Section 6 at Grade Intersections

Total Page:16

File Type:pdf, Size:1020Kb

Section 6 at Grade Intersections BDC07MR-05 Section 6 At Grade Intersections 6.1 General Most highways intersect at grade. To minimize the resulting conflicts and to provide adequately for the anticipated crossings and turning movements, the geometric design of the intersection at grade must be given careful consideration. Although intersections have many common factors, they are not subject to a set treatment, and must be looked upon on a case by case basis. In varying degrees, four basic factors enter into the design of an intersection. These factors are traffic, physical, economic, and human. Traffic factors to be considered include: Possible and practical capacities Turning movements Size and operating characteristics of vehicles Control of movements at points of intersection Vehicle speeds Pedestrian Activity and movements Bicycle Activity and movements Bicycle operating space Transit operations Crash experience Physical factors which control intersection design and application of channelization are: Topography Abutting land use Geometric features of the intersecting roadways Traffic control devices Safety features Economic factors, which are important and often controlling, include: Cost of improvements Effect on abutting businesses where channelization restricts or prohibits certain vehicular movements within the intersection area Human factors such as: Driving, pedestrian, and bicyclist habits Ability of drivers, pedestrians, and bicyclists to make decisions Effect of surprise events Decision and reaction times NaturalSuperseded paths of movements must be considered Types of pedestrians An intersection may be extremely simple, or highly developed depending on the proper evaluation of the foregoing factors. In the redesign of an existing intersection, standards sometimes must be compromised due to the high cost of existing development or to the necessity of meeting rigid physical controls. In the design of a new intersection, NJDOT Design Manual – Roadway 6-1 At Grade Intersections BDC07MR-05 however, such controls frequently can be avoided by a shift in line or grade of one or both of the intersecting highways. For further general discussion and details, see AASHTO – A Policy on Geometric Design of Highways and Streets. 6.2 General Design Considerations 6.2.1 Capacity Analysis Capacity analysis is one of the most important considerations in the design of intersections. This is especially true in the design of at-grade intersections on urban streets and highways. Optimum capacities can be obtained when intersections include auxiliary lanes, proper use of channelization, and traffic control devices. Where these techniques are under consideration, it is necessary to consider pedestrian and bicycle safety and level of service. Reference is made to the Highway Capacity Manual, Transportation Research Board, for procedures in performing capacity computations. 6.2.2 Spacing The spacing of intersections on major arterials is important to the capacity and safety of the roadway. In urban areas, the capacity of the arterial is determined by the capacity of the signalized intersections along the roadway. Ideally, signalized intersections should be located no closer than 1200 feet apart. In rural areas, the minimum spacing of intersections should be one half mile. 6.2.3 Alignment and Profile Intersections are points of conflict between vehicles, bicycles, and pedestrians. The alignment and grade of the intersecting roads should permit drivers to discern and perform readily the maneuvers necessary to pass through the intersection safely and with minimum interference between vehicles. To these ends, the horizontal alignment should be as straight as possible and gradient as flat as practical. The sight distance should be equal to or greater than the minimum values for the specific intersection conditions. Sight distance is discussed later in this section. 1. Alignment Regardless of the type of intersection, intersecting highways should meet at or nearly at right angles. Roads intersecting at acute angles require extensive turning roadway areas. Intersection angles less than 60 degrees normally warrant realignment closer to 90 degrees. Intersections on sharp curves should be avoided wherever possible because the superelevation and widening of pavements on curves complicate the intersection design. Furthermore, since traffic stripes are not normally carried through the intersection, there is no visual reference for the guidance of the driver through the intersection curve during adverse weather and visibility conditions. 2. Profile Combinations of profile lines that make vehicle control difficult should be avoided. Substantial grade changes should be avoided at intersections, although it is not always Supersededfeasible to do so. Adequate sight distance should be provided along both highways and across corners, even where one or both intersecting highways are on vertical curves. The grades of intersecting highways should be as flat as practical on those sections that are to be used for storage space for stopped vehicles. A minimum storage space for 2 vehicles, approximately 50 feet, should be provided for minor streets where stop NJDOT Design Manual – Roadway 6-2 At Grade Intersections BDC07MR-05 sign control is employed and the approach grade is up towards the intersection. Such slopes should desirably be less than one percent and no more than 3 percent. The profile lines and cross sections on the intersection legs should be adjusted for a distance back from the intersection proper to provide a smooth junction and proper drainage. Normally, the profile line of the major highway should be carried through the intersection, and that of the cross road adjusted to it. Intersections with a minor road crossing a multi-lane divided highway with narrow median and superelevated curve should be avoided whenever possible because of the difficulty in adjusting grades to provide a suitable crossing. Profile lines of separate turning roadways should be designed to fit the cross slopes and longitudinal grades of the intersection legs. As a rule, the horizontal and vertical alignments are subject to greater restrictions at or near intersecting roads than on the open road. Their combination at or near the intersection must produce traffic lanes that are clearly visible to the motorists, bicyclists, and pedestrians at all times and definitely understandable for any desired direction of travel, free from sudden appearance of potential hazards, and consistent with the portions of the highway just traveled. 6.2.4 Cross Section The cross section of the pavement surface within an intersection should be reviewed on a case-by-case basis. The development of the centerline profiles and edge of pavement profiles should flow smoothly through the intersection. 6.3 Sight Distance 6.3.1 General There must be unobstructed sight along both roads at an intersection and across their included corner for distances sufficient to allow the operators of vehicles approaching the intersection or stopped at the intersection to observe pedestrians and cyclists and carry out whatever maneuvers may be required to negotiate the intersection. It is of equal importance that pedestrians be able to view and react to potential conflicts with vehicles. Any object within the sight triangle high enough above the elevation of the adjacent roadways to constitute a sight obstruction should be removed or lowered. Such objects include but are not limited to cut slopes, hedges, bushes, tall crops, signs, buildings, parked vehicles, etc. Also check the vertical curve on the highway to see if it obscures the line of sight from the driver's eye (3.5 feet above the road) to the approaching vehicle (3.5 feet above the road) as per the sight distance determined in the next three sections. 6.3.2 Sight Distance for Bicycle Facilities In general the sight distance required to see a bicycle is no greater than that to see a vehicle, so bicycle sight distance need not be calculated at intersections also used by vehicles. At locations where a separated bicycle facility crosses the roadway, or elsewhere where cyclists may enter or cross the roadway independent of vehicles, appropriateSuperseded sight distance should be provided. Vehicles parked near crosswalks create sight distance problems, and for this reason New Jersey State Statutes prohibit motor vehicle parking “within 25 feet of the nearest crosswalk or side line of a street or intersecting highway, except at alleys,” and within 50 feet of a stop sign (Title 39:4-138). These relationships also apply to other locations where pedestrians are likely to cross (mid-block crosswalks, T-intersections, gaps in median barriers). NJDOT Design Manual – Roadway 6-3 At Grade Intersections BDC07MR-05 The parking setback distance can be reduced in locations where curb extensions have been provided to reduce crossing distance and increase the visibility of pedestrians as long as the provisions of Title 39 are also met. 6.3.3 Stop Control on Cross Street Intersection designs should provide sufficient sight distances to avoid potential conflicts between vehicles turning onto or crossing a highway from a stopped position and vehicles on the through highway operating at the design speed. As a minimum stopping sight distance must be provided. However, to enhance traffic operations, the recommended sight distance along the major roadway from Figure 6-A for various design vehicles to turn left, right or cross should be provided. Where the median width on a divided highway is 6 feet or greater than the vehicle length, the crossing can be accomplished in 2 steps. The vehicle crosses the first pavement, stops within the median opening, and proceeds when a safe gap in traffic occurs to cross the second pavement. However, when the median width is less than that of a vehicle, the crossing must be made in one step and the median must be included as part of the roadway width (w). 6.3.4 Yield Control When an intersection is controlled by a yield sign, the sight triangle is governed by the design speed on the main highway and that of the approach highway or ramp. Suggested approach speeds on the yield controlled approach are 15 mph for urban conditions and 20 mph to 25 mph for rural conditions.
Recommended publications
  • Community Meeting for Mary Avenue Grade Separation, Aug. 10, 2017
    Caltrain Grade Separation Feasibility Study Mary Avenue Railroad Crossing Community Meeting August 10, 2017 Agenda • Meeting format review • Goals and context • Mary Avenue options Feedback • Q and A • Next steps • Adjourn 2 Caltrain Grade Separations Project Goals Improve Safety (LUTE Policy 24, 36, 40, 41, 42, 46) Enhance Reduce Ped/Bike Traffic Delay Access (LUTE Policy 32, 42) (LUTE Policy 24, 33, 36, 41) 4 Project Context 60,000 50,000 40,000 30,000 Average Daily Ridership Daily Average 20,000 76 trains 92 trains 114 trains (2003) (2016) +80-106 HSR (2040) Caltrain Grade Separation – VTA Program Description Sunnyvale has 2 of the 8 at grade crossings VTA criteria include cost efficiency and Complete Streets 6 Screening Alternatives Screening • Establish rail and road criteria Alternatives • Identify existing conditions • Develop cursory design of alternatives • Identify impacts and constraints Impacts • Bring results to community Variants of • Identify feasible alternatives Screening • Develop variants to minimize impacts Alternatives • Engage community for input 7 Initial Screening Alternatives 8 At-grade Railroad Crossing Grade Separated Crossing - Overpass At-grade Railroad Crossing Grade Separated Crossing - Underpass Design Criteria Roadway Railroad Grades 4.75% 1.2% max Design speed 30 - 45 mph 79 mph for shoofly (temp rail) Based on posted speed 110 mph for final condition plus 5 mph Bridge depth 5’ 6.75’ Supporting roadway Supporting railroad Vertical clearance Underpass Overpass 15.5’ over roadway 27’ over railroad Roadway
    [Show full text]
  • MN MUTCD Chapter 2H
    Chapter 2B. REGULATORY SIGNS TABLE OF CONTENTS Chapter 2B. REGULATORY SIGNS 2B.1 Application of Regulatory Signs ..........................................................................................2B-1 2B.2 Design of Regulatory Signs ..................................................................................................2B-1 2B.3 Size of Regulatory Signs ......................................................................................................2B-1 2B.4 Right-of-Way at Intersections ...............................................................................................2B-7 2B.5 STOP Sign (R1-1) and ALL WAY Plaque (R1-3P) ...............................................................2B-8 2B.6 STOP Sign Applications .......................................................................................................2B-9 2B.7 Multi-Way Stop Applications ...............................................................................................2B-9 2B.8 YIELD Sign (R1-2) ..............................................................................................................2B-10 2B.9 YIELD Sign Applications .....................................................................................................2B-10 2B.10 STOP Sign or YIELD Sign Placement .................................................................................2B-10 2B.11 Stop Here For Pedestrians Signs (R1-5 Series) ....................................................................2B-11 2B.12 In-Street and Overhead Pedestrian
    [Show full text]
  • Multi-Purpose Trails Plan
    CITY OF COSTA MESA MULTI-PURPOSE TRAILS PLAN JUNE 2016 ACKNOWLEDGMENTS The City of Costa Mesa Multi-Purpose Trails Plan was prepared under the guidance of: Raja Sethuraman, Transportation Services Manager This plan was prepared by KTU+A Planning + Landscape Architecture: John Holloway, Principal, PLA, ASLA, LCI Joe Punsalan, Senior Associate, GISP, PTP, LCI Alison Moss, Associate Mobility Planner, AICP Beth Chamberlin, Associate Planner Juan Alberto Bonilla, Planner Diana Smith, GISP, GIS Manager Kristin Bleile, GIS Analyst This is a project for the City of Costs Mesa with funding provided by the Southern California Association of Governments (SCAG) Sustainability Program. The Sustainability Program is a key SCAG initiative for implementing the Regional Transportation Plan/Sustainable Communities Strategies (RTP/SCS), combining Compass Blueprint assistance for integrated land use and transportation planning with new Green Region Initiative assistance aimed at local sustainability and Active Transportation assistance for bicycle and pedestrian planning efforts. Sustainability Projects are intended to provide SCAG-member jurisdictions the resources to implement regional policies at the local level, focusing on voluntary efforts that will meet local needs and contribute to implementing the SCS, reducing greenhouse gas (GHG) emissions, and providing the range of local and regional benefits outlined in the SCS. The preparation of this report has been financed in part through grant(s) from the Federal Transit Administration (FTA) through the U.S. Department of Transportation (DOT) in accordance with the provisions under the Metropolitan Planning Program as set forth in Section 104(f) of Title 23 of the U.S. Code. The contents of this report reflect the views of the author who is responsible for the facts and accuracy of the data presented herein.
    [Show full text]
  • PBOT Traffic Design Manual Volume 1
    Traffic Design Manual Volume 1: Permanent Traffic Control and Design CITY OF PORTLAND, OREGON January 2020 Updated June 2021 0 of 135 Table of Contents Preface .......................................................................................................................................................... 3 Glossary ........................................................................................................................................................ 4 1 Permanent Traffic Control Signs ............................................................................................................... 7 1.1 Regulatory Signs ................................................................................................................................. 8 1.2 Warning Signs .................................................................................................................................. 17 1.3 Guide Signs....................................................................................................................................... 21 2 Pavement Markings ................................................................................................................................. 31 2.1 Centerlines ........................................................................................................................................ 31 2.2 Lane Widths ...................................................................................................................................... 33 2.3 Turn
    [Show full text]
  • TAC 2003 Jughandle Final
    UNCONVENTIONAL ARTERIAL DESIGN Jughandle Intersection Concept for McKnight Boulevard in Calgary G. FurtadoA, G. TenchaA and, H. DevosB A McElhanney Consulting Services Ltd., Surrey, BC B McElhanney Consulting Services Ltd., Edmonton, AB ABSTRACT: A functional planning study was initiated along McKnight Boulevard by the City of Calgary in response to the growing traffic and peak hour congestion routinely experienced along the corridor. The objective of the study was to identify and define, the most suitable improvements for medium term (2015 horizon) and long-term (2038 horizon) traffic demands, while conforming to a large number of independent constraints. Numerous alternatives were identified, and in due course rejected, due to their inability to adequately address the project requirements or satisfactorily meet stakeholder needs. Ultimately, a conventional intersection design involving widening along the south side of the corridor and the jughandle intersection concept were short listed for further evaluation and comparison. These design alternatives were subjected to a relatively rigorous appraisal that included performance, signing, laning and signalization requirements, property impacts, access and transit requirements, safety considerations, human factors and environmental impacts to name a few. It was found that operationally, the jughandle intersection design has compelling application potential in high volume corridors where local access is required and full grade separation is impractical or too costly. However, the jughandle property acquisition requirements and resulting costs along highly urbanized corridors, combined with their limited implementation experience in North America, can preclude their use in less than optimum circumstances. 1. INTRODUCTION Arterial roadways are typically designed and built with the intention of providing superior traffic service over collector and local roads (1).
    [Show full text]
  • Diverging Diamond Interchange (DDI)
    What Why How CFI - SR 400 @ SR 53, Dawson County, GA Intersection Control Evaluation A performance-based approach to objectively screen alternatives by focusing on the safety related benefits of each. Traditional Intersections SR 11 @ SR 124, Jackson County, GA Johnson Rd @ SR 74, Fayette County, GA Dogwood Trail @ SR 74, Fayette County, GA Roundabout SR 138 @ Hembree Rd, Fulton County, GA Roundabout • 215+ Existing • 50+ On System/or GDOT $$ • 165+ Off System • 20+ Currently Under Construction • 155+ Planned/programmed RBTs 6 Diverging Diamond Interchange (DDI) I-95 @ SR 21, Port Wentworth, Chatham County, GA Diverging Diamond Interchange (DDI) • 6 Existing • 2 Design/under construction • 10+ Under consideration Total: 18+ Continuous Green T SR 120 @ John Ward Rd SW, Cobb County, GA Single Point Urban Interchange (SPUI) SR 400 @ Lenox Rd NE, Fulton County, GA Reduced Conflict U-Turn (RCUT) SR 20 @ Nail Rd, Henry County, GA Continuous Flow Intersection (CFI) SR 400 @ SR 53, Dawson County, GA Unsignalized Signalized • Minor Stop • Signal • All-Way Stop • Median U-Turn • Mini Roundabout • RCUT • Single Lane Roundabout • Displaced Left Turn (CFI) • Multilane Roundabout • Continuous Green-T • RCUT • Jughandle • RIRO w/Downstream U-Turn • Diamond Interchange (signal) • High-T (unsignalized) • Quadrant Roadway • Offset-T Intersections • Diverging Diamond • Diamond Interchange (Stop) • Single Point Interchange • Diamond Interchange (RAB) • Turn Lane Improvements • Turn Lane Improvements • Other Intersection Control Evaluation Deliver a transportation
    [Show full text]
  • Draft Transportation
    Sturbridge Master Plan 2010 (DRAFT) February 2011 7 Transportation Introduction Positioned at the junction of two major Interstate highways, I-84 and I-90, Sturbridge has excellent regional access to major urban areas. This regional interstate proximity brings benefits in terms of convenient access but also brings high traffic volumes and speeds, which compromises pedestrian, bicyclist and driver safety. For this reason, the location of Sturbridge at the junction of I-84 and I-90 is considered to be both a strength and weakness in terms of transportation and land use balance. In addition, Sturbridge’s Main Street, Route 20, is a state-owned roadway. The 1988 Sturbridge Master Plan identified traffic as one of Sturbridge’s most pressing issues. During the public outreach efforts for this Master Plan, Sturbridge residents reiterated similar transportation-related themes from the 1988 Master Plan including: Develop an identity and sense of arrival into Sturbridge through the creation of distinct gateways and streetscaping, especially given the number of tourists coming to the area; Balance the need to facilitate traffic flow with desires to make the roadways more walkable and bikeable; calm vehicle traffic speeds where appropriate (especially through the Commercial Tourist District (CTD) along Route 20); Eliminate sign clutter and improve wayfinding to the key destinations; Ensure that paratransit service meets the expanding needs for elderly and disabled residents; and Make public transportation more available. Over the last 30 years, Sturbridge has experienced rapid residential growth. The population is expected to continue to increase due to the availability of land, the relatively low cost of house lots, and the proximity and access to major highways.
    [Show full text]
  • Safety Performance for Intersection Control Evaluation (SPICE) Tool User Manual
    Safety Performance for Intersection Control Evaluation (SPICE) Tool User Manual FHWA Safety Program http://safety.fhwa.dot.gov NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or the use thereof. This Report does not constitute a standard, specification, or regulation. The contents of this Report reflect the views of the contractor, who is responsible for the accuracy of the data presented herein. The contents do not necessarily reflect the official policy of the U.S. Department of Transportation. The United States Government does not endorse products or manufacturers named herein. Trade or manufacturers’ names appear herein solely because they are considered essential to the object of this report. QUALITY ASSURANCE STATEMENT The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement. ii TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA-SA-18-026 4. Title and Subtitle 5. Report Date Safety Performance for Intersection Control Evaluation (SPICE) Tool User Guide October 2018 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Jenior, P., Butsick, A., Haas, P. and Ray, B. 20447 9. Performing Organization Name and Address 10.
    [Show full text]
  • Transportation Improvements for the US 130-Bridgeboro Road Corridor
    Transportation Improvements for the US 130-Bridgeboro Road Corridor JUNE 2017 The Delaware Valley Regional Planning Commission is dedicated to uniting the region’s elected officials, planning professionals, and the public with a common vision of making a great region even greater. Shaping the way we live, work, and play, DVRPC builds consensus on improving transportation, promoting smart growth, protecting the environment, and enhancing the economy. We serve a diverse region of nine counties: Bucks, Chester, Delaware, Montgomery, and Philadelphia in Pennsylvania; and Burlington, Camden, Gloucester, and Mercer in New Jersey. DVRPC is the federally designated Metropolitan Planning Organization for the Greater Philadelphia Region — leading the way to a better future. The symbol in our logo is adapted from the official DVRPC seal and is designed as a stylized image of the Delaware Valley. The outer ring symbolizes the region as a whole while the diagonal bar signifies the Delaware River. The two adjoining crescents represent the Commonwealth of Pennsylvania and the State of New Jersey. DVRPC is funded by a variety of funding sources including federal grants from the U.S. Department of Transportation’s Federal Highway Administration (FHWA) and Federal Transit Administration (FTA), the Pennsylvania and New Jersey departments of transportation, as well as by DVRPC’s state and local member governments. The authors, however, are solely responsible for the findings and conclusions herein, which may not represent the official views or policies of the funding agencies. The Delaware Valley Regional Planning Commission (DVRPC) fully complies with Title VI of the Civil Rights Act of 1964, the Civil Rights Restoration Act of 1987, Executive Order 12898 on Environmental Justice, and related nondiscrimination statutes and regulations in all programs and activities.
    [Show full text]
  • 30 by 42 Zoning
    Brick Plaza Towne Hall Shoppes MANTOLOKING BORO Eagle Ridge P V r a r Q B g t e y i L W Mantoloking R l i y n k s n D d t n S d i s B a r l w o a t o i S i a r h r e s y a y i e w lli u c k Wab h r e e n O r c A o e l y d e s r k a h t e k M e M c g i e r n e R e u r p a h M a o F v H d v S l D n t a i c t e t O k Iv l t ld B r y w u w ridge i n H e e n S R r a S o u y K l m i i S l l i e l o D s Yale R e B n e a G a a r l h l e m R e n n o o m w l e r o t i a a v r m H gory m re n d n S i D a re r B v S g o D t G o e p in s m t o p y le e e i o a l a o v u u d l r id V e c S T M A r r s n r S e pple o y a g d e s ga m e t te m l i y W a i p on r n h m a k t e y l y rm a ra P i s i n r m Fa t C o r d A a o a D n r d d D a o a y I W L v o Mayfair a a a o o n o n i r h M D n k N e o E r l n n S C c n e t r n o U i d u i B y i oo w h S d n se s c t o G v R s h A U w n T y ty e i a e i t si e r t e e e r o w n niv wan x Osbornsville l g U S e y e i O o h te l a t e w Whi ll e v i w u i g e G a n s z r F s r o h m i h mN D s l t r t o a d y b y o a d n l e b e o y r P a m n l B Elementary n i e y B D Do S n w a r R l n ne m e Robyn n r L o r W sa s r Li a r w n a a o l i S k eynold n A R e o a e a r l a K x d d u f S n e l H r E t f h i School s c c o e F M C a i a r l e r a F e a t l i c r JACKSON TWP n a k n i a l i T n rw C Jennifer o a L h k e a C a m m y S d iss r r a F s n n g n L s c o l M o l t a w r a s C t s d t t i e e r s a vi n o o I z l t o u m e e n e es y M a e r m d n r x a C e h O l n M v r e rum Point A A i w V D s n r ld
    [Show full text]
  • TSP Major Projects List 5/24/2018
    Appendix A: TSP Major Projects List 5/24/2018 Lead Facility Financially Estimated TSP ID Project Name Project Location Project Description Estimated Cost Agency Owner Constrained? Timeframe Gaps and deficiencies in Portland's pedestrian network present significant barriers to pedestrians. Many of these can be remedied through modest expenditures to address the most critically needed improvements. These projects should contribute to an increase in Pedestrian safe walking as disincentives to usage are eliminated and the continuity of the pedestrian Network 10005 Portland Portland Citywide network is improved. Example projects include sidewalk gap infill, sidewalk improvements, $60,200,000 Yes Years 1 - 20 Completion safer shoulders, shared streets, pathways, trails, crossing improvements, wayfinding Program improvements, accessibility improvements, and signal modifications. The program will also work to identify and implement needed improvements in designated Pedestrian Districts. Gaps and deficiencies in Portland's bikeway network present significant barriers to bicyclists. Many of these can be remedied through modest expenditures to address the most critically needed improvements. These projects should contribute to an increase in safe bicycling as disincentives to usage are eliminated and the continuity of the bikeway Bikeway Network network is improved. Example projects include new bike lanes and sharrows, improvements 10006 Portland Portland Completion Citywide to existing bikeways, wayfinding improvements, colored bike boxes and lanes, and signal $24,000,000 Yes Years 1 - 20 Program modifications. This program will coordinate with paving projects to ensure that new striping designs are developed ahead of time and implemented in conjunction with paving. The program will also work to identify and implement needed improvements in designated Bicycle Districts.
    [Show full text]
  • Temporary Traffic Control Manual, 2012 Edition TTCM, 2012 Edition Page Iii PREFACE
    Temporary Traffic Control Manual 2012 Edition Reprint of three Parts from the Ohio Manual of Uniform Traffic Control Devices, 2012 Edition: Part 1, General Part 5, Traffic Control Devices for Low-Volume Roads Part 6, Temporary Traffic Control Ohio Department of Transportation Office of Traffic Engineering Ohio Department of Transportation Office of Traffic Engineering 1980 W. Broad St., P.O. Box 899 Columbus, OH 43216-0899 Web addresses: ODOT: http://www.dot.state.oh.us Office of Traffic Engineering: http://www.dot.state.oh.us/Divisions/Operations/Traffic/Pages/OTEHomePage.aspx ODOT Publications (Design Reference Resource Center): http://www.dot.state.oh.us/drrc/ To purchase a copy of this manual, contact the ODOT Office of Contracts at the above address, or by phone at 1-800-459-3778. An Equal Opportunity Employer Temporary Traffic Control Manual, 2012 Edition TTCM, 2012 Edition Page iii PREFACE Pursuant to Section 4511.09 of the Ohio Revised Code, the “Ohio Manual of Uniform Traffic Control Devices” (OMUTCD) has been established to provide a safe, uniform and efficient system of traffic control devices for use on any street, highway, bikeway, or private road open to public travel within the State of Ohio. The “Temporary Traffic Control Manual” (TTCM) is comprised of reprints of the Introduction and Parts 1, 5 and 6 from the complete 2012 OMUTCD. The TTCM has been published separately to allow for easier use by those working primarily with temporary traffic control in construction and maintenance work zones and incident management areas. OMUTCD Part 1, General Provisions, has been included in this separate publication because it provides general information for use in all areas of traffic control, including definitions of terms used.
    [Show full text]