optics instrument to directly image exoplanets Hubble DICE Survey • Developed data reduction pipeline for Hubble STIS data to image exoplanets and debris disks around young stars Publications Direct Imaging Discovery of a ‘Super-Jupiter’ Around the late B-Type Star • And, J. Carson, C. Thalmann, M. Janson, T. Kozakis, et al., 2013, Astro- physical Journal Letters, 763, 32
    [Show full text]
  • The Search for Worlds Like Our Own
    ASTROBIOLOGY Volume 10, Number 1, 2010 Education Articles ª Mary Ann Liebert, Inc. DOI: 10.1089=ast.2009.0380 The Search for Worlds Like Our Own Malcolm Fridlund,1 Carlos Eiroa,2 Thomas Henning,3 Tom Herbst,3 Helmut Lammer,4 Alain Le´ger,5 Rene´ Liseau,6 Francesco Paresce,7 Alan Penny,8,9 Andreas Quirrenbach,10 Huub Ro¨ttgering,11 Franck Selsis,12 Glenn J. White,9,13 Olivier Absil,14,15 Denis Defre`re,15 C. Hanot,15 Daphne Stam,16 Jean Schneider,17 Giovanna Tinetti,18 Anders Karlsson,19 Phillipe Gondoin,19 Roland den Hartog,19 Luigi D’Arcio,19 Anna-Maria Stankov,19 Mikael Kilter,19 Christian Erd,19 Charles Beichman,20 Daniel Coulter,21 William Danchi,22 Michael Devirian,21 Kenneth J. Johnston,23 Peter Lawson,21 Oliver P. Lay,21 Jonathan Lunine,24 and Lisa Kaltenegger25 Abstract The direct detection of Earth-like exoplanets orbiting nearby stars and the characterization of such planets— particularly, their evolution, their atmospheres, and their ability to host life—constitute a significant problem. The quest for other worlds as abodes of life has been one of mankind’s great questions for several millennia. For instance, as stated by Epicurus *300 BC: ‘‘Other worlds, with plants and other living things, some of them similar and some of them different from ours, must exist.’’ Demokritos from Abdera (460–370 BC), the man who invented the concept of indivisible small parts—atoms—also held the belief that other worlds exist around the stars and that some of these worlds may be inhabited by life-forms.
    [Show full text]
  • Esocast Episode 6: Lightest Exoplanet Found 00:00 [Visual Starts]
    ESOcast Episode 6: Lightest exoplanet found 00:00 [Visual starts] [Narrator] A: Artist’s impression of Gliese 581e 1. The holy grail of current exoplanet research is the detection of a rocky, Earth-like planet in the ‘habitable zone,’ region around the host star with the right conditions for water to be liquid on their surface. The latest result from the European Southern Observatory comes closer than ever to attaining these goals. 00:25 ESOcast intro This is the ESOcast! Cutting-edge science and life behind the scenes of ESO, the European Southern Observatory. Exploring the Universe’s ultimate frontier with our host Dr. J, a.k.a. Dr. Joe Liske. 00:42 [Dr. J] 2. Hello and welcome to another episode of the ESOcast. This time we have some very exciting A: Artist’s impression of Gliese 581e news for you, it’s another major ESO discovery. We’d like to tell you about the discovery of the B: Artist’s impression of Gliese 581d smallest, or rather lightest, and possibly most Earth- like planet so far discovered outside of our own Solar System. We’d also like to report on yet another planet within the same system that has now been shown to lie within the habitable zone of its parent star, meaning that it could host liquid water and possibly even life. 01:13 [Narrator] 3. Gliese 581 is a seemingly inconspicuous red C: Zoom-in on Gliese 581e dwarf star located 20.5 light-years away in the constellation Libra, or “the Scales”. It is among the 100 closest stars to us and weighs only one third the mass of the Sun.
    [Show full text]
  • SARA SEAGER Physics and Planetary Science, Massachusetts Institute of Technology, Cambridge
    21 10 meters SARA SEAGER Physics and planetary science, Massachusetts Institute of Technology, Cambridge We picnicked inside a fiberglass radome (a portmanteau of radar and dome), atop the tallest building in Cambridge. The Green Building, otherwise known as Building 54, houses the fields of Geology and Earth Sciences on the lower floors and Astronomy and Atmospheric Sciences on the upper floors. It was only late October, but the temperature was already below freezing, so we bundled up in fur caps and heavy jackets to endure the cold inside the dome. We sat next to a defunct radar satellite that had recently been hacked by students to bounce beams off the moon. 1 Sara requested high-protein brain food, so we made hard-boiled eggs and prepared them so that each egg was boiled for a different increment of time, which was an- notated on each of the dozen eggshells: 5 min, 6 min, 7 min, 8 min, 9 min, 10 min, 11 min, 12 min, 13 min, 14 min, MICHAEL: Do you know the early astronauts like Buzz 15 min, 16 min what your kids are going to Aldrin. Buzz Aldrin can be dress up as for Halloween? alternately outspoken, rude, Sara ate a twelve-minute egg to test her theory that there is a threshold beyond obnoxious, and fun, while the which there is no effect on the egg, so boiling longer only serves to waste energy. SARA: Yes, one son is going to be current astronauts typically Buzz Aldrin, an astronaut, and appear to be more conforming (FIG.
    [Show full text]
  • High-Resolution Spectra and Biosignatures of Earth-Like Planets Transiting White Dwarfs
    High-resolution Spectra and Biosignatures of Earth-like Planets Transiting White Dwarfs Thea Kozakis, Zifan Lin, Lisa Kaltenegger Carl Sagan Institute, Cornell University, Ithaca, New York, USA ABSTRACT With the first observations of debris disks as well as proposed planets around white dwarfs, the question of how rocky planets around such stellar remnants can be char- acterized and probed for signs of life becomes tangible. White dwarfs are similar in size to Earth and have relatively stable environments for billions of years after initial cooling, making them intriguing targets for exoplanet searches and terrestrial planet atmospheric characterization. Their small size and the resulting large planet transit signal allows observations with next generation telescopes to probe the atmosphere of such rocky planets, if they exist. We model high-resolution transmission spectra for planets orbiting white dwarfs from as they cool from 6,000-4,000 K, for i) planets re- ceiving equivalent irradiation to modern Earth, and ii) planets orbiting at the distance around a cooling white dwarf which allows for the longest continuous time in the hab- itable zone. All high-resolution transmission spectra will be publicly available online upon publication of this study and can be used as a tool to prepare and interpret up- coming observations with JWST, the Extremely Large Telescopes as well as mission concepts like Origins, HabEx, and LUVOIR. Subject headings: White dwarf stars, Habitable zone, Habitable planets, Stellar evolution, Exoplanet atmospheres, Astrobiology, Biosignatures, Transmission spectroscopy, Extrasolar rocky planets 1. Introduction Zwart 2016; Malamud & Perets 2016) indi- cate debris disks or planets around a high The first discovery of a planetestimal or- percentage of WDs of up to 50% (Schreiber arXiv:2001.00049v3 [astro-ph.EP] 17 Jan 2020 biting a white dwarf (WD) in 2015 (Van- et al.
    [Show full text]
  • Model Spectra of the First Potentially Habitable Super-Earth - Gl581d
    Model Spectra of the First Potentially Habitable Super-Earth - Gl581d Lisa Kaltenegger Harvard Smithsonian Center for Astrophysics, 60 Garden st., 02138 MA Cambridge, USA also MPIA, Koenigstuhl 17, 69117 Heidelberg, Germany [email protected] Antígona Segura Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México Subhanjoy Mohanty Imperial College London, 1010 Blackett Lab., Prince Consort Road, London SW7 2AZ, UK Abstract Gl581d has a minimum mass of 7 MEarth and is the first detected potentially habitable rocky Super-Earth. Our models confirm that a habitable atmosphere can exist on Gl581d. We derive spectroscopic features for atmospheres, assuming an Earth-like composition for this planet, from high oxygen atmosphere analogous to Earth’s to high CO2 atmospheres with and without biotic oxygen concentrations. We find that a minimum CO2 partial pressure of about 7 bar, in an atmosphere with a total surface pressure of 7.6 bar, are needed to maintain a mean surface temperature above freezing on Gl581d. We model transmission and emergent synthetic spectra from 0.4µm to 40µm and show where indicators of biological activities in such a planet’s atmosphere could be observed by future ground- and space-based telescopes. The model we present here only represents one possible nature – an Earth-like composition - of a planet like Gl581d in a wide parameter space. Future observations of atmospheric features can be used to examine if our concept of habitability and its dependence on the carbonate-silicate cycle is correct, and assess whether Gl581d is indeed a habitable super-Earth. Subject headings: astrobiology, Planets and satellites: atmospheres, composition, detection, individual: Gl581d, Earth, Instrumentation: spectrographs 1.
    [Show full text]
  • De Natura Rerum: Exoplanets and Exoearths Pierre Léna Que L’Homme Contemple La Nature Dans Sa Haute Et Pleine Majesté… Que La Terre Lui Paraisse Comme Un Point
    De Natura Rerum: Exoplanets and ExoEarths Pierre Léna Que l’homme contemple la nature dans sa haute et pleine majesté… que la Terre lui paraisse comme un point. Blaise Pascal (1623-1662) Pensées Introduction At the 2004 Plenary Session of the Pontifical Academy of Sciences on Paths of Discovery, I presented a paper with the title The case of exoplanets [Léna 2005]. It was then close to the 10th anniversary of the discovery of the first exoplanet in 1995. There is no point in repeating here this paper. But in the last decade, the discoveries on this subject have been so considerable that, the 20th anniversary coming, it is worth addressing the topic again. During the first decade 1995-2004, only 133 exoplanets had been discovered by an indirect method, and the first direct image of an exoplanet was not even confirmed. Today in our Galaxy containing the Earth, statistics begin to indicate that on average every star has a planet, which means over 100 billions of exoplanets for this galaxy alone, of which nearly 2000 are now identified and more or less characterized. How does the subject of exoplanets relate with the Evolving concepts of nature, the title of this Plenary Session? In the 2005 paper, I recalled the long history of a quest which began metaphysically with Democritus, was disputed theologically during the Middle Age, provided phantasies to poets and writers, until it emerged as a scientific problem, to be addressed with the investigative methods of astronomy during the 19th century. Along this path, Giordano Bruno, who expressed ideas close to Lucretius’s ones, was condemned to the fire for multiple reasons, including this one.
    [Show full text]
  • Extrasolar Planets
    Extrasolar Planets Dieter Schmitt Lecture Max Planck Institute for Introduction to Solar System Research Solar System Physics Katlenburg-Lindau Uni Göttingen, 8 June 2009 Outline • Historical Overview • Detection Methods • Planet Statistics • Formation of Planets • Physical Properties • Habitability Historical overview • 1989: planet / brown dwarf orbiting HD 114762 (Latham et al.) • 1992: two planets orbiting pulsar PSR B1257+12 (Wolszczan & Frail) • 1995: first planet around a solar-like star 51 Peg b (Mayor & Queloz) • 1999: first multiple planetary system with three planets Ups And (Edgar et al.) • 2000: first planet by transit method HD 209458 b (Charbonneau et al.) • 2001: atmosphere of HD 209458 b (Charbonneau et al.) • 2002: astrometry applied to Gliese 876 (Benedict et al.) • 2005: first planet by direct imaging GQ Lupi b (Neuhäuser et al.) • 2006: Earth-like planet by gravitational microlensing (Beaulieu et al.) • 2007: Gliese 581d, small exoplanet near habitability zone (Selsis et al.) • 2009: Gliese 581e, smallest exoplanet with 1.9 Earth masses (Mayor et al.) • As of 7 June 2009: 349 exoplanets in 296 systems (25 systems with 2 planets, 9 with 3, 2 with 4 and 1 with 5) www.exoplanet.eu Our Solar System 1047 MJ 0.39 AU 0.00314 MJ 1 MJ 0.30 MJ 0.046 MJ 0.054 MJ 1 AU 5.2 AU 9.6 AU 19 AU 30 AU 1 yr 11.9 yr 29.5 yr 84 yr 165 yr Definition Planet IAU 2006: • in orbit around the Sun / star • nearly spherical shape / sufficient mass for hydrostatic equilib. • cleared neighbourhood around its orbit Pluto: dwarf planet, as Ceres Brown
    [Show full text]
  • Extrasolar Planets
    Extrasolar Planets Dieter Schmitt Lecture Max Planck Institute for Introduction to Solar System Research Solar System Physics KatlenburgLindau Uni Göttingen, 8 June 2009 Outline • Historical Overview • Detection Methods • Planet Statistics • Formation of Planets • Physical Properties • Habitability Historical overview • 1989: planet / brown dwarf orbiting HD 114762 (Latham et al.) • 1992: two planets orbiting pulsar PSR B1257+12 (Wolszczan & Frail) • 1995: first planet around a solarlike star 51 Peg b (Mayor & Queloz) • 1999: first multiple planetary system with three planets Ups And (Edgar et al.) • 2000: first planet by transit method HD 209458 b (Charbonneau et al.) • 2001: atmosphere of HD 209458 b (Charbonneau et al.) • 2002: astrometry applied to Gliese 876 (Benedict et al.) • 2005: first planet by direct imaging GQ Lupi b (Neuhäuser et al.) • 2006: Earthlike planet by gravitational microlensing (Beaulieu et al.) • 2007: Gliese 581d, small exoplanet near habitability zone (Selsis et al.) • 2009: Gliese 581e, smallest exoplanet with 1.9 Earth masses (Mayor et al.) • As of 7 June 2009: 349 exoplanets in 296 systems (25 systems with 2 planets, 9 with 3, 2 with 4 and 1 with 5) www.exoplanet.eu Our Solar System 1047 MJ 0.39 AU 0.00314 MJ 1 MJ 0.30 MJ 0.046 MJ 0.054 MJ 1 AU 5.2 AU 9.6 AU 19 AU 30 AU 1 yr 11.9 yr 29.5 yr 84 yr 165 yr Definition Planet IAU 2006: • in orbit around the Sun / star • nearly spherical shape / sufficient mass for hydrostatic equilib. • cleared neighbourhood around its orbit Pluto: dwarf planet, as Ceres Brown
    [Show full text]