Download This PDF File

Total Page:16

File Type:pdf, Size:1020Kb

Download This PDF File Article — Artikel Microscopic morphology of Dichapetalum cymosum (Hook.) Engl. as an aid in the identification of leaf fragments from the digestive tract of poisoned animals D van der Merwea* and L du Plessisb samples were obtained from 2 plants that ABSTRACT differed morphologically regarding the Dichapetalum cymosum (Hook.) Engl. (Poison leaf; gifblaar) is a major cause of acute livestock density of trichomes (hairs) on the leaf plant poisoning in southern Africa. Microscopic identification of leaf fragments found in surface. Leaves of plant species with retic- the digestive tract of poisoned animals can assist in the diagnosis of poisoning when ulated leaf vein patterns, including Burkea D. cymosum poisoning is suspected. The microscopic morphology of D. cymosum leaves are africana Hook. f., Combretum zeyheri Sond., described using standard staining and microscopy methods for histopathology samples at Euclea crispa (Thunb.) Guerke subsp. many regional diagnostic laboratories. Morphological descriptions included structures in crispa and Lannea discolor (Sond.) Engl., the epidermis and mesophyll that were discernible using H & E staining. The microscopic were collected from the same habitat. morphology of D. cymosum was used to differentiate between leaf fragments of D. cymosum and other species from the same habitat with macroscopic features that resemble those of Tissue preparation D. cymosum, including Euclea crispa, Combretum zeyheri, Burkea afrikana and Lannea discolor. The method of plant tissue preparation Key words: Burkea africana, Combretum zeyheri, Dichapetalum cymosum, Euclea crispa, Lannea followed standard procedures for the discolor, plant poisoning, monofluoroacetate, rumen content microscopy. preparation and haematoxylin and eosin van der Merwe D, du Plessis L Microscopic morphology of Dichapetalum cymosum (H & E) staining of animal tissues for (Hook.) Engl. as an aid in the identification of leaf fragments from the digestive tract of histological examination in the Pathology poisoned animals. Journal of the South African Veterinary Association (2006) 77(4): 197–201 Section of the Department of Paraclinical (En.). Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Sciences, Faculty of Veterinary Science, Kansas State University, Manhattan, KS, USA. University of Pretoria. The procedures used are widely known and commonly available at regional veterinary diagnostic INTRODUCTION Owing to the rapidity of death in animals laboratories. The economic losses and social impact that have died of D. cymosum poisoning, Dichapetalum cymosum samples were of plant poisonings of livestock in southern leaf fragments of the plant that caused the also stained using McMannus’ Periodic Africa is considerable5. Dichapetalum poisoning can often be found in the diges- Acid Schiff’s (PAS) method to compare it cymosum (Hook.) Engl. (poison leaf; tive tract of poisoned animals. The presence withH&Estaining. PAS staining is com- gifblaar), which occurs in southern Angola, of D. cymosum leaf fragments in the diges- monly available at diagnostic laboratories north-eastern Namibia, Botswana, south- tive tract of an animal that has died due to for detecting fungi in histological tissue ern Zambia, western and southern suspected plant poisoning is therefore sections. It is an efficient stain for polysac- Zimbabwe, southern Mozambique and considered to be an important factor in charides found in cell walls. northern and eastern South Africa, is the diagnosis of D. cymosum poisoning4. highly toxic to livestock2. It causes around Microscopic examination of leaf frag- Microscopy 8 % of annual cattle losses due to plant ments found in the digestive tract of Microscopy was with a Leitz Laborlux D poisonings in South Africa5. poisoned animals can aid in the identifi- microscope fitted with ×10 eyepieces and The toxic principle of D. cymosum is cation of D. cymosum leaf fragments re- ×10, ×25, ×40, and ×100 (oil) objectives. monofluoroacetate7. Monofluoroacetate covered from rumen content. This study All diagnostic features could be discerned itself is not toxic, but it is converted in reports the characterisation of the micro- using ×10, ×25 and ×40 objectives. the animal to monofluorocitrate. Mono- scopic morphology of D. cymosum leaves fluorocitrate inhibits the enzyme aconi- discernible by light microscopy using RESULTS tase, thereby the tricarboxylic acid cycle tissue sections prepared by standard and cellular respiration6. It causes sudden histopathology procedures. Epidermis (outer cell layer) death in animals, 4 to 24 hours after they The epidermis has 1 adaxial (facing the have ingested lethal amounts of plant MATERIALS AND METHODS stem, usually the ‘top’ surface of the leaf material4. and 1 abaxial (facing away from the stem) Plant samples cell layer. The cuticle (waxy outer mem- aDepartment of Diagnostic Medicine/Pathobiology, Dichapetalum cymosum samples were brane) is well developed on both sides of College of Veterinary Medicine, Kansas State University, collected from the northern slopes of the leaf. Manhattan, KS, USA. bVetpath Veterinary Pathologists, Department of Pathol- the Magaliesberg in the vicinity of the Stomata (openings on leaf surface that ogy, Faculty of Veterinary Science, University of Pretoria, Florauna suburb of Pretoria in the allows for gas exchange) (Fig. 1) are rare Private Bag X04, Onderstepoort, 0110 South Africa. Gauteng Province of South Africa. Leaf or absent on the adaxial surface, but *Author for correspondence. E-mail: [email protected] samples were fixed in 10 % buffered relatively common on the abaxial surface Received: March 2006. Accepted: November 2006. formalin. Mature and immature leaf where they are randomly distributed. 0038-2809 Jl S.Afr.vet.Ass. (2006) 77(4): 197–201 197 Fig. 1: Stomatal structure in the abaxial epi- Fig. 2: Abaxial side of a Dichapetalum Fig. 4: Large vein of a Dichapetalum cymo- dermis of a Dichapetalum cymosum leaf. cymosum leaf showing the epidermis with sum leaf showing the bundle sheath, stomata, spongiform parenchyma and a bundle sheath extensions, inner sheath, Stomata consist of 2 guard cells (cells lining secondary vein. xylem and phloem. the stomata openings) and 2 subsidiary cells (cells that connect guard cells with vesicles with yellow to orange coloured the spongiform parenchyma of mature typical epidermal cells) and are paracytic, content onH&Estaining are scattered leaves, but may be small or absent in meaning that the longitudinal axes of the through all parenchymal cell types. immature leaves. guard cells and the subsidiary cells are Palisade parenchyma (columnar cells Larger veins (Fig. 4) are surrounded by parallel to the stomatal apertures. Each with longitudinal axes perpendicular to bundle sheaths, consisting of a single guard cell is supported by a single subsid- the epidermis) occurs only on the adaxial layer of tightly packed, thin-walled paren- iary cell. Guard cells do not span the side of the leaf (Fig 3). They occur in 1 to chyma cells, which are elongated in the entire thickness of the epidermis. The 3 layers with 2 layers being the most direction of the veins. Multi-layered guard cells are smaller than the surround- prevalent. The cell walls typically have a bundle sheath extensions, consisting of ing epidermal cells, with diameters of one beaded appearance due to multiple areas more or less elongated cells with unequally third to one half of subsidiary cells. The of cell wall thickening. thickened walls, connect the veins with guard cells are raised above the surface of Spongiform parenchyma (irregularly the epidermis and are present on both the epidermal layer. The cuticle extends shaped cells) occurs only on the abaxial sides of the leaf where large veins are onto the outside surface of the guard cells. side of the leaf (Fig. 2). The cell walls present. In these areas palisade and It does not extend over the guard cells typically have a beaded appearance spongiform layers are absent. into the stomatal lumen. Guard cell wall similar to that of the palisade cells. Sclerenchymal cells, a supporting tissue protuberances are present on the outer Large intercellular spaces are present in consisting of multilayered, elongated guard cell walls. These protuberances are cells with markedly thickened walls, form visible in dorsoventral sections as small, the inner sheath layer around larger veins horn-like ridges in the centre of the outer (Fig. 4). cell walls and they appear to be part of the The xylem (Fig. 4) consists of variably cuticle. In dorsoventral section, the guard shaped cells arranged in dorsoventral cells and subsidiary cells usually appear rows on the adaxial side of the vascular rounded, compared to cube or brick- bundles of large veins. The phloem con- shaped surrounding epidermal cells. sists of variably shaped cells in a random Large, intercellular substomatal cham- pattern on the abaxial side of the xylem of bers consistently occur in mature leaves large veins. The cells of the phloem stain (Fig. 2), but are absent or small in imma- more basophilic than the cells of the ture leaves. xylem and the bundle sheaths onH&E Trichomes (hairs) are unicellular and staining. non-flattened. They vary in density from very dense to very sparse or absent. Venation characteristics Venationis reticulate (Fig. 5). Side-veins Mesophyll (internal leaf tissues) branch in offset pairs and occasionally One hypodermal cell layer (layer/layers oppositely, from a central main vein, of cells beneath the epidermis that differ
Recommended publications
  • Investigating the Impact of Fire on the Natural Regeneration of Woody Species in Dry and Wet Miombo Woodland
    Investigating the impact of fire on the natural regeneration of woody species in dry and wet Miombo woodland by Paul Mwansa Thesis presented in fulfilment of the requirements for the degree of Master of Science of Forestry and Natural Resource Science in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof Ben du Toit Co-supervisor: Dr Vera De Cauwer March 2018 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. March 2018 Copyright © 2018 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract The miombo woodland is an extensive tropical seasonal woodland and dry forest formation in extent of 2.7 million km². The woodland contributes highly to maintenance and improvement of people’s livelihood security and stable growth of national economies. The woodland faces a wide range of disturbances including fire that affect vegetation structure. An investigation into the impact of fire on the natural regeneration of six tree species was conducted along a rainfall gradient. Baikiaea plurijuga, Burkea africana, Guibourtia coleosperma, Pterocarpus angolensis, Schinziophyton rautanenii and Terminalia sericea were selected on basis of being an important timber and/or utilitarian species, and the assumed abundance. The objectives of the study were to examine floristic composition, density and composition of natural regeneration; stand structure and vegetation cover within recently burnt (RB) and recently unburnt (RU) sections of the forest.
    [Show full text]
  • Impacts of Global Climate Change on the Phenology of African Tropical Ecosystems
    IMPACTS OF GLOBAL CLIMATE CHANGE ON THE PHENOLOGY OF AFRICAN TROPICAL ECOSYSTEMS GABRIELA S. ADAMESCU MSc by Research UNIVERSITY OF YORK Biology October 2016 1 Abstract The climate has been changing at an unprecedented rate, affecting natural systems around the globe. Its impact has been mostly reflected through changes in species’ phenology, which has received extensive attention in the current global-change research, mainly in temperate regions. However, little is known about phenology in African tropical forests. Africa is known to be vulnerable to climate change and filling the gaps is an urgent matter. In this study we assess plant phenology at the individual, site and continental level. We first compare flowering and fruiting events of species shared between multiple sites, accounting for three quantitative indicators, such as frequency, fidelity for conserving a certain frequency and seasonal phase. We complement this analysis by assessing interannual trends of flowering and fruiting frequency and fidelity to their dominant frequency at 11 sites. We complete the bigger picture by analysing flowering and fruiting frequency of African tropical trees at the site and community level. Next, we correlate three climatic indices (ENSO, IOD and NAO) with flowering and fruiting events at the canopy level, at 16 sites. Our results suggest that 30 % of the studied species show plasticity or adaptability to different environments and will most likely be resilient to moderate future climate change. At both site and continental level, we found that annual flowering cycles are dominant, indicating strong seasonality in the case of more than 50% of African tropical species under investigation.
    [Show full text]
  • NABRO Ecological Analysts CC Natural Asset and Botanical Resource Ordinations Environmental Consultants & Wildlife Specialists
    NABRO Ecological Analysts CC Natural Asset and Botanical Resource Ordinations Environmental Consultants & Wildlife Specialists ENVIRONMENTAL BASELINE REPORT FOR HANS HOHEISEN WILDLIFE RESEARCH STATION Compiled by Ben Orban, PriSciNat. June 2013 NABRO Ecological Analysts CC. - Reg No: 16549023 / PO Box 11644, Hatfield, Pretoria. Our reference: NABRO / HHWRS/V01 NABRO Ecological Analysts CC Natural Asset and Botanical Resource Ordinations Environmental Consultants & Wildlife Specialists CONTENTS 1 SPECIALIST INVESTIGATORS ............................................................................... 3 2 DECLARATION ............................................................................................................ 3 3 INTRODUCTION ......................................................................................................... 3 4 LOCALITY OF STUDY AREA .................................................................................... 4 4.1 Location ................................................................................................................... 4 5 INFRASTRUCTURE ..................................................................................................... 4 5.1 Fencing ..................................................................................................................... 4 5.2 Camps ...................................................................................................................... 4 5.3 Buildings ................................................................................................................
    [Show full text]
  • A Nevek-Endinc Problem
    tssN1562-5192 h#@ffi&gdtu Ministry of Agriculture,Water and Forestry,Directorate of AgriculturalResearch and Training,Private Bag 13 184, Windhoek No 90April 2005 D i c h ap e t alunt cy ttto s utlt (PO I S O N-LEAF lC I F'BLAAR) : A NEVEK-ENDINCPROBLEM INTRODUCTION Dichapetalumcymosum, known as poison-leafin English(E,d.'s note: accordingto the Afr./Eng. BilingualDictionary by Bosmanet al. 1988)but morecommonly referred to by itsAfrikaans common name,giJblactr or magou,is an extremelypoisonous plant that kills livestock.In Namibia,gifblaar occursto the eastand north-eastofthe countryand is confinedmainly to the fine sandysoils ofthe Kalaharigeological system underlain with Karoobasalt (Opperman & La Grange1969). According to Correia& Van Rensburg(2000), the generalecological characteristics of the distributionarea of gifblaarare soils that aresandy, well-drained and deficient in nutrients.Gifblaar grows in association with treessuch as various Combretumcollinum (C. mechowianumO. Hoffm.), Burkea africana and Terminaliasericea (Du Plooy 1972;YanVuuren 1960). LITERATUREREVIEW The first recordingof gifblaarpoisoning was in 1890, althoughresearch on it only commencedin 191l0 (SWAA l96l). Steyn's(1928) study and descriptionof the Gifblaarplant symptomsof gifblaarpoisoning - its toxicology- were complernentedby Leemann's( 1 935) work on theanatomy, motphology and physiology of the plant.Nearly a decadelateq Marais ( 1943)isolated and synthesised monofluoroacetate asthe activetoxic compoundin theplant. This breakthrough enabled further research on theplant's toxicologyand pharmacology.Nonetheless, by the 1960s,the vaguenessin the literature Cluster of gifblaar leaves regardingthe treatmentof poisonedanimals was being lamented (SWAA 1961).And despite "the fuftherresearch, Remington's (1 935) despair that hopeoffinding anyspecific prophylactic or curativesubstance (antidote) for use in gifblaarpoisoning has become very remote"remains true today.
    [Show full text]
  • Biodiversiteitsopname Biodiversity Assessment
    Biodiversiteitsopname Biodiversity Assessment Bome - Trees (77 sp) Veldblomme - Flowering veld plants (65 sp) Grasse - Grasses (41 sp) Naaldekokers - Dragonflies (46 sp) Skoenlappers - Butterflies (81 sp) Motte - Moths (95 sp) Nog insekte - Other insects (102 sp) Spinnekoppe - Spiders (53 sp) Paddas - Frogs (14 sp) Reptiele - Reptiles (22 sp) Voëls - Birds (185 sp) Soogdiere - Mammals (23 sp) 4de uitgawe: Jan 2015 Plante/Plants Diere/Animals (24 000 spp in SA) Anthropoda Chordata (>150 000 spp in SA) Arachnida Insecta (spinnekoppe/spiders, 2020 spp in SA) Neuroptera – mayflies, lacewings, ant-lions (385 spp in SA) Odonata – dragonflies (164 spp in SA) Blattodea – cockroaches (240 spp in SA) Mantodea – mantids (185 spp in SA) Isoptera – termites (200 spp in SA) Orthoptera – grasshoppers, stick insects (900 spp in SA) Phthiraptera – lice (1150 spp in SA) Hemiptera – bugs (>3500 spp in SA) Coleoptera – beetles (18 000 spp in SA) Lepidoptera – butterflies (794 spp in SA), moths (5200 spp in SA) Diptera – flies (4800 spp in SA) Siphonoptera – fleas (100 spp in SA) Hymenoptera – ants, bees, wasps (>6000 spp in SA) Trichoptera – caddisflies (195 spp in SA) Thysanoptera – thrips (230 spp in SA) Vertebrata Tunicata (sea creatures, etc) Fish Amphibia Reptiles Birds Mammals (115 spp in SA) (255 spp in SA) (858 spp in SA) (244 spp in SA) Bome – Trees (n=77) Koffiebauhinia - Bauhinia petersiana - Dainty bauhinia Rooi-ivoor - Berchemia zeyheri - Red ivory Witgat - Boscia albitrunca - Shepherd’s tree Bergvaalbos - Brachylaena rotundata - Mountain silver-oak
    [Show full text]
  • Chrysobalanaceae: Traditional Uses, Phytochemistry and Pharmacology Evanilson Alves Feitosa Et Al
    Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy Chrysobalanaceae: traditional uses, 22(5): 1181-1186, Sep./Oct. 2012 phytochemistry and pharmacology Evanilson Alves Feitosa,1 Haroudo Satiro Xavier,1 Karina Perrelli Randau*,1 Laboratório de Farmacognosia, Universidade Federal de Pernambuco, Brazil. Review Abstract: Chrysobalanaceae is a family composed of seventeen genera and about 525 species. In Africa and South America some species have popular indications Received 16 Jan 2012 for various diseases such as malaria, epilepsy, diarrhea, infl ammations and diabetes. Accepted 25 Apr 2012 Despite presenting several indications of popular use, there are few studies confi rming Available online 14 Jun 2012 the activities of these species. In the course of evaluating the potential for future studies, the present work is a literature survey on databases of the botanical, chemical, Keywords: biological and ethnopharmacological data on Chrysobalanaceae species published Hirtella since the fi rst studies that occurred in the 60’s until the present day. Licania Parinari botany ethnopharmacology ISSN 0102-695X http://dx.doi.org/10.1590/S0102- 695X2012005000080 Introduction Small fl owers usually greenish-white, cyclic, zigomorphic, diclamides, with a developed receptacle, sepals and petals Chrysobalanaceae was fi rst described by the free, general pentamers, androecium consists of two botanist Robert Brown in his study “Observations, stamens to many free or more or less welded together; systematical and geographical, on the herbarium collected superomedial ovary, bi to tricarpellate, unilocular, usually by Professor Christian Smith, in the vicinity of the Congo, with only one ovule and fruit usually drupaceous. In the during the expedition to explore that river, under the Brazilian Cerrado and in the Amazonian forests trees from command of Captain Tuckey, in the year 1816” (Salisbury, the species of the genus Licania can be found.
    [Show full text]
  • Medicinal Plants Used by ‘Root Doctors’, Local Traditional Healers in Bié Province, Angola
    Journal Pre-proof Medicinal plants used by ‘root doctors’, local traditional healers in Bié province, Angola B. Novotna, Z. Polesny, M.F. Pinto-Basto, P. Van Damme, P. Pudil, J. Mazancova, M.C. Duarte PII: S0378-8741(19)31151-1 DOI: https://doi.org/10.1016/j.jep.2020.112662 Reference: JEP 112662 To appear in: Journal of Ethnopharmacology Received Date: 23 March 2019 Revised Date: 6 February 2020 Accepted Date: 6 February 2020 Please cite this article as: Novotna, B., Polesny, Z., Pinto-Basto, M.F., Van Damme, P., Pudil, P., Mazancova, J., Duarte, M.C., Medicinal plants used by ‘root doctors’, local traditional healers in Bié province, Angola, Journal of Ethnopharmacology (2020), doi: https://doi.org/10.1016/j.jep.2020.112662. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2020 Published by Elsevier B.V. provided by Universidade de Lisboa: Repositório.UL View metadata, citation and similar papers at core.ac.uk CORE brought to you by Medicinal plants used by ‘root doctors’, local traditional healers in Bié province, Angola B.
    [Show full text]
  • Bantu Plant Names As Indicators of Linguistic Stratigraphy in the Western Province of Zambia
    Bantu Plant Names as Indicators of Linguistic Stratigraphy in the Western Province of Zambia Koen Bostoen Royal Museum for Central Africa Tervuren - Université libre de Bruxelles 1. Introduction and background The present paper is a comparative study of Bantu plant names in a number of languages from the WP of Zambia.1 It is based on fieldwork I undertook, with the kind assistance of the Livingstone Museum, in July-August 2005 in the neighbourhood of two minor towns in the southern part of the WP, i.e. Sioma and Shangombo. I worked with native speakers of Mbunda (K15), Kwamashi (K34), Kwamulonga (K351), Shanjo (K36), Fwe (K402), and Mbwera (L61). The field notes, which I present throughout the paper with the label “Bostoen FN 2005”, are compared to data from closely related or neighbouring languages on the one hand, and on the other hand, to what is known on plant names in terms of common Bantu reconstructions. Map 1 below shows the Bantu languages considered in this paper and their linguistic affiliation according to the current state of knowledge. Data from Khwe, a nearby non-Bantu click language from the Khoe-Kwadi family (Güldemann 2004), are also taken into account for reasons explained further on. 2 This comparative study aims at enhancing our understanding of the language history, which underlies the intricate sociolinguistic picture that characterizes the WP today. The Bantu languages listed above represent only a fraction of the numerous languages to which the WP is home. Contrary to Lozi (K21), the region’s widely used lingua franca with an increasing number of first language speakers, most of these languages are minority languages whose use is geographically localized and functionally restricted and whose number of speakers is declining.
    [Show full text]
  • Chrysobalanaceae: Traditional Uses, Phytochemistry and Pharmacology
    Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy Chrysobalanaceae: traditional uses, phytochemistry and pharmacology Evanilson Alves Feitosa,1 Haroudo Satiro Xavier,1 Karina Perrelli Randau*,1 Laboratório de Farmacognosia, Universidade Federal de Pernambuco, Brazil. Aop05012 Abstract: Chrysobalanaceae is a family composed of seventeen genera and about 525 species. In Africa and South America some species have popular indications for various diseases such as malaria, epilepsy, diarrhea, infl ammations and diabetes. Received 16 Jan 2012 Despite presenting several indications of popular use, there are few studies confi rming Accepted 25 Apr 2012 the activities of these species. In the course of evaluating the potential for future studies, the present work is a literature survey on databases of the botanical, chemical, Keywords: biological and ethnopharmacological data on Chrysobalanaceae species published Hirtella since the fi rst studies that occurred in the 60’s until the present day. Licania Parinari botany ethnopharmacology ISSN 0102-695X Introduction Small fl owers usually greenish-white, cyclic, zigomorphic, diclamides, with a developed receptacle, sepals and petals Chrysobalanaceae was fi rst described by the free, general pentamers, androecium consists of two botanist Robert Brown in his study “Observations, stamens to many free or more or less welded together; systematical and geographical, on the herbarium collected superomedial ovary, bi to tricarpellate, unilocular, usually by Professor Christian Smith, in the vicinity of the Congo, with only one ovule and fruit usually drupaceous. In the during the expedition to explore that river, under the Brazilian Cerrado and in the Amazonian forests trees from command of Captain Tuckey, in the year 1816” (Salisbury, the species of the genus Licania can be found.
    [Show full text]
  • Validating the Traditional Use of Medicinal Plants in Maputaland to Treat Skin Diseases
    Validating the traditional use of medicinal plants in Maputaland to treat skin diseases Sibongile Nciki Student number: 712730 A dissertation submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, in fulfilment of the degree of Master of Science October, 2015 0 Declaration I, Sibongile Nciki declare that this dissertation is my own work. It is being submitted in fulfilment for the degree of Master of Science at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at this or any other University. …………………………….. Sibongile Nciki …………………………….. Date i Dedication To my loving mother and siblings, Nikeziwe, Mzee and Phiwe. Thank you for your continual support, tireless faith and confidence in my abilities. ii Acknowledgements Firstly, I would like to extend my sincere thanks to the National Student Financial Aid Scheme (NSFAS), German Academic Exchange Service (DAAD-NRF) scholarship, University of the Witwatersrand Postgraduate Merit Award and Faculty Research Committee. This project would not have been possible without their financial assistance. To my supervisor, Prof S. van Vuuren, I express my deepest gratitude for your invaluable advice, comments and follow up from the beginning to the completion of this work. If it wasn’t for your hard work and dedication in cooperation with your students, it would not have been possible to see this project to completion. To my co-supervisor, Dr D. van Eyk, there are no words enough to describe my gratitude towards you. You have been incredibly patient and supportive in completing the pharmacology part of this project. I truly appreciate your kindness and being a listener during frustrating times.
    [Show full text]
  • Impact of Forest Management Regimes on Ligneous Regeneration in the Sudanian Savanna of Burkina Faso
    Impact of Forest Management Regimes on Ligneous Regeneration in the Sudanian Savanna of Burkina Faso Didier Zida Faculty of Forest Sciences Department of Forest Genetics and Plant Physiology Umeå Doctoral thesis Swedish University of Agricultural Sciences Umeå 2007 Acta Universitatis Agriculturae Sueciae 2007: 66 Cover: View of the savanna woodland at the beginning of the growing season (left) and fire disturbance (right) at the onset of the dry season (Photo: Didier Zida). ISSN 1652-6880 ISBN: 978-91-576-7365-7 © 2007 Didier Zida, Umeå Printed by: Arkitektkopia AB, Umeå 2007 Abstract Zida, D. 2007. Impacts of forest management regimes on ligneous regeneration in the Sudanian savanna of Burkina Faso. Doctor’s dissertation. ISSN 1652-6880, ISBN 978-91- 576-7365-7 Annual early fire, selective tree cutting and grazing exclusion are currently used to manage the State forests of the Sudanian savanna of Burkina Faso, West Africa. Such prescriptions, however, are not based on experimental evidence. The long-term effects of such management on seedlings and saplings and the germination of selected tree species are discussed. Seedling quality attributes are also assessed. Studies over a 10-year period examined the effects of the three management regimes on species richness and population density. Burkea africana Kook, f., Detarium microcarpum Guill. et Perr., Entada africana Guill. et Perr., and Pterocarpus erinaceus Poir. seed germination was tested for different temperatures, light conditions, dry heat treatments and scarification methods. The quality of Acacia macrostachya Reichenb.ex DC. and P. erinaceus planting stock was evaluated in relation to nursery production period; field performance was assessed with and without watering.
    [Show full text]
  • Background Paper on Dichapetalum Cymosum (Gifblaar in Afrikaans) & (Poison Leaf in English)
    16th September 2019 Background paper on Dichapetalum cymosum (Gifblaar in Afrikaans) & (Poison Leaf in English) 1. Introduction Toxic compound-containing plants grow worldwide and cause sudden death in livestock. The southern continents of Africa, Australia and South America are the common locations of these plants. Fluoroacetate (the chemical name of this toxic compound) is found in these tropical and subtropical plants generally at low concentrations although some are able to accumulate fluoroacetate in high concentrations. In Africa, most fluoroacetate-accumulating plants belong to the genus (tribe) Dichapetalum. Poison leaf or Gifblaar produces fluoroacetate as a defence mechanism against grazing by herbivores. Ingestion by livestock often results in fatal poisoning, which causes significant economic problems to cattle farmers in South Africa. Several approaches have been adopted to protect livestock from the toxicity with limited success, including fencing, toxic plant eradication and agents that bind the toxin. Genetically modified bacteria (GMB) capable of degrading fluoroacetate have been able to protect ruminants from fluoroacetate toxicity under experimental conditions, but concerns over the release of these microbes into the environment have prevented the application of this technology. Recently, a native bacterium from an Australian bovine rumen was isolated, which can degrade fluoroacetate. The discovery and isolation of this bacterium provides a new opportunity to detoxify fluoroacetate in the rumen.1 1 Leong, L.E.X., Khan, S, Davis, C.K., Denman, S.E., and McSweeney, C.S. (2017) Fluoroacetate in plants - a review of its distribution, toxicity to livestock and microbial detoxification. Journal of Animal Science and Biotechnology 8:55 DOI 10.1186/s40104-017-0180-6 1 Fluoroacetate poisoning due to the consumption of Dichapetalum cymosum (gifblaar), most frequently affects cattle, possibly because the distribution of the plant coincides with mainly cattle-raising areas.
    [Show full text]