Galois Theory Over
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1.6 Covering Spaces 1300Y Geometry and Topology
1.6 Covering spaces 1300Y Geometry and Topology 1.6 Covering spaces Consider the fundamental group π1(X; x0) of a pointed space. It is natural to expect that the group theory of π1(X; x0) might be understood geometrically. For example, subgroups may correspond to images of induced maps ι∗π1(Y; y0) −! π1(X; x0) from continuous maps of pointed spaces (Y; y0) −! (X; x0). For this induced map to be an injection we would need to be able to lift homotopies in X to homotopies in Y . Rather than consider a huge category of possible spaces mapping to X, we restrict ourselves to a category of covering spaces, and we show that under some mild conditions on X, this category completely encodes the group theory of the fundamental group. Definition 9. A covering map of topological spaces p : X~ −! X is a continuous map such that there S −1 exists an open cover X = α Uα such that p (Uα) is a disjoint union of open sets (called sheets), each homeomorphic via p with Uα. We then refer to (X;~ p) (or simply X~, abusing notation) as a covering space of X. Let (X~i; pi); i = 1; 2 be covering spaces of X. A morphism of covering spaces is a covering map φ : X~1 −! X~2 such that the diagram commutes: φ X~1 / X~2 AA } AA }} p1 AA }}p2 A ~}} X We will be considering covering maps of pointed spaces p :(X;~ x~0) −! (X; x0), and pointed morphisms between them, which are defined in the obvious fashion. -
Symplectic Group Actions and Covering Spaces
Symplectic group actions and covering spaces Montaldi, James and Ortega, Juan-Pablo 2009 MIMS EPrint: 2007.84 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 Symplectic Group Actions and Covering Spaces James Montaldi & Juan-Pablo Ortega January 2009 Abstract For symplectic group actions which are not Hamiltonian there are two ways to define reduction. Firstly using the cylinder-valued momentum map and secondly lifting the action to any Hamiltonian cover (such as the universal cover), and then performing symplectic reduction in the usual way. We show that provided the action is free and proper, and the Hamiltonian holonomy associated to the action is closed, the natural projection from the latter to the former is a symplectic cover. At the same time we give a classification of all Hamiltonian covers of a given symplectic group action. The main properties of the lifting of a group action to a cover are studied. Keywords: lifted group action, symplectic reduction, universal cover, Hamiltonian holonomy, momentum map MSC2000: 53D20, 37J15. Introduction There are many instances of symplectic group actions which are not Hamiltonian—ie, for which there is no momentum map. These can occur both in applications [13] as well as in fundamental studies of symplectic geometry [1, 2, 5]. In such cases it is possible to define a “cylinder valued momentum map” [3], and then perform symplectic reduction with respect to this map [16, 17]. -
Arxiv:1509.06617V2 [Math.GT] 12 May 2016 Point a Maps
LOCAL MONODROMY OF BRANCHED COVERS AND DIMENSION OF THE BRANCH SET MARTINA AALTONEN AND PEKKA PANKKA Abstract. We show that, if the local dimension of the branch set of a discrete and open mapping f : M → N between n-manifolds is less than (n − 2) at a point y of the image of the branch set fBf , then the local monodromy of f at y is perfect. In particular, for generalized branched covers between n-manifolds the dimension of fBf is exactly (n − 2) at the points of abelian local monodromy. As an application, we show that a generalized branched covering f : M → N of local multiplicity at most three between n-manifolds is either a covering or fBf has local dimension (n − 2). 1. Introduction A continuous mapping f : X → Y between topological spaces is a (gener- alized) branched cover if f is discrete and open, that is, pre-image f −1(y) of a point y ∈ Y is a discrete set and f maps open sets to open sets. The name branched cover for these maps stems from the Chernavskii–Väisälä theo- rem [5,18]: the branch set of a branched cover between (generalized) manifolds has codimension at least two. It is an easy consequence of the Chernavskii– Väisälä theorem that branched covers between (generalized) manifolds are, at least locally, completions of covering maps. We follow here the typical naming convention in this context and say that a point x ∈ X is a branch point of f if f is not a local homeomorphism at x. The branch set of the mapping f, i.e. -
1 the Spin Homomorphism SL2(C) → SO1,3(R) a Summary from Multiple Sources Written by Y
1 The spin homomorphism SL2(C) ! SO1;3(R) A summary from multiple sources written by Y. Feng and Katherine E. Stange Abstract We will discuss the spin homomorphism SL2(C) ! SO1;3(R) in three manners. Firstly we interpret SL2(C) as acting on the Minkowski 1;3 spacetime R ; secondly by viewing the quadratic form as a twisted 1 1 P × P ; and finally using Clifford groups. 1.1 Introduction The spin homomorphism SL2(C) ! SO1;3(R) is a homomorphism of classical matrix Lie groups. The lefthand group con- sists of 2 × 2 complex matrices with determinant 1. The righthand group consists of 4 × 4 real matrices with determinant 1 which preserve some fixed real quadratic form Q of signature (1; 3). This map is alternately called the spinor map and variations. The image of this map is the identity component + of SO1;3(R), denoted SO1;3(R). The kernel is {±Ig. Therefore, we obtain an isomorphism + PSL2(C) = SL2(C)= ± I ' SO1;3(R): This is one of a family of isomorphisms of Lie groups called exceptional iso- morphisms. In Section 1.3, we give the spin homomorphism explicitly, al- though these formulae are unenlightening by themselves. In Section 1.4 we describe O1;3(R) in greater detail as the group of Lorentz transformations. This document describes this homomorphism from three distinct per- spectives. The first is very concrete, and constructs, using the language of Minkowski space, Lorentz transformations and Hermitian matrices, an ex- 4 plicit action of SL2(C) on R preserving Q (Section 1.5). -
On the Topology of Simply-Connected Algebraic Surfaces by Richard Mandelbaum and Boris Moishezon
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 260, Number 1, July 1980 ON THE TOPOLOGY OF SIMPLY-CONNECTED ALGEBRAIC SURFACES BY RICHARD MANDELBAUM AND BORIS MOISHEZON Abstract. Suppose A" is a smooth simply-connected compact 4-manifold. Let P = CP2 and Q = -CP2 be the complex projective plane with orientation oppo- site to the usual. We shall say that X is completely decomposable if there exist integers a, b such that X is diffeomorphic to aP %bQ. By a result of Wall [Wl] there always exists an integer k such that X Jf (A: + \)P 8 kQ is completely decomposable. If X # P is completely decomposable we shall say that X is almost completely decomposable. In [MM] we demonstrated that any nonsingular hypersurface of CP3 is almost completely decomposable. In this paper we generalize this result in two directions as follows: Theorem 3.5. Suppose W is a simply-connected nonsingular complex projective 3-fold. Then there exists an integer m„ > 1 such that any hypersurface section Vm of W of degree m > mg which is nonsingular will be almost completely decomposable. Theorem 5.3. Let V be a nonsingular complex algebraic surface which is a complete intersection. Then V is almost completely decomposable. Introduction. Suppose A" is a simply-connected compact 4-manifold. Let P = CP2 and Q — — CP2 be the complex projective plane with orientation opposite to the usual. We shall say that X is completely decomposable if there exist integers a, b such that X s» aP # bQ. (Read '» ' as 'is diffeomorphic to'.) By a result of Wall [Wl], [W2] there always exists an integer k such that X # (k + l)P # kQ is completely decomposable. -
A Barth-Type Theorem for Branched Coverings of Projective Space
lilm llulm Math. Ann. 249, 153-162 (1980) Amlm © by Springer-Verlag1 980 A Barth-Type Theorem for Branched Coverings of Projective Space Robert Lazarsfeld Department of Mathematics, Brown University, Providence, RI 02912, USA Introduction Let X be a non-singular connected complex projective variety of dimension n. In 1970, Barth [B1] discovered that if X admits an embedding X"~IP "+~ of codimension e, then the restriction mappings H~(IP"+~,~)--+Ht(X, (E) are isomor- phisms for i < n - e . Our main result is an analogue of Barth's theorem for branched coverings of projective space: Theorem 1. Let f :X" ~ IW be a finite mapping of degree d. Then the induced maps f* : H~(1W,~ ) ~ Hi(X, ~) are isomorphisms for i < n + 1 - d. Observe that the conclusion is vacuous for d > n + 1. On the other hand, as the degree d becomes small compared to n, one obtains progressively stronger topological obstructions to expressing a variety as a d-sheeted covering of IP". The proof of the theorem relies on a basic construction which clarifies somewhat the connection between subvarieties and branched coverings. Canonically associated to a finite morphism f : X " ~ F " of degree d, there exists a vector bundle E~IW of rank d - 1 having the property that f factors through an embedding of X in the total space of E (Sect. 1). An important fact about coverings of projective space is that these bundles are always ample. This leads one to consider quite generally a smooth n-dimensional projective variety Y, an ample vector bundle E ~ Y of rank e, and a non-singular projective variety X of dimension n embedded in the total space of E : X ~ , E Y. -
Lecture 34: Hadamaard's Theorem and Covering Spaces
Lecture 34: Hadamaard’s Theorem and Covering spaces In the next few lectures, we’ll prove the following statement: Theorem 34.1. Let (M,g) be a complete Riemannian manifold. Assume that for every p M and for every x, y T M, we have ∈ ∈ p K(x, y) 0. ≤ Then for any p M,theexponentialmap ∈ exp : T M M p p → is a local diffeomorphism, and a covering map. 1. Complete Riemannian manifolds Recall that a connected Riemannian manifold (M,g)iscomplete if the geodesic equation has a solution for all time t.Thisprecludesexamplessuch as R2 0 with the standard Euclidean metric. −{ } 2. Covering spaces This, not everybody is familiar with, so let me give a quick introduction to covering spaces. Definition 34.2. Let p : M˜ M be a continuous map between topological spaces. p is said to be a covering→ map if (1) p is a local homeomorphism, and (2) p is evenly covered—that is, for every x M,thereexistsaneighbor- 1 ∈ hood U M so that p− (U)isadisjointunionofspacesU˜ for which ⊂ α p ˜ is a homeomorphism onto U. |Uα Example 34.3. Here are some standard examples: (1) The identity map M M is a covering map. (2) The obvious map M →... M M is a covering map. → (3) The exponential map t exp(it)fromR to S1 is a covering map. First, it is clearly a local → homeomorphism—a small enough open in- terval in R is mapped homeomorphically onto an open interval in S1. 113 As for the evenly covered property—if you choose a proper open in- terval inside S1, then its preimage under the exponential map is a disjoint union of open intervals in R,allhomeomorphictotheopen interval in S1 via the exponential map. -
Non-Manifold Monodromy Spaces of Branched Coverings Between Manifolds
NON-MANIFOLD MONODROMY SPACES OF BRANCHED COVERINGS BETWEEN MANIFOLDS MARTINA AALTONEN 1 2 Abstract. By a construction of Berstein and Edmonds every proper branched cover f between manifolds is a factor of a branched covering orbit map from a locally connected and locally compact Hausdorff space called the monodromy space of f to the target manifold. For proper branched covers between 2-manifolds the monodromy space is known to be a manifold. We show that this does not generalize to dimension 3 by constructing a self-map of the 3-sphere for which the monodromy space is not a locally contractible space. 1. Introduction A map f : X ! Y between topological spaces is a branched covering, if f is open, continuous and discrete map.The branch set Bf ⊂ X of f is the set of points in X for which f fails to be a local homeomorphism. The map f is proper, if the pre-image in f of every compact set is compact. Let f : X ! Y be a proper branched covering between manifolds. Then the codimension of Bf ⊂ X is at least two by Väisälä [14] and the restriction map 0 −1 −1 f := fjX n f (f(Bf )): X n f (f(Bf )) ! Y n f(Bf ) is a covering map between open connected manifolds, see Church and Hem- mingsen [6]. Thus there exists, by classical theory of covering maps, an open 0 manifold Xf and a commutative diagram of proper branched covering maps 0 Xf p0 q0 ~ f X / Y arXiv:1612.00665v1 [math.GT] 2 Dec 2016 0 0 −1 0 0 where p : Xf ! X nf (f(Bf )) and q : Xf ! Y nf(Bf ) are normal covering 0 0 maps and the deck-transformation group of the covering map q : Xf ! 0 Y n f(Bf ) is isomorphic to the monodromy group of f : Further, by Berstein and Edmonds [3], there exists a locally compact 0 and locally connected second countable Hausdorff space Xf ⊃ Xf so that 0 0 0 Xf nXf does not locally separate Xf and the maps p and q extend to proper Date: October 10, 2018. -
COVERING SPACES, GRAPHS, and GROUPS Contents 1. Covering
COVERING SPACES, GRAPHS, AND GROUPS CARSON COLLINS Abstract. We introduce the theory of covering spaces, with emphasis on explaining the Galois correspondence of covering spaces and the deck trans- formation group. We focus especially on the topological properties of Cayley graphs and the information these can give us about their corresponding groups. At the end of the paper, we apply our results in topology to prove a difficult theorem on free groups. Contents 1. Covering Spaces 1 2. The Fundamental Group 5 3. Lifts 6 4. The Universal Covering Space 9 5. The Deck Transformation Group 12 6. The Fundamental Group of a Cayley Graph 16 7. The Nielsen-Schreier Theorem 19 Acknowledgments 20 References 20 1. Covering Spaces The aim of this paper is to introduce the theory of covering spaces in algebraic topology and demonstrate a few of its applications to group theory using graphs. The exposition assumes that the reader is already familiar with basic topological terms, and roughly follows Chapter 1 of Allen Hatcher's Algebraic Topology. We begin by introducing the covering space, which will be the main focus of this paper. Definition 1.1. A covering space of X is a space Xe (also called the covering space) equipped with a continuous, surjective map p : Xe ! X (called the covering map) which is a local homeomorphism. Specifically, for every point x 2 X there is some open neighborhood U of x such that p−1(U) is the union of disjoint open subsets Vλ of Xe, such that the restriction pjVλ for each Vλ is a homeomorphism onto U. -
Generalized Covering Spaces and the Galois Fundamental Group
GENERALIZED COVERING SPACES AND THE GALOIS FUNDAMENTAL GROUP CHRISTIAN KLEVDAL Contents 1. Introduction 1 2. A Category of Covers 2 3. Uniform Spaces and Topological Groups 6 4. Galois Theory of Semicovers 9 5. Functoriality of the Galois Fundamental Group 15 6. Universal Covers 16 7. The Topologized Fundamental Group 17 8. Covers of the Earring 21 9. The Galois Fundamental Group of the Harmonic Archipelago 22 10. The Galois Fundamental Group of the Earring 23 References 24 Gal Abstract. We introduce a functor π1 from the category of based, connected, locally path connected spaces to the category of complete topological groups. We then compare this groups to the fundamental group. In particular, we show that there is a topological σ Gal group π1 (X; x) whose underlying group is π1(X; x) so that π1 (X; x) is the completion σ of π1 (X; x). 1. Introduction Gal In this paper, we give define a topological group π1 (X; x) called the Galois funda- mental group, which is associated to any based, connected, locally path connected space X. As the notation suggests, this group is intimately related to the fundamental group π1(X; x). The motivation of the Galois fundamental group is to look at automorphisms of certain covers of a space instead of homotopy classes of loops in the space. It is well known that if X has a universal cover, then π1(X; x) is isomorphic to the group of deck transformations of the universal cover. However, this approach breaks down if X is not semi locally simply connected. -
Chapter 9 Partitions of Unity, Covering Maps ~
Chapter 9 Partitions of Unity, Covering Maps ~ 9.1 Partitions of Unity To study manifolds, it is often necessary to construct var- ious objects such as functions, vector fields, Riemannian metrics, volume forms, etc., by gluing together items con- structed on the domains of charts. Partitions of unity are a crucial technical tool in this glu- ing process. 505 506 CHAPTER 9. PARTITIONS OF UNITY, COVERING MAPS ~ The first step is to define “bump functions”(alsocalled plateau functions). For any r>0, we denote by B(r) the open ball n 2 2 B(r)= (x1,...,xn) R x + + x <r , { 2 | 1 ··· n } n 2 2 and by B(r)= (x1,...,xn) R x1 + + xn r , its closure. { 2 | ··· } Given a topological space, X,foranyfunction, f : X R,thesupport of f,denotedsuppf,isthe closed set! supp f = x X f(x) =0 . { 2 | 6 } 9.1. PARTITIONS OF UNITY 507 Proposition 9.1. There is a smooth function, b: Rn R, so that ! 1 if x B(1) b(x)= 2 0 if x Rn B(2). ⇢ 2 − See Figures 9.1 and 9.2. 1 0.8 0.6 0.4 0.2 K3 K2 K1 0 1 2 3 Figure 9.1: The graph of b: R R used in Proposition 9.1. ! 508 CHAPTER 9. PARTITIONS OF UNITY, COVERING MAPS ~ > Figure 9.2: The graph of b: R2 R used in Proposition 9.1. ! Proposition 9.1 yields the following useful technical result: 9.1. PARTITIONS OF UNITY 509 Proposition 9.2. Let M be a smooth manifold. -
MTH 507 Midterm Solutions
MTH 507 Midterm Solutions 1. Let X be a path connected, locally path connected, and semilocally simply connected space. Let H0 and H1 be subgroups of π1(X; x0) (for some x0 2 X) such that H0 ≤ H1. Let pi : XHi ! X (for i = 0; 1) be covering spaces corresponding to the subgroups Hi. Prove that there is a covering space f : XH0 ! XH1 such that p1 ◦ f = p0. Solution. Choose x ; x 2 p−1(x ) so that p :(X ; x ) ! (X; x ) and e0 e1 0 i Hi ei 0 p (X ; x ) = H for i = 0; 1. Since H ≤ H , by the Lifting Criterion, i∗ Hi ei i 0 1 there exists a lift f : XH0 ! XH1 of p0 such that p1 ◦f = p0. It remains to show that f : XH0 ! XH1 is a covering space. Let y 2 XH1 , and let U be a path-connected neighbourhood of x = p1(y) that is evenly covered by both p0 and p1. Let V ⊂ XH1 be −1 −1 the slice of p1 (U) that contains y. Denote the slices of p0 (U) by 0 −1 0 −1 fVz : z 2 p0 (x)g. Let C denote the subcollection fVz : z 2 f (y)g −1 −1 of p0 (U). Every slice Vz is mapped by f into a single slice of p1 (U), −1 0 as these are path-connected. Also, since f(z) 2 p1 (y), f(Vz ) ⊂ V iff f(z) = y. Hence f −1(V ) is the union of the slices in C. 0 −1 0 0 0 Finally, we have that for Vz 2 C,(p1jV ) ◦ (p0jVz ) = fjVz .