Role of the Maize Transcription Factor R in the Regulation of Anthocyanin Biosynthesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ADVISORY BOARDS Each Issue of Herbaigram Is Peer Reviewed by Various Members of Our Advisory Boards Prior to Publication
ADVISORY BOARDS Each issue of HerbaiGram is peer reviewed by various members of our Advisory Boards prior to publication . American Botanical Council Herb Research Dennis V. C. Awang, Ph.D., F.C.I.C., MediPiont Natural Gail B. Mahadr, Ph.D., Research Assistant Professor, Products Consul~ng Services, Ottowa, Ontario, Conodo Deportment o Medical Chemistry &Pharmacognosy, College of Foundation Pharmacy, University of Illinois, Chicago, Illinois Manuel F. Balandrin, R.Ph., Ph.D., Research Scien~st, NPS Rob McCaleb, President Pharmaceuticals, Salt LakeCity , Utah Robin J. Maries, Ph.D., Associate Professor of Botany, Brandon University, Brandon, Manitoba, Conodo Mi(hael J. Balidt, Ph.D., Director of the lns~tute of Econom ic Glenn Appelt, Ph.D., R.Ph., Author and Profess or Botany, the New York Botanical Gorden, Bronx, New York Dennis J. M(Kenna, Ph.D., Consulting Ethnophormocologist, Emeritus, University of Colorado, and with Boulder Beach Joseph M. Betz, Ph.D., Research Chemist, Center for Food Minneapolis, Minnesota Consulting Group Safety and Applied Nutri~on, Division of Natural Products, Food Daniel E. Moerman, Ph.D., William E. Stirton Professor of John A. Beutler, Ph.D., Natural Products Chemist, and Drug Administro~on , Washington, D.C. Anthropology, University of Michigon/ Deorbom, Dearborn, Michigan Notional Cancer Institute Donald J. Brown, N.D., Director, Natural Products Research Consultants; Faculty, Bastyr University, Seattle, Washington Samuel W. Page, Ph.D., Director, Division of Natural Products, Robert A. Bye, Jr., Ph.D., Professor of Ethnobotony, Notional University of Mexico Thomas J. Carlson, M.S., M.D., Senior Director, Center for Food Safety and Applied Nutri~on , Food and Drug Administro~on , Washington, D.C. -
Responses of Bats to White-Nose Syndrome and Implications for Conservation
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2020 Responses of Bats to White-Nose Syndrome and Implications for Conservation Meghan Stark University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Stark, Meghan, "Responses of Bats to White-Nose Syndrome and Implications for Conservation" (2020). Doctoral Dissertations. 2518. https://scholars.unh.edu/dissertation/2518 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. RESPONSES OF BATS TO WHITE-NOSE SYNDROME AND IMPLICATIONS FOR CONSERVATION BY MEGHAN A. STARK B.S., University of Alabama at Birmingham, 2013 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Genetics May 2020 i This dissertation was examined and approved in partial fulfillment of the requirements for the degree of Ph.D. in Genetics by: Dissertation Director, Matthew MacManes, Assoc. Prof. UNH MCBS Jeffrey T. Foster, Associate Professor, NAU PMI W. Kelley Thomas, Professor, UNH MCBS Rebecca Rowe, Associate Professor, UNH NREN Thomas Lee, Associate Professor Emeritus, UNH NREN On April 6, 2020 Approval signatures are on file with the University of New Hampshire Graduate School. ii DEDICATION I dedicate this work to all of the strong women in my life: Myra Michele Ange Heather Michelle Coons Kaitlyn Danielle Cagle Brindlee Michelle Coons Patricia Gail Miller Sarah Jean Lane “Here’s to strong women. -
Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: from Structure, Functions to Applications
International Journal of Molecular Sciences Review Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: From Structure, Functions to Applications Kai Hong , Limin Wang, Agbaka Johnpaul , Chenyan Lv * and Changwei Ma * College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China; [email protected] (K.H.); [email protected] (L.W.); [email protected] (A.J.) * Correspondence: [email protected] (C.L.); [email protected] (C.M.); Tel./Fax: +86-10-62737643 (C.M.) Abstract: Humulus lupulus L. is an essential source of aroma compounds, hop bitter acids, and xanthohumol derivatives mainly exploited as flavourings in beer brewing and with demonstrated potential for the treatment of certain diseases. To acquire a comprehensive understanding of the biosynthesis of these compounds, the primary enzymes involved in the three major pathways of hops’ phytochemical composition are herein critically summarized. Hops’ phytochemical components impart bitterness, aroma, and antioxidant activity to beers. The biosynthesis pathways have been extensively studied and enzymes play essential roles in the processes. Here, we introduced the enzymes involved in the biosynthesis of hop bitter acids, monoterpenes and xanthohumol deriva- tives, including the branched-chain aminotransferase (BCAT), branched-chain keto-acid dehydroge- nase (BCKDH), carboxyl CoA ligase (CCL), valerophenone synthase (VPS), prenyltransferase (PT), 1-deoxyxylulose-5-phosphate synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), Geranyl diphosphate synthase (GPPS), monoterpene synthase enzymes (MTS), cinnamate Citation: Hong, K.; Wang, L.; 4-hydroxylase (C4H), chalcone synthase (CHS_H1), chalcone isomerase (CHI)-like proteins (CHIL), Johnpaul, A.; Lv, C.; Ma, C. -
Adaptive Responses by Transcriptional Regulators to Small Molecules in Prokaryotes
Adaptive Responses by Transcriptional Regulators to small molecules in Prokaryotes Structural studies of two bacterial one-component signal transduction systems DntR and HpNikR Cyril Dian Stockholm University Doctoral thesis © Cyril Dian, Stockholm 2007 ISBN 978-91-7155-500-7 Department of Biochemistry and Biophysics The Arrhenius Laboratories for Natural Sciences Stockholm University SE-106 91 Stockholm Sweden All previously published papers are reprinted With permission from the publishers Intellecta Docusys, Stockholm 2007 Abstract Prokaryotes are continually exposed to environmental changes in their physiological conditions. In order to survive such unstable conditions, or to compete with others species for the same environmental niche, prokaryotes must monitor signals about both their extracellular environment and intracellular physiological status and provide rapid and appropriate responses to variations in their surroundings. This adaptive response to environmental signals is triggered mainly by transcriptional regulators via two components, the one- and two-component signal transduction systems. These scan intra- and extracellular small-molecule mixtures and modulate gene expression to provide the appropriate physiological response to the prevailing conditions. Most prokaryotic one component regulators are simple transcription factors comprising of a small-molecule binding domain (SMBD) and a DNA binding domain (DBD). Although the effects of transcription factors on the transcription machinery are well understood, the exact location -
ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
Regulation of Stringent Factor by Branched-Chain Amino Acids
Regulation of stringent factor by branched-chain amino acids Mingxu Fanga and Carl E. Bauera,1 aMolecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405 Edited by Caroline S. Harwood, University of Washington, Seattle, WA, and approved May 9, 2018 (received for review February 21, 2018) When faced with amino acid starvation, prokaryotic cells induce a Under normal growth conditions, the synthetase activity of Rel is stringent response that modulates their physiology. The stringent thought to be self-inhibited; however, during times of amino acid response is manifested by production of signaling molecules starvation, Rel interacts with stalled ribosomes, which activates guanosine 5′-diphosphate,3′-diphosphate (ppGpp) and guanosine synthetase activity to produce (p)ppGpp. The regulation of hy- 5′-triphosphate,3′-diphosphate (pppGpp) that are also called drolase activity is less understood but may involve one or more alarmones. In many species, alarmone levels are regulated by a downstream domains called the TGS and ACT domains. The TGS multidomain bifunctional alarmone synthetase/hydrolase called domain of SpoT has been shown to interact with an acyl carrier Rel. In this enzyme, there is an ACT domain at the carboxyl region protein, so it is presumed to sense the status of fatty acid metab- that has an unknown function; however, similar ACT domains are olism in E. coli (4). The function of the ACT domain is not as clear; present in other enzymes that have roles in controlling amino acid however, recent cryo-EM structures of E. coli RelA show that this metabolism. In many cases, these other ACT domains have been domain is involved in binding deacyl-tRNA as well as the ribosome shown to allosterically regulate enzyme activity through the bind- (5–7). -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Synthesis of Unnatural Alkaloid Scaffolds by Exploiting Plant Polyketide Synthase
Synthesis of unnatural alkaloid scaffolds by exploiting plant polyketide synthase Hiroyuki Moritaa,b, Makoto Yamashitaa, She-Po Shia,1, Toshiyuki Wakimotoa,b, Shin Kondoc, Ryohei Katoc, Shigetoshi Sugioc,2, Toshiyuki Kohnod,2, and Ikuro Abea,b,2 aGraduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; bJapan Science and Technology Agency, Core Research of Evolutional Science and Technology, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan; cBiotechnology Laboratory, Mitsubishi Chemical Group Science and Technology Research Center Inc., 1000 Kamoshida, Aoba, Yokohama, Kanagawa 227-8502, Japan; and dMitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved July 12, 2011 (received for review May 15, 2011) HsPKS1 from Huperzia serrata is a type III polyketide synthase (PKS) club moss Huperzia serrata (HsPKS1) (19) (Fig. S1), using precur- with remarkable substrate tolerance and catalytic potential. Here sor-directed and structure-based approaches. As previously re- we present the synthesis of unnatural unique polyketide–alkaloid ported, HsPKS1 is a unique type III PKS that exhibits unusually hybrid molecules by exploiting the enzyme reaction using precur- broad substrate specificity to produce various aromatic polyke- sor-directed and structure-based approaches. HsPKS1 produced tides. For example, HsPKS1, which normally catalyzes the sequen- novel pyridoisoindole (or benzopyridoisoindole) with the 6.5.6- tial condensations of 4-coumaroyl-CoA (1) with three molecules fused (or 6.6.5.6-fused) ring system by the condensation of 2-carba- of malonyl-CoA (2) to produce naringenin chalcone (3)(Fig.1A), moylbenzoyl-CoA (or 3-carbamoyl-2-naphthoyl-CoA), a synthetic also accepts bulky N-methylanthraniloyl-CoA (4)asastarterto nitrogen-containing nonphysiological starter substrate, with two produce 1,3-dihydroxy-N-methylacridone (5), after three conden- molecules of malonyl-CoA. -
Two Chalcone Synthase Isozymes Participate Redundantly in UV-Induced Sakuranetin Synthesis in Rice
International Journal of Molecular Sciences Article Two Chalcone Synthase Isozymes Participate Redundantly in UV-Induced Sakuranetin Synthesis in Rice 1, 1 1 2 1, Hye Lin Park y, Youngchul Yoo , Seong Hee Bhoo , Tae-Hoon Lee , Sang-Won Lee * and Man-Ho Cho 1,* 1 Graduate School of Biotechnology and Department of Genetic Engineering, Kyung Hee University, Yongin 17104, Korea; [email protected] (H.-L.P.); [email protected] (Y.Y.); [email protected] (S.H.B.) 2 Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea; [email protected] * Correspondence: [email protected] (S.-W.L.); [email protected] (M.-H.C.) Present address; Department of Botany and Plant Pathology, and Center for Plant Biology, y Purdue University, West Lafayette, IN 47907, USA Received: 28 April 2020; Accepted: 25 May 2020; Published: 27 May 2020 Abstract: Chalcone synthase (CHS) is a key enzyme in the flavonoid pathway, participating in the production of phenolic phytoalexins. The rice genome contains 31 CHS family genes (OsCHSs). The molecular characterization of OsCHSs suggests that OsCHS8 and OsCHS24 belong in the bona fide CHSs, while the other members are categorized in the non-CHS group of type III polyketide synthases (PKSs). Biochemical analyses of recombinant OsCHSs also showed that OsCHS24 and OsCHS8 catalyze the formation of naringenin chalcone from p-coumaroyl-CoA and malonyl-CoA, while the other OsCHSs had no detectable CHS activity. OsCHS24 is kinetically more efficient than OsCHS8. Of the OsCHSs, OsCHS24 also showed the highest expression levels in different tissues and developmental stages, suggesting that it is the major CHS isoform in rice. -
Protein Interactions with the Glucose Transporter Binding Protein GLUT1CBP That Provide a Link Between GLUT1 and the Cytoskeleton Robert C
Molecular Biology of the Cell Vol. 10, 819–832, April 1999 Protein Interactions with the Glucose Transporter Binding Protein GLUT1CBP That Provide a Link between GLUT1 and the Cytoskeleton Robert C. Bunn, Mari Anne Jensen, and Brent C. Reed* The Department of Biochemistry and Molecular Biology, Louisiana State University School of Medicine, Shreveport, Louisiana 71130-3932 Submitted October 27, 1998; Accepted January 19, 1999 Monitoring Editor: Guido Guidotti Subcellular targeting and the activity of facilitative glucose transporters are likely to be regulated by interactions with cellular proteins. This report describes the identification and characterization of a protein, GLUT1 C-terminal binding protein (GLUT1CBP), that binds via a PDZ domain to the C terminus of GLUT1. The interaction requires the C-terminal four amino acids of GLUT1 and is isoform specific because GLUT1CBP does not interact with the C terminus of GLUT3 or GLUT4. Most rat tissues examined contain both GLUT1CBP and GLUT1 mRNA, whereas only small intestine lacked detectable GLUT1CBP protein. GLUT1CBP is also expressed in primary cultures of neurons and astrocytes, as well as in Chinese hamster ovary, 3T3-L1, Madin–Darby canine kidney, Caco-2, and pheochromocytoma-12 cell lines. GLUT1CBP is able to bind to native GLUT1 extracted from cell membranes, self-associate, or interact with the cytoskeletal proteins myosin VI, a-actinin-1, and the kinesin superfamily protein KIF-1B. The presence of a PDZ domain places GLUT1CBP among a growing family of structural and regulatory proteins, many of which are localized to areas of membrane specialization. This and its ability to interact with GLUT1 and cytoskeletal proteins implicate GLUT1CBP in cellular mechanisms for targeting GLUT1 to specific subcellular sites either by tethering the transporter to cytoskeletal motor proteins or by anchoring the transporter to the actin cytoskeleton. -
Regulation of Stringent Factor by Branched-Chain Amino Acids
Regulation of stringent factor by branched-chain amino acids Mingxu Fanga and Carl E. Bauera,1 aMolecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405 Edited by Caroline S. Harwood, University of Washington, Seattle, WA, and approved May 9, 2018 (received for review February 21, 2018) When faced with amino acid starvation, prokaryotic cells induce a Under normal growth conditions, the synthetase activity of Rel is stringent response that modulates their physiology. The stringent thought to be self-inhibited; however, during times of amino acid response is manifested by production of signaling molecules starvation, Rel interacts with stalled ribosomes, which activates guanosine 5′-diphosphate,3′-diphosphate (ppGpp) and guanosine synthetase activity to produce (p)ppGpp. The regulation of hy- 5′-triphosphate,3′-diphosphate (pppGpp) that are also called drolase activity is less understood but may involve one or more alarmones. In many species, alarmone levels are regulated by a downstream domains called the TGS and ACT domains. The TGS multidomain bifunctional alarmone synthetase/hydrolase called domain of SpoT has been shown to interact with an acyl carrier Rel. In this enzyme, there is an ACT domain at the carboxyl region protein, so it is presumed to sense the status of fatty acid metab- that has an unknown function; however, similar ACT domains are olism in E. coli (4). The function of the ACT domain is not as clear; present in other enzymes that have roles in controlling amino acid however, recent cryo-EM structures of E. coli RelA show that this metabolism. In many cases, these other ACT domains have been domain is involved in binding deacyl-tRNA as well as the ribosome shown to allosterically regulate enzyme activity through the bind- (5–7). -
Transporters in Plant Sulfur Metabolism
REVIEW ARTICLE published: 09 September 2014 doi: 10.3389/fpls.2014.00442 Transporters in plant sulfur metabolism Tamara Gigolashvili 1* and Stanislav Kopriva 2 1 Department of Plant Molecular Physiology, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany 2 Plant Biochemistry Department, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, Germany Edited by: Sulfur is an essential nutrient, necessary for synthesis of many metabolites. The uptake of Nicole Linka, Heinrich-Heine sulfate, primary and secondary assimilation, the biosynthesis, storage, and final utilization Universität Düsseldorf, Germany of sulfur (S) containing compounds requires a lot of movement between organs, cells, Reviewed by: and organelles. Efficient transport systems of S-containing compounds across the internal Viktor Zarsky, Charles University, Czech Republic barriers or the plasma membrane and organellar membranes are therefore required. Here, Frédéric Marsolais, Agriculture and we review a current state of knowledge of the transport of a range of S-containing Agri-Food Canada, Canada metabolites within and between the cells as well as of their long distance transport. An *Correspondence: improved understanding of mechanisms and regulation of transport will facilitate successful Tamara Gigolashvili, Department of engineering of the respective pathways, to improve the plant yield, biotic interaction and Plant Molecular Physiology,