Asteroseismology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Asteroseismology with ET
Asteroseismology with ET Erich Gaertig & Kostas D. Kokkotas Theoretical Astrophysics - University of Tübingen nice, et-wp4 meeting,september 1st-2nd, 2010 Asteroseismology with gravitational waves as a tool to probe the inner structure of NS • neutron stars build from single-fluid, normal matter Andersson, Kokkotas (1996, 1998) Benhar, Berti, Ferrari(1999) Benhar, Ferrari, Gualtieri(2004) Asteroseismology with gravitational waves as a tool to probe the inner structure of NS • neutron stars build from single-fluid, normal matter • strange stars composed of deconfined quarks NONRADIAL OSCILLATIONS OF QUARK STARS PHYSICAL REVIEW D 68, 024019 ͑2003͒ NONRADIAL OSCILLATIONS OF QUARK STARS PHYSICAL REVIEW D 68, 024019 ͑2003͒ H. SOTANI AND T. HARADA PHYSICAL REVIEW D 68, 024019 ͑2003͒ FIG. 5. The horizontal axis is the bag constant B (MeV/fmϪ3) Sotani, Harada (2004) FIG. 4. Complex frequencies of the lowest wII mode for each and the vertical axis is the f mode frequency Re(). The squares, stellar model except for the plot for Bϭ471.3 MeV fmϪ3, for circles, and triangles correspond to stellar models whose radiation which the second wII mode is plotted. The labels in this figure radii are fixed at 3.8, 6.0, and 8.2 km, respectively. The dotted line Benhar, Ferrari, Gualtieri, Marassicorrespond (2007) to those of the stellar models in Table I. denotes the new empirical relationship ͑4.3͒ obtained in Sec. IV between Re() of the f mode and B. simple extrapolation to quark stars is not very successful. We want to construct an alternative formula for quark star mod- fixed at Rϱϭ3.8, 6.0, and 8.2 km, and the adopted bag con- els by using our numerical results for f mode QNMs, but we stants are Bϭ42.0 and 75.0 MeV fmϪ3. -
Communications in Asteroseismology
Communications in Asteroseismology Volume 141 January, 2002 Editor: Michel Breger, TurkÄ enschanzstra¼e 17, A - 1180 Wien, Austria Layout and Production: Wolfgang Zima and Renate Zechner Editorial Board: Gerald Handler, Don Kurtz, Jaymie Matthews, Ennio Poretti http://www.deltascuti.net COVER ILLUSTRATION: Representation of the COROT Satellite, which is primarily devoted to under- standing the physical processes that determine the internal structure of stars, and to building an empirically tested and calibrated theory of stellar evolution. Another scienti¯c goal is to observe extrasolar planets. British Library Cataloguing in Publication data. A Catalogue record for this book is available from the British Library. All rights reserved ISBN 3-7001-3002-3 ISSN 1021-2043 Copyright °c 2002 by Austrian Academy of Sciences Vienna Contents Multiple frequencies of θ2 Tau: Comparison of ground-based and space measurements by M. Breger 4 PMS stars as COROT additional targets by M. Marconi, F. Palla and V. Ripepi 13 The study of pulsating stars from the COROT exoplanet ¯eld data by C. Aerts 20 10 Aql, a new target for COROT by L. Bigot and W. W. Weiss 26 Status of the COROT ground-based photometric activities by R. Garrido, P. Amado, A. Moya, V. Costa, A. Rolland, I. Olivares and M. J. Goupil 42 Mode identi¯cation using the exoplanetary camera by R. Garrido, A. Moya, M. J.Goupil, C. Barban, C. van't Veer-Menneret, F. Kupka and U. Heiter 48 COROT and the late stages of stellar evolution by T. Lebzelter, H. Pikall and F. Kerschbaum 51 Pulsations of Luminous Blue Variables by E. -
Evolution, Mass Loss and Variability of Low and Intermediate-Mass Stars What Are Low and Intermediate Mass Stars?
Evolution, Mass Loss and Variability of Low and Intermediate-Mass Stars What are low and intermediate mass stars? Defined by properties of late stellar evolutionary stages Intermediate mass stars: ~1.9 < M/Msun < ~7 Develop electron-degenerate cores after core helium burning and ascending the red giant branch for the second time i.e. on the Asymptotic Giant Branch (AGB). AGB Low mass stars: M/Msun < ~1.9 Develop electron-degenerate cores on leaving RGB the main-sequence and ascending the red giant branch for the first time i.e. on the Red Giant Branch (RGB). Maeder & Meynet 1989 Stages in the evolution of low and intermediate-mass stars These spikes are real The AGB Surface enrichment Pulsation Mass loss The RGB Surface enrichment RGB Pulsation Mass loss About 108 years spent here Most time spent on the main-sequence burning H in the core (~1010 years) Low mass stars: M < ~1.9 Msun Intermediate mass stars: Wood, P. R.,2007, ASP Conference Series, 374, 47 ~1.9 < M/Msun < ~7 Stellar evolution and surface enrichment The Red giant Branch (RGB) zHydrogen burns in a shell around an electron-degenerate He core, star evolves to higher luminosity. zFirst dredge-up occurs: The convection in the envelope moves in when the stars is near the bottom of the RGB and "dredges up" material that has been through partial hydrogen burning by the CNO cycle and pp chains. From John Lattanzio But there's more: extra-mixing What's the evidence? Various abundances and isotopic ratios vary continuously up the RGB. This is not predicted by a single first dredge-up alone. -
The Deaths of Stars
The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula, and what does it have to do with planets? 4. What is a white dwarf star? 5. Why do high-mass stars go through more evolutionary stages than low-mass stars? 6. What happens within a high-mass star to turn it into a supernova? 7. Why was SN 1987A an unusual supernova? 8. What was learned by detecting neutrinos from SN 1987A? 9. How can a white dwarf star give rise to a type of supernova? 10.What remains after a supernova explosion? 2 Pathways of Stellar Evolution GOOD TO KNOW 3 Low-mass stars go through two distinct red-giant stages • A low-mass star becomes – a red giant when shell hydrogen fusion begins – a horizontal-branch star when core helium fusion begins – an asymptotic giant branch (AGB) star when the helium in the core is exhausted and shell helium fusion begins 4 5 6 7 Bringing the products of nuclear fusion to a giant star’s surface • As a low-mass star ages, convection occurs over a larger portion of its volume • This takes heavy elements formed in the star’s interior and distributes them throughout the star 8 9 Low-mass stars die by gently ejecting their outer layers, creating planetary nebulae • Helium shell flashes in an old, low-mass star produce thermal pulses during which more than half the star’s mass may be ejected into space • This exposes the hot carbon-oxygen core of the star • Ultraviolet radiation from the exposed -
Asteroseismic Fingerprints of Stellar Mergers
MNRAS 000,1–13 (2021) Preprint 7 September 2021 Compiled using MNRAS LATEX style file v3.0 Asteroseismic Fingerprints of Stellar Mergers Nicholas Z. Rui,1¢ Jim Fuller1 1TAPIR, California Institute of Technology, Pasadena, CA 91125, USA Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Stellar mergers are important processes in stellar evolution, dynamics, and transient science. However, it is difficult to identify merger remnant stars because they cannot easily be distinguished from single stars based on their surface properties. We demonstrate that merger remnants can potentially be identified through asteroseismology of red giant stars using measurements of the gravity mode period spacing together with the asteroseismic mass. For mergers that occur after the formation of a degenerate core, remnant stars have over-massive envelopes relative to their cores, which is manifested asteroseismically by a g mode period spacing smaller than expected for the star’s mass. Remnants of mergers which occur when the primary is still on the main sequence or whose total mass is less than ≈2 " are much harder to distinguish from single stars. Using the red giant asteroseismic catalogs of Vrard et al.(2016) and Yu et al.(2018), we identify 24 promising candidates for merger remnant stars. In some cases, merger remnants could also be detectable using only their temperature, luminosity, and asteroseismic mass, a technique that could be applied to a larger population of red giants without a reliable period spacing measurement. Key words: asteroseismology—stars: evolution—stars: interiors—stars: oscillations 1 INTRODUCTION for the determination of evolutionary states (Bedding et al. 2011; Bildsten et al. -
Gaia Data Release 2 Special Issue
A&A 623, A110 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833304 & © ESO 2019 Astrophysics Gaia Data Release 2 Special issue Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram?,?? Gaia Collaboration, L. Eyer1, L. Rimoldini2, M. Audard1, R. I. Anderson3,1, K. Nienartowicz2, F. Glass1, O. Marchal4, M. Grenon1, N. Mowlavi1, B. Holl1, G. Clementini5, C. Aerts6,7, T. Mazeh8, D. W. Evans9, L. Szabados10, A. G. A. Brown11, A. Vallenari12, T. Prusti13, J. H. J. de Bruijne13, C. Babusiaux4,14, C. A. L. Bailer-Jones15, M. Biermann16, F. Jansen17, C. Jordi18, S. A. Klioner19, U. Lammers20, L. Lindegren21, X. Luri18, F. Mignard22, C. Panem23, D. Pourbaix24,25, S. Randich26, P. Sartoretti4, H. I. Siddiqui27, C. Soubiran28, F. van Leeuwen9, N. A. Walton9, F. Arenou4, U. Bastian16, M. Cropper29, R. Drimmel30, D. Katz4, M. G. Lattanzi30, J. Bakker20, C. Cacciari5, J. Castañeda18, L. Chaoul23, N. Cheek31, F. De Angeli9, C. Fabricius18, R. Guerra20, E. Masana18, R. Messineo32, P. Panuzzo4, J. Portell18, M. Riello9, G. M. Seabroke29, P. Tanga22, F. Thévenin22, G. Gracia-Abril33,16, G. Comoretto27, M. Garcia-Reinaldos20, D. Teyssier27, M. Altmann16,34, R. Andrae15, I. Bellas-Velidis35, K. Benson29, J. Berthier36, R. Blomme37, P. Burgess9, G. Busso9, B. Carry22,36, A. Cellino30, M. Clotet18, O. Creevey22, M. Davidson38, J. De Ridder6, L. Delchambre39, A. Dell’Oro26, C. Ducourant28, J. Fernández-Hernández40, M. Fouesneau15, Y. Frémat37, L. Galluccio22, M. García-Torres41, J. González-Núñez31,42, J. J. González-Vidal18, E. Gosset39,25, L. P. Guy2,43, J.-L. Halbwachs44, N. C. Hambly38, D. -
U Antliae — a Dying Carbon Star
THE BIGGEST, BADDEST, COOLEST STARS ASP Conference Series, Vol. 412, c 2009 Donald G. Luttermoser, Beverly J. Smith, and Robert E. Stencel, eds. U Antliae — A Dying Carbon Star William P. Bidelman,1 Charles R. Cowley,2 and Donald G. Luttermoser3 Abstract. U Antliae is one of the brightest carbon stars in the southern sky. It is classified as an N0 carbon star and an Lb irregular variable. This star has a very unique spectrum and is thought to be in a transition stage from an asymptotic giant branch star to a planetary nebula. This paper discusses possi- ble atomic and molecular line identifications for features seen in high-dispersion spectra of this star at wavelengths from 4975 A˚ through 8780 A.˚ 1. Introduction U Antliae (U Ant = HR 4153 = HD 91793) is classified as an N0 carbon star with a visual magnitude of 5.38 and B−V of +2.88 (Hoffleit 1982). It also is classified as an Lb irregular variable with small scale light variations. Scattered light optical images for U Ant have been made and these observations are consistent the existence of a geometrically thin (∼3 arcsec) spherically symmetric shell of radius ∼43 arcsec. The size of this shell agrees very well with that of the detached shell seen in CO radio line emission. These observations also show the presence of at least one, possibly two, shells inside the 43 arcsec shell (Gonz´alez Delgado et al. 2001). In this paper, absorption lines in the optical spectrum of U Ant are tentatively identified for this bright cool carbon star. -
Magnetar Asteroseismology with Long-Term Gravitational Waves
Magnetar Asteroseismology with Long-Term Gravitational Waves Kazumi Kashiyama1 and Kunihito Ioka2 1Department of Physics, Kyoto University, Kyoto 606-8502, Japan 2Theory Center, KEK(High Energy Accelerator Research Organization), Tsukuba 305-0801, Japan Magnetic flares and induced oscillations of magnetars (supermagnetized neutron stars) are promis- ing sources of gravitational waves (GWs). We suggest that the GW emission, if any, would last longer than the observed x-ray quasiperiodic oscillations (X-QPOs), calling for the longer-term GW anal- yses lasting a day to months, compared to than current searches lasting. Like the pulsar timing, the oscillation frequency would also evolve with time because of the decay or reconfiguration of the magnetic field, which is crucial for the GW detection. With the observed GW frequency and its time-derivatives, we can probe the interior magnetic field strength of ∼ 1016 G and its evolution to open a new GW asteroseismology with the next generation interferometers like advanced LIGO, advanced VIRGO, LCGT and ET. PACS numbers: 95.85.Sz,97.60.Jd In the upcoming years, the gravitational wave (GW) In this Letter, we suggest that the GWs from magne- astronomy will be started by the 2nd generation GW de- tar GFs would last much longer than the X-QPOs if the tectors [1–3], such as advanced LIGO, advanced VIRGO GW frequencies are close to the X-QPO frequencies [see and LCGT, and the 3rd generation ones like ET [4] in the Eq.(6)]. We show that the long-term GW analyses from 10 Hz-kHz band. These GW interferometers will bring a day to months are necessary to detect the GW, even about a greater synergy among multimessenger (electro- if the GW energy is comparable to the electromagnetic magnetic, neutrino, cosmic ray and GW) signals. -
Stellar Spectral Classification of Previously Unclassified Stars Gsc 4461-698 and Gsc 4466-870" (2012)
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2012 Stellar Spectral Classification Of Previously Unclassified tS ars Gsc 4461-698 And Gsc 4466-870 Darren Moser Grau Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Grau, Darren Moser, "Stellar Spectral Classification Of Previously Unclassified Stars Gsc 4461-698 And Gsc 4466-870" (2012). Theses and Dissertations. 1350. https://commons.und.edu/theses/1350 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. STELLAR SPECTRAL CLASSIFICATION OF PREVIOUSLY UNCLASSIFIED STARS GSC 4461-698 AND GSC 4466-870 By Darren Moser Grau Bachelor of Arts, Eastern University, 2009 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements For the degree of Master of Science Grand Forks, North Dakota December 2012 Copyright 2012 Darren M. Grau ii This thesis, submitted by Darren M. Grau in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved. _____________________________________ Dr. Paul Hardersen _____________________________________ Dr. Ronald Fevig _____________________________________ Dr. Timothy Young This thesis is being submitted by the appointed advisory committee as having met all of the requirements of the Graduate School at the University of North Dakota and is hereby approved. -
Carbon Stars T. Lloyd Evans
J. Astrophys. Astr. (2010) 31, 177–211 Carbon Stars T. Lloyd Evans SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK. e-mail: [email protected] Received 2010 July 19; accepted 2010 October 18 Abstract. In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material. Key words. Stars: carbon—stars: evolution—stars: circumstellar matter —galaxies: magellanic clouds. 1. Introduction Carbon stars have been reviewed on several previous occasions, most recently by Wallerstein & Knapp (1998). A conference devoted to this topic was held in 1996 (Wing 2000) and two meetings on AGB stars (Le Bertre et al. 1999; Kerschbaum et al. 2007) also contain much on carbon stars. This review emphasizes develop- ments since 1997, while paying particular attention to connections with earlier work and to some of the important sources of concepts. Recent and ongoing develop- ments include surveys for carbon stars in more of the galaxies of the local group and detailed spectroscopy and infrared photometry for many of them, as well as general surveys such as 2MASS, AKARI and the Sirius near infrared survey of the Magel- lanic Clouds and several dwarf galaxies, the Spitzer-SAGE mid-infrared survey of the Magellanic Clouds and the current Herschel infrared satellite project. Detailed studies of relatively bright galactic examples continue to be made by high-resolution spectroscopy, concentrating on abundance determinations using the red spectral region, and infrared and radio observations which give information on the history of mass loss. -
Stellar Evolution
AccessScience from McGraw-Hill Education Page 1 of 19 www.accessscience.com Stellar evolution Contributed by: James B. Kaler Publication year: 2014 The large-scale, systematic, and irreversible changes over time of the structure and composition of a star. Types of stars Dozens of different types of stars populate the Milky Way Galaxy. The most common are main-sequence dwarfs like the Sun that fuse hydrogen into helium within their cores (the core of the Sun occupies about half its mass). Dwarfs run the full gamut of stellar masses, from perhaps as much as 200 solar masses (200 M,⊙) down to the minimum of 0.075 solar mass (beneath which the full proton-proton chain does not operate). They occupy the spectral sequence from class O (maximum effective temperature nearly 50,000 K or 90,000◦F, maximum luminosity 5 × 10,6 solar), through classes B, A, F, G, K, and M, to the new class L (2400 K or 3860◦F and under, typical luminosity below 10,−4 solar). Within the main sequence, they break into two broad groups, those under 1.3 solar masses (class F5), whose luminosities derive from the proton-proton chain, and higher-mass stars that are supported principally by the carbon cycle. Below the end of the main sequence (masses less than 0.075 M,⊙) lie the brown dwarfs that occupy half of class L and all of class T (the latter under 1400 K or 2060◦F). These shine both from gravitational energy and from fusion of their natural deuterium. Their low-mass limit is unknown. -
198 4Apj. . .211 . .7 91N the Astrophysical Journal, 277:791-805
91N .7 . The Astrophysical Journal, 277:791-805, 1984 February 15 © 1984. The American Astronomical Society. All rights reserved. Printed in U.S.A. .211 . 4ApJ. 198 EVOLUTION OF 8-10 M0 STARS TOWARD ELECTRON CAPTURE SUPERNOVAE. I. FORMATION OF ELECTRON-DEGENERATE O + Ne + Mg CORES Ken’ichi Nomoto1 Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight Center Received 1983 March 4; accepted 1983 July 12 ABSTRACT Helium cores in stars with masses near 10 M0 are evolved from the helium burning phase; the outer edge of the core is fitted to the boundary conditions at the bottom of the hydrogen-rich envelope. Two {0) cases with initial helium core mass of MH = 2.6MG (case 2.6) and 2.4 M0 (case 2.4) are studied. Both cores spend the carbon burning phase under nondegenerate condition and leave O + Ne + Mg cores. Further evolution depends on the mass of the O + Ne + Mg core, Mc. For case 2.6, Mc exceeds a critical mass for neon ignition (1.37 M0) so that a strong off-center neon flash is ignited. The neon and oxygen flashing layer moves inward. For case 2.4, on the other hand, neon is not ignited because Mc is smaller than 1.37 M0. Then the O + Ne + Mg core becomes strongly degenerate and a dredge-up of a helium layer by the penetrating surface convection zone starts. Further evolution up through the core collapse which is triggered by electron 24 20 (0) captures on Mg and Ne must be common to cases with Mh = 2.0-2.5 M0 (i.e., stellar mass of 8-10 M0).