Open Telecom Platform

Total Page:16

File Type:pdf, Size:1020Kb

Open Telecom Platform Open telecom platform Seved Torstendahl The open telecom platform (OTP) is a development system platform for the tools and building blocks that design- building telecommunications applications, and a control system platform for ers need to develop applications for spe- running them. The platform, whose aim is to reduce time to market, cific computer systems. Package types enables designers to build – from standard, commercially available comput- that are meant to be integrated into an er platforms – a highly-productive development environment that is based embedded application system (target on the programming language Erlang. system) make up a basic part of that sys- The OTP also permits application designers who program in C, C++, Java tem and contain the building blocks whose functions are needed at run-time. and other languages to take full advantage of sourced components. More- Examples include a database, or a sim- over, the OTP allows designers to consider costs when matching computer ple network management protocol platforms with requirements for processing power and component availabili- (SNMP) agent. ty. The author outlines the OTP system architecture, its tools and building OTP development environment blocks, while describing the strengths of the open telecom platform as Many of the application programs for either a development environment or as a target system. the OTP are written in Erlang. Applica- tion programmers will find that several tools in the OTP development environ- ment support the tasks of developing The open telecom platform (OTP) and testing applications. For example, described in this article is primarily the OTP development environment con- intended for new applications that com- tains: bine a need for reliable, high-performance – tools for translating into stub code the telecom characteristics with a need for interface specifications given in the using externally sourced hardware and form of C header files, simple network software components. This includes ATM- management protocol-management products for access networks and data information base (SNMP-MIB) defini- communications, such as Internet proto- tions, and abstract syntax notation col-related traffic. number one (ASN.1) definitions; – an Erlang-to-Emacs mode that facili- Multipurpose platform tates editing Erlang programs; – the Erlang compiler and debugger for The open telecom platform is a develop- testing modules; ment system platform for building, and a – a test coverage tool, and a hot-spot control system platform for running, finder. telecommunications applications. How- Some programs are written in other lan- ever, the OTP is not a monolithic platform, guages, including C, C++ and Java. In but is made up of sets of tools and build- such cases, the application programmer ing blocks, which include: uses the tools provided by the supplier of – Erlang – a programming language com- the target system, or the tools that are plete with compiler, debugger, and available in the development environ- other development tools (as a rule, the ment. tools and building blocks that are Target systems Box A required for Erlang are already imple- mented in the language, Box D); An OTP that consists of a control system Abbreviations – SASL – systems architecture support with one or more processors may be con- API Application program interface libraries (SASL) contain functions for figured as a target system. If the system ASN.1 Abstract syntax notation number one building fault-tolerant distributed appli- comprises more than one processor, BOS Basic operating system BSD Berkeley software distribution cations; then the processors must be able to com- DBMS Database management system – Mnesia – a real-time fault-tolerant dis- municate with one another through a log- HTTP Hypertext transfer protocol tributed database management sys- ical network. Some processors, I/O Input/output tem (DBMS); equipped with secondary storage and IP Internet protocol JAM Joe’s abstract machine – the Erlang run-time system; various I/O units, supervise and control MIB Management information base – sourced programs; the general system by means of func- MMU Memory management unit – standard, commercially available tions in the systems architecture support OTP Open telecom platform RCS Revision control system operating systems; libraries (SASL)—the OTP’s central com- RPC Remote procedure call – computer hardware. ponent. SASL Systems architecture support libraries Different packages of OTP-related com- A communication mechanism joins SNMP Simple network management protocol ponents have been defined to suit differ- each processor to the distributed system. TCP Transfer control protocol UDP User datagram protocol ent user needs. Applications develop- If desired – depending on requirements ment packages, for example, contain all for reliability – the processors and the 14 Ericsson Review No. 1, 1997 communication mechanism may be dupli- als, documentation standards, and sam- cated. The OTP handles all the basic ple programs that show how application Applications telecommunications requirements for programs are designed. written in Applications the control system (real-time, fault-toler- Most programs are written in Erlang. C or other written in Erlang ance, live software upgrades, distribu- However, application programs for time- languages tion), thereby allowing application design- critical parts may be written in C. ers to fully concentrate on the unique aspects of their own work. Moreover, the Sourced programs Mne- sia SASL SNMP Web OTP can easily be ported to several dif- The OTP defines how sourced programs, DBMS agent server ferent commercial operating systems. which include protocol stacks and man- agement applications, may be incorpo- Erlang run-time system System architecture rated into a system and made to inter- work with programs that were developed All application systems that are built on by application programmers. the open telecom platform (OTP) adhere Commercial operating system and computer hardware to a basic architectural structure, SASL Figure 1. The systems architecture support libraries (SASL) contain basic software Figure 1 Bottom layer that supports system start/restart, live The OTP system architecture. Commercial computer systems make up system software updates, and process the bottom layer. The system hardware in management. The basic operating sys- this layer may also be designed in-house, tem (BOS)—a predecesor to SASL – was if the manufacturing cost and the volume used for several years in the Mobility Serv- of delivery can be justified. This is mere- er and other systems. ly an architectural view; in real systems, the bottom layer contains many comput- Mnesia ers which may be of different types. A real-time fault-tolerant distributed DBMS that supports fast transactions Middle layer for the telecommunications application, Support for telecommunications require- and a query language, called ments is provided by a robust real-time Mnemosyne, for handling complex distributed database management sys- queries. tem (DBMS); basic support for handling software and reporting events; an exten- SNMP support sible SNMP agent; a Web server; and a SNMP provides run-time support through library of routines for interworking an extensible agent, and development between applications written in C and support by means of agent/sub-agent Erlang. design principles and an MIB compiler. Top layer Web server All applications have access to Mnesia The Web server permits data that refers and SASL. The SNMP agent and the Web to Erlang functions to be collected via server may also invoke functions that are Web pages. provided by the applications in this layer. Erlang run-time system Interfaces The basic system that supports the exe- Three interfaces are provided: an inter- cution of Erlang programs. The Erlang face to OTP software; an interface to the run-time system includes the Erlang operating system; and an interface abstract machine, which executes inter- between applications written in different mediate code, the kernel, and standard languages. In terms of logic, the third libraries. interface applies to the application level, but is implemented in the OTP and in the Computer platforms operating system. The operating system and computer hard- ware consist of standard commercially Application programs available systems. Testing environ- The OTP includes a set of application pro- ments, for example, use conventional gram interfaces (API), as well as rules and workstations. guidelines for writing application pro- OTP component packages are grams. It also includes teaching materi- defined to suit various purposes. Devel- Ericsson Review No. 1, 1997 15 opment packages include software for several versions of the OTP exist, see Box B developing Erlang programs, as well as Table 1. Reducing time to market libraries and applications. The user The effort required to support many dif- Shortening time to market entails much more than organisation purchases the actual com- ferent operating systems is manageable, simply reducing the time it takes to write program puter platform, such as a Sun work- mainly because most support for non- code. The time spent on the other phases of a station with the Solaris operating sys- Erlang languages is obtained directly from project must also be reduced. tem, a PC with a Windows operating the vendors of computer systems. Only a One way to do this is to have program designers begin their work at the early stages, or at high lev- system, or some
Recommended publications
  • Introducing Elixir Getting Started in Functional Programming [St. Laurent & Eisenberg 2014-09-25].Pdf
    Introducing Elixir Introducing Elixir Introducing Elixir is an excellent language if you want to learn about functional programming, and with this hands-on introduction, you’ll discover just how powerful and fun Elixir can be. This language combines the robust functional programming of Erlang with a syntax similar to Ruby, and includes powerful features for metaprogramming. This book shows you how to write simple Elixir programs by teaching one skill at a time. Once you pick up pattern matching, process-oriented programming, and other concepts, you’ll understand why Elixir makes it easier to build concurrent and resilient programs that scale up and down with ease. ■ Get comfortable with IEx, Elixir’s command-line interface ■ Discover atoms, pattern matching, and guards: the foundations of your program structure ■ Delve into the heart of Elixir with recursion, strings, lists, and higher-order functions ■ Create processes, send messages among them, and apply pattern matching to incoming messages ■ Store and manipulate structured data with Erlang Term Storage and the Mnesia database ■ Build resilient applications with Erlang’s Open Telecom Platform Introducing ■ Define macros with Elixir’s metaprogramming tools St. Laurent & Eisenberg Laurent St. Simon St. Laurent is a Strategic Content Director at O’Reilly Media, Inc., focusing primarily on web-related topics. He is co-chair of O’Reilly’s Fluent and OSCON conferences. Simon has written or co-written books, including Introducing Erlang, Learning Rails 3, and XML Pocket Reference, Third Edition (all O’Reilly). J. David Eisenberg is a programmer and instructor in San Jose, California, with a talent for teaching and explaining.
    [Show full text]
  • Mnesia Database Management System (MNESIA)
    Mnesia Database Management System (MNESIA) version 4.4 Typeset in LATEX from SGML source using the DocBuilder-0.9.8.5 Document System. Contents 1 Mnesia User’s Guide 1 1.1 Introduction.......................................... 1 1.1.1AboutMnesia..................................... 1 1.1.2TheMnesiaDataBaseManagementSystem(DBMS)............... 2 1.2 GettingStartedwithMnesia................................. 4 1.2.1StartingMnesiaforthefirsttime.......................... 4 1.2.2AnIntroductoryExample.............................. 5 1.3 BuildingAMnesiaDatabase................................. 14 1.3.1DefiningaSchema.................................. 15 1.3.2TheDataModel................................... 16 1.3.3StartingMnesia.................................... 16 1.3.4CreatingNewTables................................. 19 1.4 TransactionsandOtherAccessContexts.......................... 21 1.4.1TransactionProperties................................ 22 1.4.2Locking........................................ 23 1.4.3DirtyOperations................................... 27 1.4.4RecordNamesversusTableNames......................... 28 1.4.5ActivityConceptandVariousAccessContexts................... 30 1.4.6Nestedtransactions.................................. 32 1.4.7PatternMatching................................... 33 1.4.8Iteration........................................ 35 1.5 MiscellaneousMnesiaFeatures................................ 36 1.5.1Indexing........................................ 37 1.5.2DistributionandFaultTolerance.........................
    [Show full text]
  • MCP Q4`18 Release Notes Version Q4-18 Mirantis Cloud Platform Release Notes Version Q4`18
    MCP Q4`18 Release Notes version q4-18 Mirantis Cloud Platform Release Notes version Q4`18 Copyright notice 2021 Mirantis, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. No part of this publication may be reproduced in any written, electronic, recording, or photocopying form without written permission of Mirantis, Inc. Mirantis, Inc. reserves the right to modify the content of this document at any time without prior notice. Functionality described in the document may not be available at the moment. The document contains the latest information at the time of publication. Mirantis, Inc. and the Mirantis Logo are trademarks of Mirantis, Inc. and/or its affiliates in the United States an other countries. Third party trademarks, service marks, and names mentioned in this document are the properties of their respective owners. ©2021, Mirantis Inc. Page 2 Mirantis Cloud Platform Release Notes version Q4`18 What’s new This section provides the details about the features and enhancements introduced with the latest MCP release version. Note The MCP integration of the community software projects, such as OpenStack, Kubernetes, OpenContrail, and Ceph, includes the integration of the features which the MCP consumers can benefit from. Refer to the MCP Q4`18 Deployment Guide for the software features that can be deployed and managed by MCP DriveTrain. MCP DriveTrain • Encryption of sensitive data in the Reclass model • Galera verification and restoration pipeline • Jenkins version upgrade • Partitioning table for the VCP images Encryption of sensitive data in the Reclass model SECURITY Implemented the GPG encryption to protect sensitive data in the Git repositories of the Reclass model as well as the key management mechanism for secrets encryption and decryption.
    [Show full text]
  • Implementing Erlang/OTP on Intel Galileo
    DEGREE PROJECT, IN INFORMATION TECHNOLOGY, FIRST LEVEL STOCKHOLM, SWEDEN 2015-06-22 Implementing Erlang/OTP on Intel Galileo Paul Coada, Erkut Kaya KTH ROYAL INSTITUTE OF TECHNOLOGY INFORMATION AND COMMUNICATION TECHNOLOGY Abstract The Intel Galileo, inspired by the well-known Arduino board, is a development board with many possibilities because of its strength. The Galileo is has an Intel processor capable of running GNU/Linux and can be connected to the internet, which opens up the possibility to be controlled remotely. The programming language that comes with the Intel Galileo is the same as for the Arduino development boards, and is therefore very limited and does not utilize the Galileo’s entire strength. Our aim with this project is to integrate a more suitable programming language; a language that can make better use of the relatively powerful processor to control the components of the board. The programming language of choice is Erlang, and the reason is obvious. Erlang can be described as a process-oriented programming language based on the functional programming paradigm and its power in concurrency. The result of the project was the successful integration of a complete version of GNU/Linux on the board and the cross-compilation of Erlang/OTP onto the board. Having Erlang running on the system opens up many possibilities for future work, amongst all: creating Erlang programs for the Intel Galileo, integrating an effective API, and measuring the pros and cons of using Erlang on an Intel Galileo. Keywords Embedded, Arduino, multiprogramming, concurrency, Internet of Things, cross-compilation, API Sammanfattning Intel Galileo är ett utvecklingskort som bygger på Arduinos succé.
    [Show full text]
  • LIST of NOSQL DATABASES [Currently 150]
    Your Ultimate Guide to the Non - Relational Universe! [the best selected nosql link Archive in the web] ...never miss a conceptual article again... News Feed covering all changes here! NoSQL DEFINITION: Next Generation Databases mostly addressing some of the points: being non-relational, distributed, open-source and horizontally scalable. The original intention has been modern web-scale databases. The movement began early 2009 and is growing rapidly. Often more characteristics apply such as: schema-free, easy replication support, simple API, eventually consistent / BASE (not ACID), a huge amount of data and more. So the misleading term "nosql" (the community now translates it mostly with "not only sql") should be seen as an alias to something like the definition above. [based on 7 sources, 14 constructive feedback emails (thanks!) and 1 disliking comment . Agree / Disagree? Tell me so! By the way: this is a strong definition and it is out there here since 2009!] LIST OF NOSQL DATABASES [currently 150] Core NoSQL Systems: [Mostly originated out of a Web 2.0 need] Wide Column Store / Column Families Hadoop / HBase API: Java / any writer, Protocol: any write call, Query Method: MapReduce Java / any exec, Replication: HDFS Replication, Written in: Java, Concurrency: ?, Misc: Links: 3 Books [1, 2, 3] Cassandra massively scalable, partitioned row store, masterless architecture, linear scale performance, no single points of failure, read/write support across multiple data centers & cloud availability zones. API / Query Method: CQL and Thrift, replication: peer-to-peer, written in: Java, Concurrency: tunable consistency, Misc: built-in data compression, MapReduce support, primary/secondary indexes, security features.
    [Show full text]
  • Couchbase Server Manual 2.1.0 Couchbase Server Manual 2.1.0
    Couchbase Server Manual 2.1.0 Couchbase Server Manual 2.1.0 Abstract This manual documents the Couchbase Server 2.1.0 series, including installation, monitoring, and administration interface and associ- ated tools. For the corresponding Moxi product, please use the Moxi 1.8 series. See Moxi 1.8 Manual. External Community Resources. Download Couchbase Server 2.1 Couchbase Developer Guide 2.1 Client Libraries Couchbase Server Forum Last document update: 05 Sep 2013 23:46; Document built: 05 Sep 2013 23:46. Documentation Availability and Formats. This documentation is available online: HTML Online . For other documentation from Couchbase, see Couchbase Documentation Library Contact: [email protected] or couchbase.com Copyright © 2010-2013 Couchbase, Inc. Contact [email protected]. For documentation license information, see Section F.1, “Documentation License”. For all license information, see Appendix F, Licenses. Table of Contents Preface ................................................................................................................................................... xiii 1. Best Practice Guides ..................................................................................................................... xiii 1. Introduction to Couchbase Server .............................................................................................................. 1 1.1. Couchbase Server and NoSQL ........................................................................................................ 1 1.2. Architecture
    [Show full text]
  • THE NOTION of DESIGN EMERGENCE EVOLVING YOUR SOFTWARE Who Are We
    THE NOTION OF DESIGN EMERGENCE EVOLVING YOUR SOFTWARE Who Are we 陈永胜 [email protected] @yeongsheng yeongsheng-tan !2 EVOLVING YOUR SOFTWARE - THE NOTION OF DESIGN EMERGENCE “THE BEST ARCHITECTURES, REQUIREMENTS, AND DESIGNS EMERGE FROM SELF-ORGANIZING TEAMS.” – PRINCIPLES BEHIND THE AGILE MANIFESTO AGENDA ‣ EMERGENT DESIGN ‣ CHOOSE YOUR POISON ‣ SWITCHING OUT AN ARCHITECTURAL LAYER ‣ WHEN RUBBER HITS THE ROAD ‣ SHOW ME THE CODE ‣ Q&A LISTEN, LEARN, UNDERSTAND, ADAPT EMERGENT DESIGN EVOLVING YOUR SOFTWARE - THE NOTION OF DESIGN EMERGENCE KNOWLEDGE CREATION & PRESERVATION KNOWLEDGE CREATION KNOWLEDGE PRESERVATION EVOLVING YOUR SOFTWARE - THE NOTION OF DESIGN EMERGENCE WHEN DO YOU HAVE BEST KNOWLEDGE? KNOWLEDGE VS TIME 100 75 50 Knowledge 25 0 AUG SEP OCT NOV DEC Time EVOLVING YOUR SOFTWARE - THE NOTION OF DESIGN EMERGENCE HYPOTHETICAL KNOWLEDGE VS TIME 100 75 50 Knowledge 25 0 AUG SEP OCT NOV DEC Time EVOLVING YOUR SOFTWARE - THE NOTION OF DESIGN EMERGENCE REALITY KNOWLEDGE VS TIME 100 75 50 Knowledge 25 0 AUG SEP OCT NOV DEC Time EVOLVING YOUR SOFTWARE - THE NOTION OF DESIGN EMERGENCE WHAT WE SHOULD STRIVE FOR KNOWLEDGE VS TIME 100 75 50 Knowledge 25 0 AUG SEP OCT NOV DEC Time EVOLVING YOUR SOFTWARE - THE NOTION OF DESIGN EMERGENCE TRADITIONAL VS EMERGENT Design Implement the initial design (try to make all decisions) TRADITIONAL EMERGENT Design Reflect and (decide an Design/Code Decide Design/Code initial Direction direction) Reflect and Design/Code Decide Direction EVOLVING YOUR SOFTWARE - THE NOTION OF DESIGN EMERGENCE MAKE IT WORK
    [Show full text]
  • Designing a Modern XMPP Service with Ejabberd
    ejabberd architecture and challenges in designing a modern messaging service 17th November 2015 Mickaël Rémond <[email protected]> Introduction ejabberd is scalable and versatile enough to adapt to most of the realtime messaging jobs you will want to handle. For many tasks, like corporate messaging, you can consider ejabberd as a standard package. However, to reach high level of scalability and flexibility, you need to consider ejabberd as an XMPP framework. As such, to build your modern messaging system, you need to: Be familiar with XMPP - Prerequisite. Learn ejabberd architecture Learn ejabberd API Work on solution design. Take control of your messaging platform and design it ! ejabberd: Routing messages in a statefull world ejabberd is a message router. Its role is to support real time messaging feature by moving messages from clients to other clients. In that sense it is stateless. However, to integrate in a statefull world, ejabberd has to support statefull features: Stateless: ejabberd is an XMPP server: Its goal is to route XMPP packets between JID. Statefull: In most case ejabberd depends on data (user base, contact list, …) or produce data (message archive, ...) Goal: deploy an ejabberd that is as stateless as possible, by leveraging backends. What are ejabberd backends ? Backends are pluggable modules you can configure to define where you would like to store part or all of your data. Backends provide the data to the feature modules of ejabberd. They can be read-write or read-only if you do not need some of the ejabberd associated features: For example, if you handle user management elsewhere in your infrastructure, you can use a user back-end that can only authenticate users but not create them.
    [Show full text]
  • Erlang – a Platform for Developing Distributed Software Systems
    Erlang – a platform for developing distributed software systems Lars-Ake˚ Fredlund 1 / 55 Problems of distributed systems ■ Distributed programming is hard ■ Challenges for concurrency: ◆ process coordination and communication 2 / 55 Problems of distributed systems ■ Distributed programming is hard ■ Challenges for concurrency: ◆ process coordination and communication ■ And challenges for distributed software: ◆ heterogeneous systems ◆ security, reliability (lack of control) ◆ performance 2 / 55 Distributed Programming Today Todays contrasts: ■ Vision – easy programming of distributed systems ■ The nightmare/reality – Web services, XML, Apache, SOAP, WSDL, . ■ Why are Web services a nightmare? Too many standards, too many tools, too many layers, too complex! ■ Erlang is an Industrially proven solution for developing and maintaining demanding distributed applications ■ Good qualities of Erlang as a distributed systems platform: Complexity encapsulated in a programming language, good performance, efficient data formats, debuggable, not complex 3 / 55 Erlang as a component platform: a summary ■ Processes are the components 4 / 55 Erlang as a component platform: a summary ■ Processes are the components ■ Components (processes) communicate by binary asynchronous message passing 4 / 55 Erlang as a component platform: a summary ■ Processes are the components ■ Components (processes) communicate by binary asynchronous message passing ■ Component communication does not depend on whether components are located in the same node, or physically remote
    [Show full text]
  • The Implementation and Use of a Generic Dataflow Behaviour in Erlang
    The Implementation and Use of a Generic Dataflow Behaviour in Erlang Christopher Meiklejohn Peter Van Roy Basho Technologies, Inc. Universite´ catholique de Louvain Bellevue, WA, United States Louvain-la-Neuve, Belgium [email protected] [email protected] Abstract concurrent programming: developers author code that adheres to a 2 We propose a new “generic” abstraction for Erlang/OTP that aids in specific “behaviour” and these abstractions then provide a com- the implementation of dataflow programming languages and mod- mon way to supervise, manage, and reason about processing con- els on the Erlang VM. This abstraction simplifies the implemen- current messages to a single actor. tation of “processing elements” in dataflow languages by provid- We propose a new Erlang/OTP “generic” abstraction for dataflow ing a simple callback interface in the style of the gen server and programming on the Erlang VM called gen flow. This abstraction gen fsm abstractions. We motivate the use of this new abstraction allows for the arbitrary composition of stateful actors into larger by examining the implementation of a distributed dataflow pro- dataflow computations. This abstraction is sufficiently generic to gramming variant called Lasp. aid in the implementation of an arbitrary dataflow language in Erlang/OTP: we motivate the use of gen flow through the im- Categories and Subject Descriptors D.1.3 [Programming Tech- plementation of a deterministic distributed dataflow variant called niques]: Concurrent Programming; E.1 [Data Structures]: Dis- Lasp. [14, 15] tributed data structures This paper contains the following contributions: Keywords Dataflow Programming, Erlang, Concurrent Program- • gen flow abstraction: We propose gen flow, a new abstrac- ming tion in the style of the “generic” abstractions provided by Er- lang/OTP for building dataflow “processing elements.” 1.
    [Show full text]
  • Making Reliable Distributed Systems in the Presence of Sodware Errors Final Version (With Corrections) — Last Update 20 November 2003
    Making reliable distributed systems in the presence of sodware errors Final version (with corrections) — last update 20 November 2003 Joe Armstrong A Dissertation submitted to the Royal Institute of Technology in partial fulfilment of the requirements for the degree of Doctor of Technology The Royal Institute of Technology Stockholm, Sweden December 2003 Department of Microelectronics and Information Technology ii TRITA–IMIT–LECS AVH 03:09 ISSN 1651–4076 ISRN KTH/IMIT/LECS/AVH-03/09–SE and SICS Dissertation Series 34 ISSN 1101–1335 ISRN SICS–D–34–SE c Joe Armstrong, 2003 Printed by Universitetsservice US-AB 2003 iii To Helen, Thomas and Claire iv Abstract he work described in this thesis is the result of a research program T started in 1981 to find better ways of programming Telecom applica- tions. These applications are large programs which despite careful testing will probably contain many errors when the program is put into service. We assume that such programs do contain errors, and investigate methods for building reliable systems despite such errors. The research has resulted in the development of a new programming language (called Erlang), together with a design methodology, and set of libraries for building robust systems (called OTP). At the time of writing the technology described here is used in a number of major Ericsson, and Nortel products. A number of small companies have also been formed which exploit the technology. The central problem addressed by this thesis is the problem of con- structing reliable systems from programs which may themselves contain errors. Constructing such systems imposes a number of requirements on any programming language that is to be used for the construction.
    [Show full text]
  • CV 4567 Technical Lead / System Architect / Senior Erlang Developer / Senior UI/UX Developder/ Designer
    CV_4567 Technical lead / System architect / Senior Erlang Developer / Senior UI/UX developder/ designer Free for offers. For now I am fully concentrated on Erlang and on all that connected to it. My last position is Technical Lead within experience of managing and building client-server application for both side: server or client. My experience is: Software Developer Skill: over 14 years Erlang Developing: over 6 years High-load Developing: over 10 years Big-Data Developing: 4 years Qt/QML Interfaces Developing: 5 years Web/UI/UX Designer Skill: over 16 years Designer Skill: over 23 years Management Skill: over 14 years And other, other, other ... I know and have comprehension of different: - in design: minimalism style vs. have no any ability to create something - in development: reinvent the wheel vs. have no any wishes for to do something - in management: the answer to the problem vs. fitting answer Career Owner / Technical lead, Erlang Web Developer, Senior UI/UX/Designer September 2012 - Aktuell I am supporting this project for my own experiments and gathering results of it. Full stack Erlang Web developer 1. Library for Yaws 2. HTML Render Engine for Yaws 3. Mnesia clustering 4. Trademark naming 5. Design: branding/UI/UX/Web Technical lead / System architect / Senior Erlang Developer / Senior UI/UX developder/designer Mai 2016 - April 2018 I've done for this company (all is HIPAA-compliant): 1) Architectural projecting: -- protocol for instant messenger via HTTPS -- message DB structure -- cluster architecture -- search engine emulation
    [Show full text]