Chhomotopical.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Pro-) Étale Cohomology 3. Exercise Sheet
(Pro-) Étale Cohomology 3. Exercise Sheet Department of Mathematics Winter Semester 18/19 Prof. Dr. Torsten Wedhorn 2nd November 2018 Timo Henkel Homework Exercise H9 (Clopen subschemes) (12 points) Let X be a scheme. We define Clopen(X ) := Z X Z open and closed subscheme of X . f ⊆ j g Recall that Clopen(X ) is in bijection to the set of idempotent elements of X (X ). Let X S be a morphism of schemes. We consider the functor FX =S fromO the category of S-schemes to the category of sets, given! by FX =S(T S) = Clopen(X S T). ! × Now assume that X S is a finite locally free morphism of schemes. Show that FX =S is representable by an affine étale S-scheme which is of! finite presentation over S. Exercise H10 (Lifting criteria) (12 points) Let f : X S be a morphism of schemes which is locally of finite presentation. Consider the following diagram of S-schemes:! T0 / X (1) f T / S Let be a class of morphisms of S-schemes. We say that satisfies the 1-lifting property (resp. !-lifting property) ≤ withC respect to f , if for all morphisms T0 T in andC for all diagrams9 of the form (1) there exists9 at most (resp. exactly) one morphism of S-schemes T X!which makesC the diagram commutative. Let ! 1 := f : T0 T closed immersion of S-schemes f is given by a locally nilpotent ideal C f ! j g 2 := f : T0 T closed immersion of S-schemes T is affine and T0 is given by a nilpotent ideal C f ! j g 2 3 := f : T0 T closed immersion of S-schemes T is the spectrum of a local ring and T0 is given by an ideal I with I = 0 C f ! j g Show that the following assertions are equivalent: (i) 1 satisfies the 1-lifting property (resp. -
On Modeling Homotopy Type Theory in Higher Toposes
Review: model categories for type theory Left exact localizations Injective fibrations On modeling homotopy type theory in higher toposes Mike Shulman1 1(University of San Diego) Midwest homotopy type theory seminar Indiana University Bloomington March 9, 2019 Review: model categories for type theory Left exact localizations Injective fibrations Here we go Theorem Every Grothendieck (1; 1)-topos can be presented by a model category that interprets \Book" Homotopy Type Theory with: • Σ-types, a unit type, Π-types with function extensionality, and identity types. • Strict universes, closed under all the above type formers, and satisfying univalence and the propositional resizing axiom. Review: model categories for type theory Left exact localizations Injective fibrations Here we go Theorem Every Grothendieck (1; 1)-topos can be presented by a model category that interprets \Book" Homotopy Type Theory with: • Σ-types, a unit type, Π-types with function extensionality, and identity types. • Strict universes, closed under all the above type formers, and satisfying univalence and the propositional resizing axiom. Review: model categories for type theory Left exact localizations Injective fibrations Some caveats 1 Classical metatheory: ZFC with inaccessible cardinals. 2 Classical homotopy theory: simplicial sets. (It's not clear which cubical sets can even model the (1; 1)-topos of 1-groupoids.) 3 Will not mention \elementary (1; 1)-toposes" (though we can deduce partial results about them by Yoneda embedding). 4 Not the full \internal language hypothesis" that some \homotopy theory of type theories" is equivalent to the homotopy theory of some kind of (1; 1)-category. Only a unidirectional interpretation | in the useful direction! 5 We assume the initiality hypothesis: a \model of type theory" means a CwF. -
[Math.AT] 2 May 2002
WEAK EQUIVALENCES OF SIMPLICIAL PRESHEAVES DANIEL DUGGER AND DANIEL C. ISAKSEN Abstract. Weak equivalences of simplicial presheaves are usually defined in terms of sheaves of homotopy groups. We give another characterization us- ing relative-homotopy-liftings, and develop the tools necessary to prove that this agrees with the usual definition. From our lifting criteria we are able to prove some foundational (but new) results about the local homotopy theory of simplicial presheaves. 1. Introduction In developing the homotopy theory of simplicial sheaves or presheaves, the usual way to define weak equivalences is to require that a map induce isomorphisms on all sheaves of homotopy groups. This is a natural generalization of the situation for topological spaces, but the ‘sheaves of homotopy groups’ machinery (see Def- inition 6.6) can feel like a bit of a mouthful. The purpose of this paper is to unravel this definition, giving a fairly concrete characterization in terms of lift- ing properties—the kind of thing which feels more familiar and comfortable to the ingenuous homotopy theorist. The original idea came to us via a passing remark of Jeff Smith’s: He pointed out that a map of spaces X → Y induces an isomorphism on homotopy groups if and only if every diagram n−1 / (1.1) S 6/ X xx{ xx xx {x n { n / D D 6/ Y xx{ xx xx {x Dn+1 −1 arXiv:math/0205025v1 [math.AT] 2 May 2002 admits liftings as shown (for every n ≥ 0, where by convention we set S = ∅). Here the maps Sn−1 ֒→ Dn are both the boundary inclusion, whereas the two maps Dn ֒→ Dn+1 in the diagram are the two inclusions of the surface hemispheres of Dn+1. -
On String Topology Operations and Algebraic Structures on Hochschild Complexes
City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 9-2015 On String Topology Operations and Algebraic Structures on Hochschild Complexes Manuel Rivera Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/1107 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] On String Topology Operations and Algebraic Structures on Hochschild Complexes by Manuel Rivera A dissertation submitted to the Graduate Faculty in Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2015 c 2015 Manuel Rivera All Rights Reserved ii This manuscript has been read and accepted for the Graduate Faculty in Mathematics in sat- isfaction of the dissertation requirements for the degree of Doctor of Philosophy. Dennis Sullivan, Chair of Examining Committee Date Linda Keen, Executive Officer Date Martin Bendersky Thomas Tradler John Terilla Scott Wilson Supervisory Committee THE CITY UNIVERSITY OF NEW YORK iii Abstract On string topology operations and algebraic structures on Hochschild complexes by Manuel Rivera Adviser: Professor Dennis Sullivan The field of string topology is concerned with the algebraic structure of spaces of paths and loops on a manifold. It was born with Chas and Sullivan’s observation of the fact that the in- tersection product on the homology of a smooth manifold M can be combined with the con- catenation product on the homology of the based loop space on M to obtain a new product on the homology of LM , the space of free loops on M . -
A Godefroy-Kalton Principle for Free Banach Lattices 3
A GODEFROY-KALTON PRINCIPLE FOR FREE BANACH LATTICES ANTONIO AVILES,´ GONZALO MART´INEZ-CERVANTES, JOSE´ RODR´IGUEZ, AND PEDRO TRADACETE Abstract. Motivated by the Lipschitz-lifting property of Banach spaces introduced by Godefroy and Kalton, we consider the lattice-lifting property, which is an analogous notion within the category of Ba- nach lattices and lattice homomorphisms. Namely, a Banach lattice X satisfies the lattice-lifting property if every lattice homomorphism to X having a bounded linear right-inverse must have a lattice homomor- phism right-inverse. In terms of free Banach lattices, this can be rephrased into the following question: which Banach lattices embed into the free Banach lattice which they generate as a lattice-complemented sublattice? We will provide necessary conditions for a Banach lattice to have the lattice-lifting property, and show that this property is shared by Banach spaces with a 1-unconditional basis as well as free Banach lattices. The case of C(K) spaces will also be analyzed. 1. Introduction In a fundamental paper concerning the Lipschitz structure of Banach spaces, G. Godefroy and N.J. Kalton introduced the Lipschitz-lifting property of a Banach space. In order to properly introduce this notion, and as a motivation for our work, let us recall the basic ingredients for this construction (see [9] for details). Given a Banach space E, let Lip0(E) denote the Banach space of all real-valued Lipschitz functions on E which vanish at 0, equipped with the norm |f(x) − f(y)| kfk = sup : x, y ∈ E, x 6= y . Lip0(E) kx − yk E The Lipschitz-free space over E, denoted by F(E), is the canonical predual of Lip0(E), that is the closed ∗ linear span of the evaluation functionals δ(x) ∈ Lip0(E) given by hδ(x),fi = f(x) for all x ∈ E and all f ∈ Lip0(E). -
Picard Groupoids and $\Gamma $-Categories
PICARD GROUPOIDS AND Γ-CATEGORIES AMIT SHARMA Abstract. In this paper we construct a symmetric monoidal closed model category of coherently commutative Picard groupoids. We construct another model category structure on the category of (small) permutative categories whose fibrant objects are (permutative) Picard groupoids. The main result is that the Segal’s nerve functor induces a Quillen equivalence between the two aforementioned model categories. Our main result implies the classical result that Picard groupoids model stable homotopy one-types. Contents 1. Introduction 2 2. The Setup 4 2.1. Review of Permutative categories 4 2.2. Review of Γ- categories 6 2.3. The model category structure of groupoids on Cat 7 3. Two model category structures on Perm 12 3.1. ThemodelcategorystructureofPermutativegroupoids 12 3.2. ThemodelcategoryofPicardgroupoids 15 4. The model category of coherently commutatve monoidal groupoids 20 4.1. The model category of coherently commutative monoidal groupoids 24 5. Coherently commutative Picard groupoids 27 6. The Quillen equivalences 30 7. Stable homotopy one-types 36 Appendix A. Some constructions on categories 40 AppendixB. Monoidalmodelcategories 42 Appendix C. Localization in model categories 43 Appendix D. Tranfer model structure on locally presentable categories 46 References 47 arXiv:2002.05811v2 [math.CT] 12 Mar 2020 Date: Dec. 14, 2019. 1 2 A. SHARMA 1. Introduction Picard groupoids are interesting objects both in topology and algebra. A major reason for interest in topology is because they classify stable homotopy 1-types which is a classical result appearing in various parts of the literature [JO12][Pat12][GK11]. The category of Picard groupoids is the archetype exam- ple of a 2-Abelian category, see [Dup08]. -
On Projective Lift and Orbit Spaces T.K
BULL. AUSTRAL. MATH. SOC. 54GO5, 54H15 VOL. 50 (1994) [445-449] ON PROJECTIVE LIFT AND ORBIT SPACES T.K. DAS By constructing the projective lift of a dp-epimorphism, we find a covariant functor E from the category d of regular Hausdorff spaces and continuous dp- epimorphisms to its coreflective subcategory £d consisting of projective objects of Cd • We use E to show that E(X/G) is homeomorphic to EX/G whenever G is a properly discontinuous group of homeomorphisms of a locally compact Hausdorff space X and X/G is an object of Cd • 1. INTRODUCTION Throughout the paper all spaces are regular HausdorfF and maps are continuous epimorphisms. By X, Y we denote spaces and for A C X, Cl A and Int A mean the closure of A and the interior of A in X respectively. The complete Boolean algebra of regular closed sets of a space X is denoted by R(X) and the Stone space of R(X) by S(R(X)). The pair (EX, hx) is the projective cover of X, where EX is the subspace of S(R(X)) having convergent ultrafilters as its members and hx is the natural map from EX to X, sending T to its point of convergence ^\T (a singleton is identified with its member). We recall here that {fl(F) \ F £ R(X)} is an open base for the topology on EX, where d(F) = {T £ EX \ F G T} [8]. The projective lift of a map /: X —> Y (if it exists) is the unique map Ef: EX —> EY satisfying hy o Ef = f o hx • In [4], Henriksen and Jerison showed that when X , Y are compact spaces, then the projective lift Ef of / exists if and only if / satisfies the following condition, hereafter called the H J - condition, holds: Clint/-1(F) = Cl f-^IntF), for each F in R(Y). -
Lecture 11 Last Lecture We Defined Connections on Fiber Bundles. This Lecture We Will Attempt to Explain What a Connection Does
Lecture 11 Last lecture we defined connections on fiber bundles. This lecture we will attempt to explain what a connection does for differential ge- ometers. We start with two basic concepts from algebraic topology. The first is that of homotopy lifting property. Let us recall: Definition 1. Let π : E → B be a continuous map and X a space. We say that (X, π) satisfies homotopy lifting property if for every H : X × I → B and map f : X → E with π ◦ f = H( , 0) there exists a homotopy F : X × I → E starting at f such that π ◦ F = H. If ({∗}, π) satisfies this property then we say that π has the homotopy lifting property for a point. Now, as is well known and easily proven, every fiber bundle satisfies the homotopy lifting property. A much stronger property is the notion of a covering space (which we will not recall with precision). Here we have the homotopy lifting property for a point plus uniqueness or the unique path lifting property. I.e. there is exactly one lift of a given path in the base starting at a specified point in the total space. The point of a connection is to take the ambiguity out of the homotopy lifting property for X = {∗} and force a fiber bundle to satisfy the unique path lifting property. We will see many conceptual advantages of this uniqueness, but let us start by making this a bit clearer via parallel transport. Definition 2. Let B be a topological space and PB the category whose objects are points of B and whose morphisms are defined via {γ : → B : ∃ c, d ∈ s.t. -
Parametrized Higher Category Theory
Parametrized higher category theory Jay Shah MIT May 1, 2017 Jay Shah (MIT) Parametrized higher category theory May 1, 2017 1 / 32 Answer: depends on the class of weak equivalences one inverts in the larger category of G-spaces. Inverting the class of maps that induce a weak equivalence of underlying spaces, X ; the homotopy type of the underlying space X , together with the homotopy coherent G-action. Can extract homotopy fixed points and hG orbits X , XhG from this. Equivariant homotopy theory Let G be a finite group and let X be a topological space with G-action (e.g. G = C2 and X = U(n) with the complex conjugation action). What is the \homotopy type" of X ? Jay Shah (MIT) Parametrized higher category theory May 1, 2017 2 / 32 Inverting the class of maps that induce a weak equivalence of underlying spaces, X ; the homotopy type of the underlying space X , together with the homotopy coherent G-action. Can extract homotopy fixed points and hG orbits X , XhG from this. Equivariant homotopy theory Let G be a finite group and let X be a topological space with G-action (e.g. G = C2 and X = U(n) with the complex conjugation action). What is the \homotopy type" of X ? Answer: depends on the class of weak equivalences one inverts in the larger category of G-spaces. Jay Shah (MIT) Parametrized higher category theory May 1, 2017 2 / 32 Equivariant homotopy theory Let G be a finite group and let X be a topological space with G-action (e.g. -
Lifting Grothendieck Universes
Lifting Grothendieck Universes Martin HOFMANN, Thomas STREICHER Fachbereich 4 Mathematik, TU Darmstadt Schlossgartenstr. 7, D-64289 Darmstadt mh|[email protected] Spring 1997 Both in set theory and constructive type theory universes are a useful and necessary tool for formulating abstract mathematics, e.g. when one wants to quantify over all structures of a certain kind. Structures of a certain kind living in universe U are usually referred to as \small structures" (of that kind). Prominent examples are \small monoids", \small groups" . and last, but not least \small sets". For (classical) set theory an appropriate notion of universe was introduced by A. Grothendieck for the purposes of his development of Grothendieck toposes (of sheaves over a (small) site). Most concisely, a Grothendieck universe can be defined as a transitive set U such that (U; 2 U×U ) itself constitutes a model of set theory.1 In (constructive) type theory a universe (in the sense of Martin–L¨of) is a type U of types that is closed under the usual type forming operations as e.g. Π, Σ and Id. More precisely, it is a type U together with a family of types ( El(A) j A 2 U ) assigning its type El(A) to every A 2 U. Of course, El(A) = El(B) iff A = B 2 U. For the purposes of Synthetic Domain Theory (see [6, 3]) or Semantic Nor- malisations Proofs (see [1]) it turns out to be necessary to organise (pre)sheaf toposes into models of type theory admitting a universe. In this note we show how a Grothendieck universe U gives rise to a type-theoretic universe in the presheaf topos Cb where C is a small category (i.e. -
Fibrations II - the Fundamental Lifting Property
Fibrations II - The Fundamental Lifting Property Tyrone Cutler July 13, 2020 Contents 1 The Fundamental Lifting Property 1 2 Spaces Over B 3 2.1 Homotopy in T op=B ............................... 7 3 The Homotopy Theorem 8 3.1 Implications . 12 4 Transport 14 4.1 Implications . 16 5 Proof of the Fundamental Lifting Property Completed. 19 6 The Mutal Characterisation of Cofibrations and Fibrations 20 6.1 Implications . 22 1 The Fundamental Lifting Property This section is devoted to stating Theorem 1.1 and beginning its proof. We prove only the first of its two statements here. This part of the theorem will then be used in the sequel, and the proof of the second statement will follow from the results obtained in the next section. We will be careful to avoid circular reasoning. The utility of the theorem will soon become obvious as we repeatedly use its statement to produce maps having very specific properties. However, the true power of the theorem is not unveiled until x 5, where we show how it leads to a mutual characterisation of cofibrations and fibrations in terms of an orthogonality relation. Theorem 1.1 Let j : A,! X be a closed cofibration and p : E ! B a fibration. Assume given the solid part of the following strictly commutative diagram f A / E |> j h | p (1.1) | | X g / B: 1 Then the dotted filler can be completed so as to make the whole diagram commute if either of the following two conditions are met • j is a homotopy equivalence. • p is a homotopy equivalence. -
When Is the Natural Map a a Cofibration? Í22a
transactions of the american mathematical society Volume 273, Number 1, September 1982 WHEN IS THE NATURAL MAP A Í22A A COFIBRATION? BY L. GAUNCE LEWIS, JR. Abstract. It is shown that a map/: X — F(A, W) is a cofibration if its adjoint/: X A A -» W is a cofibration and X and A are locally equiconnected (LEC) based spaces with A compact and nontrivial. Thus, the suspension map r¡: X -» Ü1X is a cofibration if X is LEC. Also included is a new, simpler proof that C.W. complexes are LEC. Equivariant generalizations of these results are described. In answer to our title question, asked many years ago by John Moore, we show that 7j: X -> Í22A is a cofibration if A is locally equiconnected (LEC)—that is, the inclusion of the diagonal in A X X is a cofibration [2,3]. An equivariant extension of this result, applicable to actions by any compact Lie group and suspensions by an arbitrary finite-dimensional representation, is also given. Both of these results have important implications for stable homotopy theory where colimits over sequences of maps derived from r¡ appear unbiquitously (e.g., [1]). The force of our solution comes from the Dyer-Eilenberg adjunction theorem for LEC spaces [3] which implies that C.W. complexes are LEC. Via Corollary 2.4(b) below, this adjunction theorem also has some implications (exploited in [1]) for the geometry of the total spaces of the universal spherical fibrations of May [6]. We give a simpler, more conceptual proof of the Dyer-Eilenberg result which is equally applicable in the equivariant context and therefore gives force to our equivariant cofibration condition.