Do We Really Understand Quantum Mechanics? Franck Laloë

Total Page:16

File Type:pdf, Size:1020Kb

Do We Really Understand Quantum Mechanics? Franck Laloë Do we really understand quantum mechanics? Franck Laloë To cite this version: Franck Laloë. Do we really understand quantum mechanics?. American Journal of Physics, American Association of Physics Teachers, 2001, 69, pp.655 - 701. hal-00000001v2 HAL Id: hal-00000001 https://hal.archives-ouvertes.fr/hal-00000001v2 Submitted on 14 Nov 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Do we really understand quantum mechanics? Strange correlations, paradoxes and theorems. F. Lalo¨e Laboratoire de Physique de l’ENS, LKB, 24 rue Lhomond, F-75005 Paris, France February 4, 2011 Abstract This article presents a general discussion of several aspects of our present understanding of quantum mechanics. The emphasis is put on the very special correlations that this theory makes possible: they are forbidden by very general arguments based on realism and local causality. In fact, these correlations are completely impossible in any circumstance, except the very special situations designed by physicists especially to observe these purely quantum effects. Another general point that is emphasized is the necessity for the theory to predict the emergence of a single result in a single realization of an experiment. For this purpose, orthodox quantum mechanics introduces a special postu- late: the reduction of the state vector, which comes in addition to the Schr¨odinger evolution postulate. Nevertheless, the presence in parallel of two evolution processes of the same object (the state vector) may be a potential source for conflicts; various attitudes that are possible to avoid this problem are discussed in this text. After a brief historical introduction, recalling how the very special status of the state vector has emerged in quantum mechanics, various conceptual difficulties are introduced and discussed. The Einstein Podolsky Rosen (EPR) theo- rem is presented with the help of a botanical parable, in a way that emphasizes how deeply the EPR reasoning is rooted into what is often called “scientific method”. In another section the GHZ argument, the Hardy impossibilities, as well as the BKS theorem are introduced in simple terms. The final two sections attempt to give a summary of the present situation: one section discusses non-locality and entangle- ment as we see it presently, with brief mention of recent experiments; the last section contains a (non-exhaustive) list of various attitudes that are found among physicists, and that are helpful to alleviate the conceptual difficulties of quantum mechanics. 1 Contents 1 Historical perspective 4 1.1 Threeperiods........................... 5 1.1.1 Prehistory......................... 6 1.1.2 Theundulatoryperiod. 7 1.1.3 Emergence of the Copenhagen interpretation . 8 1.2 The status of the state vector . 9 1.2.1 Two extremes and the orthodox solution . 10 1.2.2 An illustration . 11 2 Difficulties, paradoxes 13 2.1 Von Neumann’s infinite regress . 14 2.2 Wigner’sfriend .......................... 16 2.3 Schr¨odinger’scat . 17 2.4 Unconvincing arguments . 19 3 Einstein, Podolsky and Rosen 20 3.1 Atheorem............................. 20 3.2 Ofpeas,podsandgenes . 22 3.2.1 Simple experiments; no conclusion yet. 22 3.2.2 Correlations; causes unveiled. 23 3.2.3 Transposition to physics . 25 4 Quantitative theorems: Bell, GHZ, Hardy, BKS 28 4.1 Bellinequalities.. .. .. .. .. .. .. .. 29 4.1.1 Two spins in a quantum singlet state . 29 4.1.2 Proof ........................... 30 4.1.3 Contradiction with quantum mechanics and with ex- periments ......................... 31 4.1.4 Generality of the theorem . 32 4.2 Hardy’simpossibilities . 35 4.3 GHZequality ........................... 37 4.4 Bell-Kochen-Specker; contextuality. 41 5 Non-locality and entanglement: where are we now? 44 5.1 Loopholes,conspiracies. 45 5.2 Locality, contrafactuality . 50 5.3 “All-or-nothing coherent states”; decoherence . 51 5.3.1 Definition and properties of the states . 51 5.3.2 Decoherence........................ 54 5.4 Quantum cryptography, teleportation . 57 5.4.1 Sharing cryptographic keys by quantum measurements 58 5.4.2 Teleporting a quantum state . 59 2 5.5 Quantum computing and information . 62 6 Various interpretations 64 6.1 Common ground; “correlation interpretation” . 65 6.2 Additional variables . 69 6.2.1 Generalframework . 69 6.2.2 Bohmian trajectories . 72 6.3 Modified (non-linear) Schr¨odinger dynamics . 74 6.3.1 Various forms of the theory . 75 6.3.2 Physical predictions . 77 6.4 History interpretation . 79 6.4.1 Histories, families of histories . 79 6.4.2 Consistent families . 81 6.4.3 Quantum evolution of an isolated system . 82 6.4.4 Comparison with other interpretations . 85 6.4.5 A profusion of points of view; discussion . 87 6.5 Everett interpretation . 89 Quantum mechanics describes physical systems through a mathematical object, the state vector Ψ >, which replaces positions and velocities of | classical mechanics. This is an enormous change, not only mathematically, but also conceptually. The relations between Ψ > and physical properties | are much less direct than in classical mechanics; the distance between the formalism and the experimental predictions leaves much more room for dis- cussions about the interpretation of the theory. Actually, many difficulties encountered by those who tried (or are still trying) to “really understand” quantum mechanics are related to questions pertaining to the exact status of Ψ >: for instance, does it describe the physical reality itself, or only some | partial knowledge that we might have of this reality? Does it fully describe ensemble of systems only (statistical description), or one single system as well (single events)? Assume that, indeed, Ψ > is affected by an imperfect | knowledge of the system; is it then not natural to expect that a better de- scription should exist, at least in principle? If so, what would be this deeper and more precise description of the reality? Another confusing feature of Ψ > is that, for systems extended in | space (for instance, a system made of two particles at very different loca- tions), it gives an overall description of all its physical properties in a single block from which the notion of space seems to have disappeared; in some cases, the physical properties of the two remote particles seem to be com- pletely “entangled” (the word was introduced by Schr¨odinger in the early 3 days of quantum mechanics) in a way where the usual notions of space- time and local events seem to become dimmed. Of course, one could think that this entanglement is just an innocent feature of the formalism with no special consequence: for instance, in classical electromagnetism, it is often convenient to introduce a choice of gauge for describing the fields in an in- termediate step, but we know very well that gauge invariance is actually fully preserved at the end. But, and as we will see below, it turns out that the situation is different in quantum mechanics: in fact, a mathematical entanglement in Ψ > can indeed have important physical consequences on | the result of experiments, and even lead to predictions that are, in a sense, contradictory with locality (we will see below in what sense). Without any doubt, the state vector is a rather curious object to describe reality; one purpose of this article is to describe some situations in which its use in quantum mechanics leads to predictions that are particularly unex- pected. As an introduction, and in order to set the stage for this discussion, we will start with a brief historical introduction, which will remind us of the successive steps from which the present status of Ψ > emerged. Paying | attention to history is not inappropriate in a field where the same recurrent ideas are so often rediscovered; they appear again and again, sometimes al- most identical over the years, sometimes remodelled or rephrased with new words, but in fact more or less unchanged. Therefore, a look at the past is not necessarily a waste of time! 1 Historical perspective The founding fathers of quantum mechanics had already perceived the essence of many aspects of the discussions on quantum mechanics; today, after al- most a century, the discussions are still lively and, if some very interesting new aspects have emerged, at a deeper level the questions have not changed so much. What is more recent, nevertheless, is a general change of atti- tude among physicists: until about 20 years ago, probably as a result of the famous discussions between Bohr, Einstein, Schr¨odinger, Heisenberg, Pauli, de Broglie and others (in particular at the famous Solvay meetings [1]), most physicists seemed to consider that “Bohr was right and proved his opponents to be wrong”, even if this was expressed with more nuance. In other words, the majority of physicists thought that the so called “Copenhagen interpre- tation” had clearly emerged from the infancy of quantum mechanics as the only sensible attitude for good scientists. As we all know, this interpretation introduced the idea that modern physics must contain indeterminacy as an essential ingredient: it is fundamentally impossible to predict the outcome of single microscopical events; it is impossible to go beyond the formalism of 4 the wave function (or its equivalent, the state vector Ψ >1) and complete | it; for some physicists, the Copenhagen interpretation also includes the diffi- cult notion of “complementarity”.... even if it is true that, depending on the context, complementarity comes in many varieties and has been interpreted in many different ways! By and large, the impression of the vast majority was that Bohr had eventually won the debate with Einstein, so that dis- cussing again the foundations of quantum mechanics after these giants was pretentious, useless, and maybe even bad taste.
Recommended publications
  • Quantum Theory Cannot Consistently Describe the Use of Itself
    ARTICLE DOI: 10.1038/s41467-018-05739-8 OPEN Quantum theory cannot consistently describe the use of itself Daniela Frauchiger1 & Renato Renner1 Quantum theory provides an extremely accurate description of fundamental processes in physics. It thus seems likely that the theory is applicable beyond the, mostly microscopic, domain in which it has been tested experimentally. Here, we propose a Gedankenexperiment 1234567890():,; to investigate the question whether quantum theory can, in principle, have universal validity. The idea is that, if the answer was yes, it must be possible to employ quantum theory to model complex systems that include agents who are themselves using quantum theory. Analysing the experiment under this presumption, we find that one agent, upon observing a particular measurement outcome, must conclude that another agent has predicted the opposite outcome with certainty. The agents’ conclusions, although all derived within quantum theory, are thus inconsistent. This indicates that quantum theory cannot be extrapolated to complex systems, at least not in a straightforward manner. 1 Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland. Correspondence and requests for materials should be addressed to R.R. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:3711 | DOI: 10.1038/s41467-018-05739-8 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05739-8 “ 1”〉 “ 1”〉 irect experimental tests of quantum theory are mostly Here, | z ¼À2 D and | z ¼þ2 D denote states of D depending restricted to microscopic domains. Nevertheless, quantum on the measurement outcome z shown by the devices within the D “ψ ”〉 “ψ ”〉 theory is commonly regarded as being (almost) uni- lab.
    [Show full text]
  • The Consistent Histories Approach to the Stern-Gerlach Experiment
    The Consistent Histories Approach to the Stern-Gerlach Experiment Ian Wilson An undergraduate thesis advised by Dr. David Craig submitted to the Department of Physics, Oregon State University in partial fulfillment of the requirements for the degree BSc in Physics Submitted on May 8, 2020 Acknowledgments I would like to thank Dr. David Craig, for guiding me through an engaging line of research, as well as Dr. David McIntyre, Dr. Elizabeth Gire, Dr. Corinne Manogue and Dr. Janet Tate for developing the quantum curriculum from which this thesis is rooted. I would also like to thank all of those who gave me the time, space, and support I needed while writing this. This includes (but is certainly not limited to) my partner Brooke, my parents Joy and Kevin, my housemate Cheyanne, the staff of Interzone, and my friends Saskia, Rachel and Justin. Abstract Standard quantum mechanics makes foundational assumptions to describe the measurement process. Upon interaction with a “classical measurement apparatus”, a quantum system is subjected to postulated “state collapse” dynamics. We show that framing measurement around state collapse and ill-defined classical observers leads to interpretational issues, and artificially limits the scope of quantum theory. This motivates describing measurement as a unitary process instead. In the context of the Stern-Gerlach experiment, the measurement of an electron’s spin angular momentum is explained as the entanglement of its spin and position degrees of freedom. Furthermore, the electron-environment interaction is also detailed as part of the measurement process. The environment plays the role of a record keeper, establishing the “facts of the universe” to make the measurement’s occurrence objective.
    [Show full text]
  • Theoretical Physics Group Decoherent Histories Approach: a Quantum Description of Closed Systems
    Theoretical Physics Group Department of Physics Decoherent Histories Approach: A Quantum Description of Closed Systems Author: Supervisor: Pak To Cheung Prof. Jonathan J. Halliwell CID: 01830314 A thesis submitted for the degree of MSc Quantum Fields and Fundamental Forces Contents 1 Introduction2 2 Mathematical Formalism9 2.1 General Idea...................................9 2.2 Operator Formulation............................. 10 2.3 Path Integral Formulation........................... 18 3 Interpretation 20 3.1 Decoherent Family............................... 20 3.1a. Logical Conclusions........................... 20 3.1b. Probabilities of Histories........................ 21 3.1c. Causality Paradox........................... 22 3.1d. Approximate Decoherence....................... 24 3.2 Incompatible Sets................................ 25 3.2a. Contradictory Conclusions....................... 25 3.2b. Logic................................... 28 3.2c. Single-Family Rule........................... 30 3.3 Quasiclassical Domains............................. 32 3.4 Many History Interpretation.......................... 34 3.5 Unknown Set Interpretation.......................... 36 4 Applications 36 4.1 EPR Paradox.................................. 36 4.2 Hydrodynamic Variables............................ 41 4.3 Arrival Time Problem............................. 43 4.4 Quantum Fields and Quantum Cosmology.................. 45 5 Summary 48 6 References 51 Appendices 56 A Boolean Algebra 56 B Derivation of Path Integral Method From Operator
    [Show full text]
  • Bachelorarbeit
    Bachelorarbeit The EPR-Paradox, Nonlocality and the Question of Causality Ilvy Schultschik angestrebter akademischer Grad Bachelor of Science (BSc) Wien, 2014 Studienkennzahl lt. Studienblatt: 033 676 Studienrichtung lt. Studienblatt: Physik Betreuer: Univ. Prof. Dr. Reinhold A. Bertlmann Contents 1 Motivation and Mathematical framework 2 1.1 Entanglement - Separability . .2 1.2 Schmidt Decomposition . .3 2 The EPR-paradox 5 2.1 Introduction . .5 2.2 Preface . .5 2.3 EPR reasoning . .8 2.4 Bohr's reply . 11 3 Hidden Variables and no-go theorems 12 4 Nonlocality 14 4.1 Nonlocality and Quantum non-separability . 15 4.2 Teleportation . 17 5 The Bell theorem 19 5.1 Bell's Inequality . 19 5.2 Derivation . 19 5.3 Violation by quantum mechanics . 21 5.4 CHSH inequality . 22 5.5 Bell's theorem and further discussion . 24 5.6 Different assumptions . 26 6 Experimental realizations and loopholes 26 7 Causality 29 7.1 Causality in Special Relativity . 30 7.2 Causality and Quantum Mechanics . 33 7.3 Remarks and prospects . 34 8 Acknowledgment 35 1 1 Motivation and Mathematical framework In recent years, many physicists have taken the incompatibility between cer- tain notions of causality, reality, locality and the empirical data less and less as a philosophical discussion about interpretational ambiguities. Instead sci- entists started to regard this tension as a productive resource for new ideas about quantum entanglement, quantum computation, quantum cryptogra- phy and quantum information. This becomes especially apparent looking at the number of citations of the original EPR paper, which has risen enormously over recent years, and be- coming the starting point for many groundbreaking ideas.
    [Show full text]
  • Many Worlds Model Resolving the Einstein Podolsky Rosen Paradox Via a Direct Realism to Modal Realism Transition That Preserves Einstein Locality
    Many Worlds Model resolving the Einstein Podolsky Rosen paradox via a Direct Realism to Modal Realism Transition that preserves Einstein Locality Sascha Vongehr †,†† †Department of Philosophy, Nanjing University †† National Laboratory of Solid-State Microstructures, Thin-film and Nano-metals Laboratory, Nanjing University Hankou Lu 22, Nanjing 210093, P. R. China The violation of Bell inequalities by quantum physical experiments disproves all relativistic micro causal, classically real models, short Local Realistic Models (LRM). Non-locality, the infamous “spooky interaction at a distance” (A. Einstein), is already sufficiently ‘unreal’ to motivate modifying the “realistic” in “local realistic”. This has led to many worlds and finally many minds interpretations. We introduce a simple many world model that resolves the Einstein Podolsky Rosen paradox. The model starts out as a classical LRM, thus clarifying that the many worlds concept alone does not imply quantum physics. Some of the desired ‘non-locality’, e.g. anti-correlation at equal measurement angles, is already present, but Bell’s inequality can of course not be violated. A single and natural step turns this LRM into a quantum model predicting the correct probabilities. Intriguingly, the crucial step does obviously not modify locality but instead reality: What before could have still been a direct realism turns into modal realism. This supports the trend away from the focus on non-locality in quantum mechanics towards a mature structural realism that preserves micro causality. Keywords: Many Worlds Interpretation; Many Minds Interpretation; Einstein Podolsky Rosen Paradox; Everett Relativity; Modal Realism; Non-Locality PACS: 03.65. Ud 1 1 Introduction: Quantum Physics and Different Realisms ...............................................................
    [Show full text]
  • Consistent Histories
    Chapter 12 Local Weak Property Realism: Consistent Histories Earlier, we surmised that weak property realism can escape the strictures of Bell’s theorem and KS. In this chapter, we look at an interpretation of quantum mechanics that does just that, namely, the Consistent Histories Interpretation (CH). 12.1 Consistent Histories The basic idea behind CH is that quantum mechanics is a stochastic theory operating on quantum histories. A history a is a temporal sequence of properties held by a system. For example, if we just consider spin, for an electron a history could be as follows: at t0, Sz =1; at t1, Sx =1; at t2, Sy = -1, where spin components are measured in units of h /2. The crucial point is that in this interpretation the electron is taken to exist independently of us and to have such spin components at such times, while in the standard view 1, 1, and -1 are just experimental return values. In other words, while the standard interpretation tries to provide the probability that such returns would be obtained upon measurement, CH provides the probability Pr(a) that the system will have history a, that is, such and such properties at different times. Hence, CH adopts non-contextual property realism (albeit of the weak sort) and dethrones measurement from the pivotal position it occupies in the orthodox interpretation. To see how CH works, we need first to look at some of the formal features of probability. 12.2 Probability Probability is defined on a sample space S, the set of all the mutually exclusive outcomes of a state of affairs; each element e of S is a sample point to which one assigns a number Pr(e) satisfying the axioms of probability (of which more later).
    [Show full text]
  • Hidden Variables and the Two Theorems of John Bell
    Hidden Variables and the Two Theorems of John Bell N. David Mermin What follows is the text of my article that appeared in Reviews of Modern Physics 65, 803-815 (1993). I’ve corrected the three small errors posted over the years at the Revs. Mod. Phys. website. I’ve removed two decorative figures and changed the other two figures into (unnumbered) displayed equations. I’ve made a small number of minor editorial improvements. I’ve added citations to some recent critical articles by Jeffrey Bub and Dennis Dieks. And I’ve added a few footnotes of commentary.∗ I’m posting my old paper at arXiv for several reasons. First, because it’s still timely and I’d like to make it available to a wider audience in its 25th anniversary year. Second, because, rereading it, I was struck that Section VII raises some questions that, as far as I know, have yet to be adequately answered. And third, because it has recently been criticized by Bub and Dieks as part of their broader criticism of John Bell’s and Grete Hermann’s reading of John von Neumann.∗∗ arXiv:1802.10119v1 [quant-ph] 27 Feb 2018 ∗ The added footnotes are denoted by single or double asterisks. The footnotes from the original article have the same numbering as in that article. ∗∗ R¨udiger Schack and I will soon post a paper in which we give our own view of von Neumann’s four assumptions about quantum mechanics, how he uses them to prove his famous no-hidden-variable theorem, and how he fails to point out that one of his assump- tions can be violated by a hidden-variables theory without necessarily doing violence to the whole structure of quantum mechanics.
    [Show full text]
  • Lessons of Bell's Theorem
    Lessons of Bell's Theorem: Nonlocality, yes; Action at a distance, not necessarily. Wayne C. Myrvold Department of Philosophy The University of Western Ontario Forthcoming in Shan Gao and Mary Bell, eds., Quantum Nonlocality and Reality { 50 Years of Bell's Theorem (Cambridge University Press) Contents 1 Introduction page 1 2 Does relativity preclude action at a distance? 2 3 Locally explicable correlations 5 4 Correlations that are not locally explicable 8 5 Bell and Local Causality 11 6 Quantum state evolution 13 7 Local beables for relativistic collapse theories 17 8 A comment on Everettian theories 19 9 Conclusion 20 10 Acknowledgments 20 11 Appendix 20 References 25 1 Introduction 1 1 Introduction Fifty years after the publication of Bell's theorem, there remains some con- troversy regarding what the theorem is telling us about quantum mechanics, and what the experimental violations of Bell inequalities are telling us about the world. This chapter represents my best attempt to be clear about what I think the lessons are. In brief: there is some sort of nonlocality inherent in any quantum theory, and, moreover, in any theory that reproduces, even approximately, the quantum probabilities for the outcomes of experiments. But not all forms of nonlocality are the same; there is a distinction to be made between action at a distance and other forms of nonlocality, and I will argue that the nonlocality needed to violate the Bell inequalities need not involve action at a distance. Furthermore, the distinction between forms of nonlocality makes a difference when it comes to compatibility with relativis- tic causal structure.
    [Show full text]
  • High Energy Physics Quantum Information Science Awards Abstracts
    High Energy Physics Quantum Information Science Awards Abstracts Towards Directional Detection of WIMP Dark Matter using Spectroscopy of Quantum Defects in Diamond Ronald Walsworth, David Phillips, and Alexander Sushkov Challenges and Opportunities in Noise‐Aware Implementations of Quantum Field Theories on Near‐Term Quantum Computing Hardware Raphael Pooser, Patrick Dreher, and Lex Kemper Quantum Sensors for Wide Band Axion Dark Matter Detection Peter S Barry, Andrew Sonnenschein, Clarence Chang, Jiansong Gao, Steve Kuhlmann, Noah Kurinsky, and Joel Ullom The Dark Matter Radio‐: A Quantum‐Enhanced Dark Matter Search Kent Irwin and Peter Graham Quantum Sensors for Light-field Dark Matter Searches Kent Irwin, Peter Graham, Alexander Sushkov, Dmitry Budke, and Derek Kimball The Geometry and Flow of Quantum Information: From Quantum Gravity to Quantum Technology Raphael Bousso1, Ehud Altman1, Ning Bao1, Patrick Hayden, Christopher Monroe, Yasunori Nomura1, Xiao‐Liang Qi, Monika Schleier‐Smith, Brian Swingle3, Norman Yao1, and Michael Zaletel Algebraic Approach Towards Quantum Information in Quantum Field Theory and Holography Daniel Harlow, Aram Harrow and Hong Liu Interplay of Quantum Information, Thermodynamics, and Gravity in the Early Universe Nishant Agarwal, Adolfo del Campo, Archana Kamal, and Sarah Shandera Quantum Computing for Neutrino‐nucleus Dynamics Joseph Carlson, Rajan Gupta, Andy C.N. Li, Gabriel Perdue, and Alessandro Roggero Quantum‐Enhanced Metrology with Trapped Ions for Fundamental Physics Salman Habib, Kaifeng Cui1,
    [Show full text]
  • Quantum Trajectories for Measurement of Entangled States
    Quantum Trajectories for Measurement of Entangled States Apoorva Patel Centre for High Energy Physics, Indian Institute of Science, Bangalore 1 Feb 2018, ISNFQC18, SNBNCBS, Kolkata 1 Feb 2018, ISNFQC18, SNBNCBS, Kolkata A. Patel (CHEP, IISc) Quantum Trajectories for Entangled States / 22 Density Matrix The density matrix encodes complete information of a quantum system. It describes a ray in the Hilbert space. It is Hermitian and positive, with Tr(ρ)=1. It generalises the concept of probability distribution to quantum theory. 1 Feb 2018, ISNFQC18, SNBNCBS, Kolkata A. Patel (CHEP, IISc) Quantum Trajectories for Entangled States / 22 Density Matrix The density matrix encodes complete information of a quantum system. It describes a ray in the Hilbert space. It is Hermitian and positive, with Tr(ρ)=1. It generalises the concept of probability distribution to quantum theory. The real diagonal elements are the classical probabilities of observing various orthogonal eigenstates. The complex off-diagonal elements (coherences) describe quantum correlations among the orthogonal eigenstates. 1 Feb 2018, ISNFQC18, SNBNCBS, Kolkata A. Patel (CHEP, IISc) Quantum Trajectories for Entangled States / 22 Density Matrix The density matrix encodes complete information of a quantum system. It describes a ray in the Hilbert space. It is Hermitian and positive, with Tr(ρ)=1. It generalises the concept of probability distribution to quantum theory. The real diagonal elements are the classical probabilities of observing various orthogonal eigenstates. The complex off-diagonal elements (coherences) describe quantum correlations among the orthogonal eigenstates. For pure states, ρ2 = ρ and det(ρ)=0. Any power-series expandable function f (ρ) becomes a linear combination of ρ and I .
    [Show full text]
  • PROPOSED EXPERIMENT to TEST LOCAL HIDDEN-VARIABLE THEORIES* John F
    VOLUME 23, NUMBER 15 PHYSI CA I. REVIEW I.ETTERS 13 OcToBER 1969 sible without the devoted effort of the personnel ~K. P. Beuermann, C. J. Rice, K. C. Stone, and R. K. of the Orbiting Geophysical Observatory office Vogt, Phys. Rev. Letters 22, 412 (1969). at the Goddard Space Flight Center and at TR%. 2J. L'Heureux and P. Meyer, Can. J. Phys. 46, S892 (1968). 3J. Rockstroh and W. R. Webber, University of Min- nesota Publication No. CR-126, 1969. ~Research supported in part under National Aeronau- 46. M. Simnett and F. B. McDonald, Goddard Space tics and Space Administration Contract No. NAS 5-9096 Plight Center Report No. X-611-68-450, 1968 (to be and Grant No. NGR 14-001-005. published) . )Present address: Department of Physics, The Uni- 5W. R. Webber, J. Geophys. Res. 73, 4905 (1968). versity of Arizona, Tucson, Ariz. GP. B. Abraham, K. A. Brunstein, and T. L. Cline, (Also Department of Physics. Phys. Rev. 150, 1088 (1966). PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES* John F. Clauserf Department of Physics, Columbia University, New York, New York 10027 Michael A. Horne Department of Physics, Boston University, Boston, Massachusetts 02215 and Abner Shimony Departments of Philosophy and Physics, Boston University, Boston, Massachusetts 02215 and Richard A. Holt Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 4 August 1969) A theorem of Bell, proving that certain predictions of quantum mechanics are incon- sistent with the entire family of local hidden-variable theories, is generalized so as to apply to realizable experiments. A proposed extension of the experiment of Kocher and Commins, on the polarization correlation of a pair of optical photons, will provide a de- cisive test betw'een quantum mechanics and local hidden-variable theories.
    [Show full text]
  • Is Emerging Science Answering Philosopher: Greatest Questions?
    free inquiry SPRING 2001 • VOL. 21 No. Is Emerging Science Answering Philosopher: Greatest Questions? ALSO: Paul Kurtz Peter Christina Hoff Sommers Tibor Machan Joan Kennedy Taylor Christopher Hitchens `Secular Humanism THE AFFIRMATIONS OF HUMANISM: LI I A STATEMENT OF PRINCIPLES free inquiry We are committed to the application of reason and science to the understanding of the universe and to the solving of human problems. We deplore efforts to denigrate human intelligence, to seek to explain the world in supernatural terms, and to look outside nature for salvation. We believe that scientific discovery and technology can contribute to the betterment of human life. We believe in an open and pluralistic society and that democracy is the best guarantee of protecting human rights from authoritarian elites and repressive majorities. We are committed to the principle of the separation of church and state. We cultivate the arts of negotiation and compromise as a means of resolving differences and achieving mutual under- standing. We are concerned with securing justice and fairness in society and with eliminating discrimination and intolerance. We believe in supporting the disadvantaged and the handicapped so that they will be able to help themselves. We attempt to transcend divisive parochial loyalties based on race, religion, gender, nationality, creed, class, sexual ori- entation, or ethnicity, and strive to work together for the common good of humanity. We want to protect and enhance the earth, to preserve it for future generations, and to avoid inflicting needless suf- fering on other species. We believe in enjoying life here and now and in developing our creative talents to their fullest.
    [Show full text]