Jackknife and Bootstrap
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phase Transition Unbiased Estimation in High Dimensional Settings Arxiv
Phase Transition Unbiased Estimation in High Dimensional Settings St´ephaneGuerrier, Mucyo Karemera, Samuel Orso & Maria-Pia Victoria-Feser Research Center for Statistics, University of Geneva Abstract An important challenge in statistical analysis concerns the control of the finite sample bias of estimators. This problem is magnified in high dimensional settings where the number of variables p diverge with the sample size n. However, it is difficult to establish whether an estimator θ^ of θ0 is unbiased and the asymptotic ^ order of E[θ] − θ0 is commonly used instead. We introduce a new property to assess the bias, called phase transition unbiasedness, which is weaker than unbiasedness but stronger than asymptotic results. An estimator satisfying this property is such ^ ∗ that E[θ] − θ0 2 = 0, for all n greater than a finite sample size n . We propose a phase transition unbiased estimator by matching an initial estimator computed on the sample and on simulated data. It is computed using an algorithm which is shown to converge exponentially fast. The initial estimator is not required to be consistent and thus may be conveniently chosen for computational efficiency or for other properties. We demonstrate the consistency and the limiting distribution of the estimator in high dimension. Finally, we develop new estimators for logistic regression models, with and without random effects, that enjoy additional properties such as robustness to data contamination and to the problem of separability. arXiv:1907.11541v3 [math.ST] 1 Nov 2019 Keywords: Finite sample bias, Iterative bootstrap, Two-step estimators, Indirect inference, Robust estimation, Logistic regression. 1 1. Introduction An important challenge in statistical analysis concerns the control of the (finite sample) bias of estimators. -
Notes on Jackknife
Stat 427/627 (Statistical Machine Learning, Baron) Notes on Jackknife Jackknife is an effective resampling method that was proposed by Morris Quenouille to estimate and reduce the bias of parameter estimates. 1.1 Jackknife resampling Resampling refers to sampling from the original sample S with certain weights. The original weights are (1/n) for each units in the sample, and the original empirical distribution is 1 mass at each observation x , i ∈ S ˆ i F = n 0 elsewhere Resampling schemes assign different weights. Jackknife re-assigns weights as follows, 1 mass at each observation x , i ∈ S, i =6 j ˆ i FJK = n − 1 0 elsewhere, including xj That is, Jackknife removes unit j from the sample, and the new jackknife sample is S(j) =(x1,...,xj−1, xj+1,...,xn). 1.2 Jackknife estimator ˆ ˆ ˆ Suppose we estimate parameter θ with an estimator θ = θ(x1,...,xn). The bias of θ is Bias(θˆ)= Eθ(θˆ) − θ. • How to estimate Bias(θˆ)? • How to reduce |Bias(θˆ)|? • If the bias is not zero, how to find an estimator with a smaller bias? For almost all reasonable and practical estimates, Bias(θˆ) → 0, as n →∞. Then, it is reasonable to assume a power series of the type a a a E (θˆ)= θ + 1 + 2 + 3 + ..., θ n n2 n3 with some coefficients {ak}. 1 1.2.1 Delete one Based on a Jackknife sample S(j), we compute the Jackknife version of the estimator, ˆ ˆ ˆ θ(j) = θ(S(j))= θ(x1,...,xj−1, xj+1,...,xn), whose expected value admits representation a a E (θˆ )= θ + 1 + 2 + ... -
Bias, Mean-Square Error, Relative Efficiency
3 Evaluating the Goodness of an Estimator: Bias, Mean-Square Error, Relative Efficiency Consider a population parameter ✓ for which estimation is desired. For ex- ample, ✓ could be the population mean (traditionally called µ) or the popu- lation variance (traditionally called σ2). Or it might be some other parame- ter of interest such as the population median, population mode, population standard deviation, population minimum, population maximum, population range, population kurtosis, or population skewness. As previously mentioned, we will regard parameters as numerical charac- teristics of the population of interest; as such, a parameter will be a fixed number, albeit unknown. In Stat 252, we will assume that our population has a distribution whose density function depends on the parameter of interest. Most of the examples that we will consider in Stat 252 will involve continuous distributions. Definition 3.1. An estimator ✓ˆ is a statistic (that is, it is a random variable) which after the experiment has been conducted and the data collected will be used to estimate ✓. Since it is true that any statistic can be an estimator, you might ask why we introduce yet another word into our statistical vocabulary. Well, the answer is quite simple, really. When we use the word estimator to describe a particular statistic, we already have a statistical estimation problem in mind. For example, if ✓ is the population mean, then a natural estimator of ✓ is the sample mean. If ✓ is the population variance, then a natural estimator of ✓ is the sample variance. More specifically, suppose that Y1,...,Yn are a random sample from a population whose distribution depends on the parameter ✓.The following estimators occur frequently enough in practice that they have special notations. -
Weak Instruments and Finite-Sample Bias
7 Weak instruments and finite-sample bias In this chapter, we consider the effect of weak instruments on instrumen- tal variable (IV) analyses. Weak instruments, which were introduced in Sec- tion 4.5.2, are those that do not explain a large proportion of the variation in the exposure, and so the statistical association between the IV and the expo- sure is not strong. This is of particular relevance in Mendelian randomization studies since the associations of genetic variants with exposures of interest are often weak. This chapter focuses on the impact of weak instruments on the bias and coverage of IV estimates. 7.1 Introduction Although IV techniques can be used to give asymptotically unbiased estimates of causal effects in the presence of confounding, these estimates suffer from bias when evaluated in finite samples [Nelson and Startz, 1990]. A weak instrument (or a weak IV) is still a valid IV, in that it satisfies the IV assumptions, and es- timates using the IV with an infinite sample size will be unbiased; but for any finite sample size, the average value of the IV estimator will be biased. This bias, known as weak instrument bias, is towards the observational confounded estimate. Its magnitude depends on the strength of association between the IV and the exposure, which is measured by the F statistic in the regression of the exposure on the IV [Bound et al., 1995]. In this chapter, we assume the context of ‘one-sample’ Mendelian randomization, in which evidence on the genetic variant, exposure, and outcome are taken on the same set of indi- viduals, rather than subsample (Section 8.5.2) or two-sample (Section 9.8.2) Mendelian randomization, in which genetic associations with the exposure and outcome are estimated in different sets of individuals (overlapping sets in subsample, non-overlapping sets in two-sample Mendelian randomization). -
STAT 830 the Basics of Nonparametric Models The
STAT 830 The basics of nonparametric models The Empirical Distribution Function { EDF The most common interpretation of probability is that the probability of an event is the long run relative frequency of that event when the basic experiment is repeated over and over independently. So, for instance, if X is a random variable then P (X ≤ x) should be the fraction of X values which turn out to be no more than x in a long sequence of trials. In general an empirical probability or expected value is just such a fraction or average computed from the data. To make this precise, suppose we have a sample X1;:::;Xn of iid real valued random variables. Then we make the following definitions: Definition: The empirical distribution function, or EDF, is n 1 X F^ (x) = 1(X ≤ x): n n i i=1 This is a cumulative distribution function. It is an estimate of F , the cdf of the Xs. People also speak of the empirical distribution of the sample: n 1 X P^(A) = 1(X 2 A) n i i=1 ^ This is the probability distribution whose cdf is Fn. ^ Now we consider the qualities of Fn as an estimate, the standard error of the estimate, the estimated standard error, confidence intervals, simultaneous confidence intervals and so on. To begin with we describe the best known summaries of the quality of an estimator: bias, variance, mean squared error and root mean squared error. Bias, variance, MSE and RMSE There are many ways to judge the quality of estimates of a parameter φ; all of them focus on the distribution of the estimation error φ^−φ. -
An Unbiased Variance Estimator of a K-Sample U-Statistic with Application to AUC in Binary Classification" (2019)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wellesley College Wellesley College Wellesley College Digital Scholarship and Archive Honors Thesis Collection 2019 An Unbiased Variance Estimator of a K-sample U- statistic with Application to AUC in Binary Classification Alexandria Guo [email protected] Follow this and additional works at: https://repository.wellesley.edu/thesiscollection Recommended Citation Guo, Alexandria, "An Unbiased Variance Estimator of a K-sample U-statistic with Application to AUC in Binary Classification" (2019). Honors Thesis Collection. 624. https://repository.wellesley.edu/thesiscollection/624 This Dissertation/Thesis is brought to you for free and open access by Wellesley College Digital Scholarship and Archive. It has been accepted for inclusion in Honors Thesis Collection by an authorized administrator of Wellesley College Digital Scholarship and Archive. For more information, please contact [email protected]. An Unbiased Variance Estimator of a K-sample U-statistic with Application to AUC in Binary Classification Alexandria Guo Under the Advisement of Professor Qing Wang A Thesis Submitted in Partial Fulfillment of the Prerequisite for Honors in the Department of Mathematics, Wellesley College May 2019 © 2019 Alexandria Guo Abstract Many questions in research can be rephrased as binary classification tasks, to find simple yes-or- no answers. For example, does a patient have a tumor? Should this email be classified as spam? For classifiers trained to answer these queries, area under the ROC (receiver operating characteristic) curve (AUC) is a popular metric for assessing the performance of a binary classification method, where a larger AUC score indicates an overall better binary classifier. -
Bias in Parametric Estimation: Reduction and Useful Side-Effects
Bias in parametric estimation: reduction and useful side-effects Ioannis Kosmidis Department of Statistical Science, University College London August 30, 2018 Abstract The bias of an estimator is defined as the difference of its expected value from the parameter to be estimated, where the expectation is with respect to the model. Loosely speaking, small bias reflects the desire that if an experiment is repeated in- definitely then the average of all the resultant estimates will be close to the parameter value that is estimated. The current paper is a review of the still-expanding repository of methods that have been developed to reduce bias in the estimation of parametric models. The review provides a unifying framework where all those methods are seen as attempts to approximate the solution of a simple estimating equation. Of partic- ular focus is the maximum likelihood estimator, which despite being asymptotically unbiased under the usual regularity conditions, has finite-sample bias that can re- sult in significant loss of performance of standard inferential procedures. An informal comparison of the methods is made revealing some useful practical side-effects in the estimation of popular models in practice including: i) shrinkage of the estimators in binomial and multinomial regression models that guarantees finiteness even in cases of data separation where the maximum likelihood estimator is infinite, and ii) inferential benefits for models that require the estimation of dispersion or precision parameters. Keywords: jackknife/bootstrap, indirect inference, penalized likelihood, infinite es- timates, separation in models with categorical responses 1 Impact of bias in estimation By its definition, bias necessarily depends on how the model is written in terms of its parameters and this dependence makes it not a strong statistical principle in terms of evaluating the performance of estimators; for example, unbiasedness of the familiar sample variance S2 as an estimator of σ2 does not deliver an unbiased estimator of σ itself. -
Final Project Corrected
Table of Contents...........................................................................1 List of Figures................................................................................................ 3 List of Tables ................................................................................................. 4 C h a p t e r 1 ................................................................................................ 6 I n t r o d u c t i o n........................................................................................................ 6 1.1 Motivation............................................................................................................. 7 1.2 Aim of the study.................................................................................................... 7 1.3 Objectives ............................................................................................................. 8 1.4 Project layout ........................................................................................................ 8 C h a p t e r 2 ................................................................................................ 9 L i t e r a t u r e R e v i e w .......................................................................................... 9 2.1 Definitions............................................................................................................. 9 2.2 Estimating animal abundance ............................................................................. 10 2.1.1 Line -
Nearly Weighted Risk Minimal Unbiased Estimation✩ ∗ Ulrich K
Journal of Econometrics 209 (2019) 18–34 Contents lists available at ScienceDirect Journal of Econometrics journal homepage: www.elsevier.com/locate/jeconom Nearly weighted risk minimal unbiased estimationI ∗ Ulrich K. Müller a, , Yulong Wang b a Economics Department, Princeton University, United States b Economics Department, Syracuse University, United States article info a b s t r a c t Article history: Consider a small-sample parametric estimation problem, such as the estimation of the Received 26 July 2017 coefficient in a Gaussian AR(1). We develop a numerical algorithm that determines an Received in revised form 7 August 2018 estimator that is nearly (mean or median) unbiased, and among all such estimators, comes Accepted 27 November 2018 close to minimizing a weighted average risk criterion. We also apply our generic approach Available online 18 December 2018 to the median unbiased estimation of the degree of time variation in a Gaussian local-level JEL classification: model, and to a quantile unbiased point forecast for a Gaussian AR(1) process. C13, C22 ' 2018 Elsevier B.V. All rights reserved. Keywords: Mean bias Median bias Autoregression Quantile unbiased forecast 1. Introduction Competing estimators are typically evaluated by their bias and risk properties, such as their mean bias and mean-squared error, or their median bias. Often estimators have no known small sample optimality. What is more, if the estimation problem does not reduce to a Gaussian shift experiment even asymptotically, then in many cases, no optimality -
Chapter 4 Parameter Estimation
Chapter 4 Parameter Estimation Thus far we have concerned ourselves primarily with probability theory: what events may occur with what probabilities, given a model family and choices for the parameters. This is useful only in the case where we know the precise model family and parameter values for the situation of interest. But this is the exception, not the rule, for both scientific inquiry and human learning & inference. Most of the time, we are in the situation of processing data whose generative source we are uncertain about. In Chapter 2 we briefly covered elemen- tary density estimation, using relative-frequency estimation, histograms and kernel density estimation. In this chapter we delve more deeply into the theory of probability density es- timation, focusing on inference within parametric families of probability distributions (see discussion in Section 2.11.2). We start with some important properties of estimators, then turn to basic frequentist parameter estimation (maximum-likelihood estimation and correc- tions for bias), and finally basic Bayesian parameter estimation. 4.1 Introduction Consider the situation of the first exposure of a native speaker of American English to an English variety with which she has no experience (e.g., Singaporean English), and the problem of inferring the probability of use of active versus passive voice in this variety with a simple transitive verb such as hit: (1) The ball hit the window. (Active) (2) The window was hit by the ball. (Passive) There is ample evidence that this probability is contingent -
Parametric, Bootstrap, and Jackknife Variance Estimators for the K-Nearest Neighbors Technique with Illustrations Using Forest Inventory and Satellite Image Data
Remote Sensing of Environment 115 (2011) 3165–3174 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Parametric, bootstrap, and jackknife variance estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite image data Ronald E. McRoberts a,⁎, Steen Magnussen b, Erkki O. Tomppo c, Gherardo Chirici d a Northern Research Station, U.S. Forest Service, Saint Paul, Minnesota USA b Pacific Forestry Centre, Canadian Forest Service, Vancouver, British Columbia, Canada c Finnish Forest Research Institute, Vantaa, Finland d University of Molise, Isernia, Italy article info abstract Article history: Nearest neighbors techniques have been shown to be useful for estimating forest attributes, particularly when Received 13 May 2011 used with forest inventory and satellite image data. Published reports of positive results have been truly Received in revised form 6 June 2011 international in scope. However, for these techniques to be more useful, they must be able to contribute to Accepted 7 July 2011 scientific inference which, for sample-based methods, requires estimates of uncertainty in the form of Available online 27 August 2011 variances or standard errors. Several parametric approaches to estimating uncertainty for nearest neighbors techniques have been proposed, but they are complex and computationally intensive. For this study, two Keywords: Model-based inference resampling estimators, the bootstrap and the jackknife, were investigated -
Ch. 2 Estimators
Chapter Two Estimators 2.1 Introduction Properties of estimators are divided into two categories; small sample and large (or infinite) sample. These properties are defined below, along with comments and criticisms. Four estimators are presented as examples to compare and determine if there is a "best" estimator. 2.2 Finite Sample Properties The first property deals with the mean location of the distribution of the estimator. P.1 Biasedness - The bias of on estimator is defined as: Bias(!ˆ ) = E(!ˆ ) - θ, where !ˆ is an estimator of θ, an unknown population parameter. If E(!ˆ ) = θ, then the estimator is unbiased. If E(!ˆ ) ! θ then the estimator has either a positive or negative bias. That is, on average the estimator tends to over (or under) estimate the population parameter. A second property deals with the variance of the distribution of the estimator. Efficiency is a property usually reserved for unbiased estimators. ˆ ˆ 1 ˆ P.2 Efficiency - Let ! 1 and ! 2 be unbiased estimators of θ with equal sample sizes . Then, ! 1 ˆ ˆ ˆ is a more efficient estimator than ! 2 if var(! 1) < var(! 2 ). Restricting the definition of efficiency to unbiased estimators, excludes biased estimators with smaller variances. For example, an estimator that always equals a single number (or a constant) has a variance equal to zero. This type of estimator could have a very large bias, but will always have the smallest variance possible. Similarly an estimator that multiplies the sample mean by [n/(n+1)] will underestimate the population mean but have a smaller variance.