A Study of Green's Relations on Algebraic Semigroups

Total Page:16

File Type:pdf, Size:1020Kb

A Study of Green's Relations on Algebraic Semigroups Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-19-2015 12:00 AM A Study Of Green’s Relations On Algebraic Semigroups Allen O'Hara The University of Western Ontario Supervisor Lex Renner The University of Western Ontario Graduate Program in Mathematics A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Allen O'Hara 2015 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Algebraic Geometry Commons Recommended Citation O'Hara, Allen, "A Study Of Green’s Relations On Algebraic Semigroups" (2015). Electronic Thesis and Dissertation Repository. 3047. https://ir.lib.uwo.ca/etd/3047 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. A STUDY OF GREEN’S RELATIONS ON ALGEBRAIC SEMIGROUPS (Thesis format: Monograph) by Allen O’Hara Graduate Program in Mathematics A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada c Allen O’Hara 2015 Acknowledgements First and foremost, I would like to thank my supervisor, Lex Renner, who was phenomenal in his support and encouragement. Having been one of the first in the field of linear algebraic monoids, I had much to learn from him and he made it not a task but a pleasure. Our meetings have been fantastic and he was always eager to share his wisdom and enthusiasm. Many thanks go to my colleagues, not just those from Western but all those I have worked with in my academic career. Each of them helped shape the mathematician I am today and will be in the future. I would like to thank my friends and family for their love and support. Special mention goes to my parents, who taught me to dream and to never stop until I exceeded my potential. Lastly, I wish to acknowledge my darling wife, Elise. She is the light of my life, and when I am with her I feel like I can accomplish anything. I would like to dedicate this work to her. It has been a hell of a ride. I cannot wait to see where I go next! ii Abstract The purpose of this work is to enhance the understanding regular algebraic semigroups by considering the structural influence of Green’s relations. There will be three chief topics of discussion. ◦ Green’s relations and the Adherence order on reductive monoids ◦ Renner’s conjecture on regular irreducible semigroups with zero ◦ a Green’s relation inspired construction of regular algebraic semigroups Primarily, we will explore the combinatorial and geometric nature of reductive monoids with zero. Such monoids have a decomposition in terms of a Borel subgroup, called the Bruhat decomposition, which produces a finite monoid, R, the Renner monoid. We will explore the structure of R by way of Green’s relations. In particular, we will be exploring the nature of the Adherence order poset, (R; ≤) when restricted to J -, R-, L -, and H -classes. From reductive monoids we broaden the impact of Green’s relations and explore regular algebraic semigroups. Specifically, we resolve Renner’s conjecture and show that the supports, X` = J =R and Xr = J =L are projective varieties. Spurred on by the result, we use in- variant theory to generalise the Rees matrix construction for algebraic semigroups to construct irreducible regular semigroups with 0. Our construction will start with specified maximal classes, Re, Le, and He and reconstruct an entire semigroup. In a lengthy example, we will use some of our previous combinatorial results to apply the construction to a natural generalisation of determinantal varieties. Highlights include the unique “vanilla form” decomposition for elements of the Renner monoid (Definition 5.36), a proof of Renner’s conjecture on the projectiveness of supports for irreducible regular semigroups with zero (Theorem 8.40), and the construction of irreducible regular semigroups from prespecified maximal R- and L -classes (Definition 9.6). Keywords: Algebraic semigroups, reductive monoids, Green’s relations, Adherence order, Renner monoid, semigroup supports, irreducible regular algebraic semigroups with zero iii Contents Acknowlegements .................................... ii Abstract ......................................... iii List of Appendices ................................... vii 1 Introduction .................................... 1 2 Background .................................... 4 2.1 Green’s Relations ............................. 5 2.2 Normality and Regularity ......................... 8 2.3 Reductive Monoids ............................ 11 2.4 Example .................................. 15 3 A New Trichotomy ................................ 19 3.1 Previous Results ............................. 19 3.2 The Trichotomy .............................. 23 3.3 Example .................................. 28 4 Fat Green’s Relations ............................... 33 4.1 Equivalent Definitions .......................... 34 4.2 Fat J -classes ............................... 36 4.3 Fat L -Classes and Fat R-Classes .................... 38 4.4 Fat H -Classes .............................. 41 4.5 Example .................................. 43 iv 5 Vanilla Form .................................... 46 5.1 Coset Posets ................................ 46 5.2 Standard Forms .............................. 50 5.3 Vanilla Form ............................... 57 5.4 Example .................................. 63 6 Maximum and Minimum Elements ........................ 67 6.1 Maximum and Minimum Elements .................... 67 6.2 Relative Maxima ............................. 75 6.3 Relative Minima ............................. 80 6.4 Example .................................. 84 7 Parabolic Green’s Relations ............................ 87 7.1 A Series Of Equivalence Relations .................... 87 7.2 Generalized Trichotomy ......................... 94 7.3 Relative Maxima and Minima ...................... 99 7.4 Example ..................................106 8 Projective Supports ................................110 8.1 Rees Theorem And Quotients In Linear Algebraic Semigroups . 110 8.2 Geometric Invariant Theory . 112 8.3 Putcha’s Determinant . 118 8.4 The Conjecture ..............................121 8.5 Examples .................................125 9 A New Way To Construct Regular Semigroups . 127 9.1 Affinized Quotients ............................127 9.2 Constructing Semigroups With Green’s Relations . 130 9.3 Normality .................................135 9.4 Determinantal Varieties . 139 v 10 Concluding Remarks ...............................146 Bibliography .......................................148 Appendix ........................................151 A.1 Results From Other Sources . 151 A.2 Opposite Standard Form . 152 A.3 Pointed Parabolic J -classes on M3(K) . 155 Curriculum Vitae ....................................172 vi List of Appendices Results From Other Sources ................................151 Opposite Standard Form ..................................152 Pointed Parabolic J -classes on M3(K) . 155 vii 1 1 Introduction The systematic investigation of linear algebraic semigroups and reductive algebraic monoids was pioneered around 1980 by Mohan Putcha and my supervisor, Lex Renner. Since then, the discipline has blossomed into a coherent branch of algebra involving embedding theory, repre- sentation theory and algebraic combinatorics. One of the most important features of a reductive monoid is the existence of the Bruhat Decomposition. More precisely, the Bruhat decomposi- tion, which is much studied for groups, extends to a perfect analogue for reductive monoids. This monoid Bruhat decomposition allows us to express the monoid as a disjoint union of double cosets (for a given Borel subgroup) indexed by a finite structure called the Renner monoid (the monoid analogue of the Weyl group). The importance of this decomposition is that it allows many questions about the nature and structure of the monoid to become simpler questions about the Renner monoid. Unlike groups, semigroups and monoids bring an additional structure in the form of Greens relations, which characterise the elements of the semigroup in terms of the ideals they generate. So important are Greens relations that Scottish semigroup theorist, John Mackintosh Howie, once said, “on encountering a new semigroup, almost the first question one asks is ‘What are the Green relations like?’ ”. In reductive monoids, we denote these relations by J , L , R and H . A natural question is how do these relations interact with the Bruhat decomposition? What additional information can they tell us? Of particular focus is the H relation, which has many interesting and desirable proper- ties. H -classes most closely resemble groups (indeed the H -class of an idempotent element forms a group), and so their structure is the one most likely to form a bridge between the Ren- ner monoid and the information we know from the better understood Weyl groups. One way we can investigate this structure is by decomposing our monoid, not in terms of the Bruhat decomposition, which is indexed by elements of the Renner monoid, but in terms of a disjoint union of double cosets of the H -classes of the Renner monoid. These are the so-called fat H -classes. In the following section of
Recommended publications
  • Classes of Semigroups Modulo Green's Relation H
    Classes of semigroups modulo Green’s relation H Xavier Mary To cite this version: Xavier Mary. Classes of semigroups modulo Green’s relation H. Semigroup Forum, Springer Verlag, 2014, 88 (3), pp.647-669. 10.1007/s00233-013-9557-9. hal-00679837 HAL Id: hal-00679837 https://hal.archives-ouvertes.fr/hal-00679837 Submitted on 16 Mar 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Classes of semigroups modulo Green’s relation H Xavier Mary∗ Universit´eParis-Ouest Nanterre-La D´efense, Laboratoire Modal’X Keywords generalized inverses; Green’s relations; semigroups 2010 MSC: 15A09, 20M18 Abstract Inverses semigroups and orthodox semigroups are either defined in terms of inverses, or in terms of the set of idempotents E(S). In this article, we study analogs of these semigroups defined in terms of inverses modulo Green’s relation H, or in terms of the set of group invertible elements H(S), that allows a study of non-regular semigroups. We then study the interplays between these new classes of semigroups, as well as with known classes of semigroups (notably inverse, orthodox and cryptic semigroups). 1 Introduction The study of special classes of semigroups relies in many cases on properties of the set of idempo- tents, or of regular pairs of elements.
    [Show full text]
  • FUNCTIONAL ANALYSIS 1. Banach and Hilbert Spaces in What
    FUNCTIONAL ANALYSIS PIOTR HAJLASZ 1. Banach and Hilbert spaces In what follows K will denote R of C. Definition. A normed space is a pair (X, k · k), where X is a linear space over K and k · k : X → [0, ∞) is a function, called a norm, such that (1) kx + yk ≤ kxk + kyk for all x, y ∈ X; (2) kαxk = |α|kxk for all x ∈ X and α ∈ K; (3) kxk = 0 if and only if x = 0. Since kx − yk ≤ kx − zk + kz − yk for all x, y, z ∈ X, d(x, y) = kx − yk defines a metric in a normed space. In what follows normed paces will always be regarded as metric spaces with respect to the metric d. A normed space is called a Banach space if it is complete with respect to the metric d. Definition. Let X be a linear space over K (=R or C). The inner product (scalar product) is a function h·, ·i : X × X → K such that (1) hx, xi ≥ 0; (2) hx, xi = 0 if and only if x = 0; (3) hαx, yi = αhx, yi; (4) hx1 + x2, yi = hx1, yi + hx2, yi; (5) hx, yi = hy, xi, for all x, x1, x2, y ∈ X and all α ∈ K. As an obvious corollary we obtain hx, y1 + y2i = hx, y1i + hx, y2i, hx, αyi = αhx, yi , Date: February 12, 2009. 1 2 PIOTR HAJLASZ for all x, y1, y2 ∈ X and α ∈ K. For a space with an inner product we define kxk = phx, xi . Lemma 1.1 (Schwarz inequality).
    [Show full text]
  • 3. Inverse Semigroups
    3. INVERSE SEMIGROUPS MARK V. LAWSON 1. Introduction Inverse semigroups were introduced in the 1950s by Ehresmann in France, Pre- ston in the UK and Wagner in the Soviet Union as algebraic analogues of pseu- dogroups of transformations. One of the goals of this article is to give some insight into inverse semigroups by showing that they can in fact be seen as extensions of presheaves of groups by pseudogroups of transformations. Inverse semigroups can be viewed as generalizations of groups. Group theory is based on the notion of a symmetry; that is, a structure-preserving bijection. Un- derlying group theory is therefore the notion of a bijection. The set of all bijections from a set X to itself forms a group, S(X), under composition of functions called the symmetric group. Cayley's theorem tells us that each abstract group is isomor- phic to a subgroup of a symmetric group. Inverse semigroup theory, on the other hand, is based on the notion of a partial symmetry; that is, a structure-preserving partial bijection. Underlying inverse semigroup theory, therefore, is the notion of a partial bijection (or partial permutation). The set of all partial bijections from X to itself forms a semigroup, I(X), under composition of partial functions called the symmetric inverse monoid. The Wagner-Preston representation theorem tells us that each abstract inverse semigroup is isomorphic to an inverse subsemigroup of a symmetric inverse monoid. However, symmetric inverse monoids and, by extension, inverse semigroups in general, are endowed with extra structure, as we shall see. The first version of this article was prepared for the Workshop on semigroups and categories held at the University of Ottawa between 2nd and 4th May 2010.
    [Show full text]
  • Semi-Indefinite-Inner-Product and Generalized Minkowski Spaces
    Semi-indefinite-inner-product and generalized Minkowski spaces A.G.Horv´ath´ Department of Geometry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary Nov. 3, 2008 Abstract In this paper we parallelly build up the theories of normed linear spaces and of linear spaces with indefinite metric, called also Minkowski spaces for finite dimensions in the literature. In the first part of this paper we collect the common properties of the semi- and indefinite-inner-products and define the semi-indefinite- inner-product and the corresponding structure, the semi-indefinite-inner- product space. We give a generalized concept of Minkowski space embed- ded in a semi-indefinite-inner-product space using the concept of a new product, that contains the classical cases as special ones. In the second part of this paper we investigate the real, finite dimen- sional generalized Minkowski space and its sphere of radius i. We prove that it can be regarded as a so-called Minkowski-Finsler space and if it is homogeneous one with respect to linear isometries, then the Minkowski- Finsler distance its points can be determined by the Minkowski-product. MSC(2000):46C50, 46C20, 53B40 Keywords: normed linear space, indefinite and semi-definite inner product, arXiv:0901.4872v1 [math.MG] 30 Jan 2009 orthogonality, Finsler space, group of isometries 1 Introduction 1.1 Notation and Terminology concepts without definition: real and complex vector spaces, basis, dimen- sion, direct sum of subspaces, linear and bilinear mapping, quadratic forms, inner (scalar) product, hyperboloid, ellipsoid, hyperbolic space and hyperbolic metric, kernel and rank of a linear mapping.
    [Show full text]
  • CERTAIN FUNDAMENTAL CONGRUENCES on a REGULAR SEMIGROUP! by J
    CERTAIN FUNDAMENTAL CONGRUENCES ON A REGULAR SEMIGROUP! by J. M. HOWIE and G. LALLEMENT (Received 21 June, 1965) In recent developments in the algebraic theory of semigroups attention has been focussing increasingly on the study of congruences, in particular on lattice-theoretic properties of the lattice of congruences. In most cases it has been found advantageous to impose some re- striction on the type of semigroup considered, such as regularity, commutativity, or the property of being an inverse semigroup, and one of the principal tools has been the consideration of special congruences. For example, the minimum group congruence on an inverse semigroup has been studied by Vagner [21] and Munn [13], the maximum idempotent-separating con- gruence on a regular or inverse semigroup by the authors separately [9, 10] and by Munn [14], and the minimum semilattice congruence on a general or commutative semigroup by Tamura and Kimura [19], Yamada [22], Clifford [3] and Petrich [15]. In this paper we study regular semigroups and our primary concern is with the minimum group congruence, the minimum band congruence and the minimum semilattice congruence, which we shall con- sistently denote by a, P and t] respectively. In § 1 we establish connections between /? and t\ on the one hand and the equivalence relations of Green [7] (see also Clifford and Preston [4, § 2.1]) on the other. If for any relation H on a semigroup S we denote by K* the congruence on S generated by H, then, in the usual notation, In § 2 we show that the intersection of a with jS is the smallest congruence p on S for which Sip is a UBG-semigroup, that is, a band of groups [4, p.
    [Show full text]
  • Green's Relations and Dimension in Abstract Semi-Groups
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-1964 Green's Relations and Dimension in Abstract Semi-groups George F. Hampton University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Mathematics Commons Recommended Citation Hampton, George F., "Green's Relations and Dimension in Abstract Semi-groups. " PhD diss., University of Tennessee, 1964. https://trace.tennessee.edu/utk_graddiss/3235 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by George F. Hampton entitled "Green's Relations and Dimension in Abstract Semi-groups." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Mathematics. Don D. Miller, Major Professor We have read this dissertation and recommend its acceptance: Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) July 13, 1962 To the Graduate Council: I am submitting herewith a dissertation written by George Fo Hampton entitled "Green's Relations and Dimension in Abstract Semi­ groups.-" I recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosop�y, with a major in Mathematics.
    [Show full text]
  • Von Neumann Regular Cellular Automata
    Von Neumann Regular Cellular Automata Alonso Castillo-Ramirez and Maximilien Gadouleau May 29, 2017 Abstract For any group G and any set A, a cellular automaton (CA) is a transformation of the configuration space AG defined via a finite memory set and a local function. Let CA(G; A) be the monoid of all CA over AG. In this paper, we investigate a generalisation of the inverse of a CA from the semigroup-theoretic perspective. An element τ ∈ CA(G; A) is von Neumann regular (or simply regular) if there exists σ ∈ CA(G; A) such that τ ◦ σ ◦ τ = τ and σ ◦ τ ◦ σ = σ, where ◦ is the composition of functions. Such an element σ is called a generalised inverse of τ. The monoid CA(G; A) itself is regular if all its elements are regular. We establish that CA(G; A) is regular if and only if |G| = 1 or |A| = 1, and we characterise all regular elements in CA(G; A) when G and A are both finite. Furthermore, we study regular linear CA when A = V is a vector space over a field F; in particular, we show that every regular linear CA is invertible when G is torsion-free elementary amenable (e.g. when G = Zd, d ∈ N) and V = F, and that every linear CA is regular when V is finite-dimensional and G is locally finite with char(F) ∤ o(g) for all g ∈ G. Keywords: Cellular automata, linear cellular automata, monoids, von Neumann regular elements, generalised inverses. 1 Introduction Cellular automata (CA), introduced by John von Neumann and Stanislaw Ulam in the 1940s, are models of computation with important applications to computer science, physics, and theoretical biology.
    [Show full text]
  • UNIT-REGULAR ORTHODOX SEMIGROUPS by R
    UNIT-REGULAR ORTHODOX SEMIGROUPS by R. B. McFADDEN (Received 5 May, 1983) Introduction. Unit-regular rings were introduced by Ehrlich [4]. They arose in the search for conditions on a regular ring that are weaker than the ACC, DCC, or finite Goldie dimension, which with von Neumann regularity imply semisimplicity. An account of unit-regular rings, together with a good bibliography, is given by Goodearl [5]. The basic definition of unit-regularity is purely multiplicative; it is simply that for each element x of a monoid S (initially a ring R with identity) there is a unit u of S for which x = xux. The concept of a unit-regular semigroup is a natural one; for example, the full transformation semigroup on a finite set, and the semigroup of endomorphisms of a finite-dimensional vector space, are unit-regular semigroups [1]. Unit-regularity has been studied by Chen and Hsieh [2], by Tirasupa [9], and by McAlister [6]. The connection between unit-regularity and finiteness conditions has been considered by D'Alarcao [3]. The problem of describing the structure of an arbitrary unit-regular semigroup S is difficult. It appears reasonable to attempt to provide such a description in terms of the group of units of S and the set of idempotents of S, and in this direction Blyth and McFadden did determine the structure of a narrow class of unit-regular semigroups. Calling a semigroup S uniquely unit orthodox if it is orthodox and, for each x in S, there exists a unique unit u of S for which x = xux, they proved that every such semigroup is a semidirect product of a group (the group of units of S) and a band (the band of idempotents of S).
    [Show full text]
  • Rees Matrix Covers for Regular Semigroups
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 89, 264-279 (1984) Rees Matrix Covers for Regular Semigroups D. B. MCALISTER Department of Mathematics, Northern Iliinois University, De Kalb, Illinois 601 I5 Communicated by G. B. Preston Received June 11, 1982 By a local submonoid, of a regular semigroup S, we mean a subset of the form eSe, where e is an idempotent of S. Many classes of regular semigroups can be defined in terms of properties of their local submonoids. For example, rectangular bands can be characterized as those regular semigroups all of whose local submonoids are trivial while completely simple semigroups are those whose local submonoids are groups. We say that a regular semigroup has a property ‘3 locally, or is a locally 5?7 semigroup, if each local submonoid of S has property %Y. In a previous paper we showed that a regular semigroup is locally inverse if and only if it is an image, by a homomorphism which is one to one on local submonoids, of a regular Rees matrix semigroup over an inverse semigroup. In this paper we extend that result to various other classes of regular semigroups. In particular, we show the analog of this result for locally E-solid semigroups. (A regular semigroup is E-solid if the subsemigroup generated by its idempotents is a union of groups.) The class of locally E-solid regular semigroups is extremely extensive. It includes almost all classes of regular semigroups which have been studied from a structural point of view since inverse semigroups, orthodox semigroups, unions of groups semigroups and their localizations all belong to this class.
    [Show full text]
  • On the Continuity of Fourier Multipliers on the Homogeneous Sobolev Spaces
    R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER Krystian KAZANIECKI & Michał WOJCIECHOWSKI On the continuity of Fourier multipliers on the homogeneous Sobolev spaces . 1 d W1 (R ) Tome 66, no 3 (2016), p. 1247-1260. <http://aif.cedram.org/item?id=AIF_2016__66_3_1247_0> © Association des Annales de l’institut Fourier, 2016, Certains droits réservés. Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE. http://creativecommons.org/licenses/by-nd/3.0/fr/ L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble 66, 3 (2016) 1247-1260 ON THE CONTINUITY OF FOURIER MULTIPLIERS . 1 d ON THE HOMOGENEOUS SOBOLEV SPACES W1 (R ) by Krystian KAZANIECKI & Michał WOJCIECHOWSKI (*) Abstract. — In this paper we prove that every Fourier multiplier on the ˙ 1 d homogeneous Sobolev space W1 (R ) is a continuous function. This theorem is a generalization of the result of A. Bonami and S. Poornima for Fourier multipliers, which are homogeneous functions of degree zero. Résumé. — Dans cet article, nous prouvons que chaque multiplicateur de Fou- ˙ 1 d rier sur l’espace homogène W1 (R ) de Sobolev est une fonction continue. Notre théorème est une généralisation du résultat de A.
    [Show full text]
  • Weak Convergence of Asymptotically Homogeneous Functions of Measures
    h’on,inec,r ~ndysrr, Theory. Methods & App/;cmonr. Vol. IS. No. I. pp. I-16. 1990. 0362-546X/90 13.M)+ .OO Printed in Great Britain. 0 1990 Pergamon Press plc WEAK CONVERGENCE OF ASYMPTOTICALLY HOMOGENEOUS FUNCTIONS OF MEASURES FRANGOISE DEMENGEL Laboratoire d’Analyse Numerique, Universite Paris-Sud, 91405 Orsay, France and JEFFREY RAUCH* University of Michigan, Ann Arbor, Michigan 48109, U.S.A. (Received 28 April 1989; received for publication 15 September 1989) Key words and phruses: Functions of measures, weak convergence, measures. INTRODUCTION FUNCTIONS of measures have already been introduced and studied by Goffman and Serrin [8], Reschetnyak [lo] and Demengel and Temam [5]: especially for the convex case, some lower continuity results for the weak tolopology (see [5]) permit us to clarify and solve, from a mathematical viewpoint, some mechanical problems, namely in the theory of elastic plastic materials. More recently, in order to study weak convergence of solutions of semilinear hyperbolic systems, which arise from mechanical fluids, we have been led to answer the following ques- tion: on what conditions on a sequence pn of bounded measures have we f(~,) --*f(p) where P is a bounded measure and f is any “function of a measure” (not necessarily convex)? We answer this question in Section 1 when the functions f are homogeneous, and in Section 2 for sublinear functions; the general case of asymptotically homogeneous function is then a direct consequence of the two previous cases! An extension to x dependent functions is described in Section 4. In the one dimensional case, we give in proposition 3.3 a criteria which is very useful in practice, namely for the weak continuity of solutions measures of hyperbolic semilinear systems with respect to weakly convergent Cauchy data.
    [Show full text]
  • G = U Ytv2
    PROCEEDINGS of the AMERICAN MATHEMATICAL SOCIETY Volume 81, Number 1, January 1981 A CHARACTERIZATION OF MINIMAL HOMOGENEOUS BANACH SPACES HANS G. FEICHTINGER Abstract. Let G be a locally compact group. It is shown that for a homogeneous Banach space B on G satisfying a slight additional condition there exists a minimal space fimm in the family of all homogeneous Banach spaces which contain all elements of B with compact support. Two characterizations of Bm¡1¡aie given, the first one in terms of "atomic" representations. The equivalence of these two characterizations is derived by means of certain (bounded) partitions of unity which are of interest for themselves. Notations. In the sequel G denotes a locally compact group. \M\ denotes the (Haar) measure of a measurable subset M G G, or the cardinality of a finite set. ®(G) denotes the space of continuous, complex-valued functions on G with compact support (supp). For y G G the (teft) translation operator ly is given by Lyf(x) = f(y ~ xx). A translation invariant Banach space B is called a homogeneous Banach space (in the sense of Katznelson [9]) if it is continuously embedded into the topological vector space /^(G) of all locally integrable functions on G, satisfies \\Lyf\\B= 11/11,for all y G G, and lim^iy-- f\\B - 0 for all / G B (hence, as usual, two measurable functions coinciding l.a.e. are identified). If, furthermore, B is a dense subspace of LX(G) it is called a Segal algebra (in the sense of Reiter [15], [16]). Any homogeneous Banach space is a left L'((7)-Banach- module with respect to convolution, i.e./ G B, h G LX(G) implies h */ G B, and \\h */\\b < ll*Uill/IJi» m particular any Segal algebra is a Banach ideal of LX(G).
    [Show full text]