Issue 107 Maryam Mirzakhani ISSN 1027-488X

Total Page:16

File Type:pdf, Size:1020Kb

Issue 107 Maryam Mirzakhani ISSN 1027-488X NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Feature S E European From Grothendieck to Naor M M Mathematical Interview E S Society Ragni Piene March 2018 Obituary Issue 107 Maryam Mirzakhani ISSN 1027-488X Rome, venue of the EMS Executve Committee Meeting, 23–25 March 2018 EMS Monograph Award – Call for Submissions The EMS Monograph Award is assigned every year to the author(s) Submission of manuscripts of a monograph in any area of mathematics that is judged by the selection committee to be an outstanding contribution to its field. The monograph must be original and unpublished, written in The prize is endowed with 10,000 Euro and the winning mono- English and should not be submitted elsewhere until an edito- graph will be published by the EMS Publishing House in the series rial decision is rendered on the submission. Monographs should “EMS Tracts in Mathematics”. preferably be typeset in TeX. Authors should send a pdf file of the manuscript by email to: Previous prize winners were - Patrick Dehornoy et al. for the monograph Foundations of [email protected] Garside Theory, - Augusto C. Ponce (Elliptic PDEs, Measures and Capacities. Scientific Committee From the Poisson Equation to Nonlinear Thomas–Fermi Problems), John Coates (University of Cambridge, UK) - Vincent Guedj and Ahmed Zeriahi (Degenerate Complex Pierre Degond (Université Paul Sabatier, Toulouse, France) Monge–Ampere Equations), and Carlos Kenig (University of Chicago, USA) - Yves de Cornulier and Pierre de la Harpe (Metric Geometry of Jaroslav Nesˇetrˇil (Charles University, Prague, Czech Republic) Locally Compact Groups). Michael Röckner (Universität Bielefeld, Germany, and Purdue University, USA) All books were published in the Tracts series. Vladimir Turaev (Indiana University, Bloomington, USA) The deadline for the next award, to be announced in 2019, is 30 June 2018. EMS Tracts in Mathematics Most recent titles: Editorial Board: Vol. 28 Antoine Henrot and Michel Pierre: Shape Variation and Optimization. Carlos E. Kenig A Geometrical Analysis (University of Chicago, USA) 978-3-03719-178-1. 2018. 379 pages. 68.00 Euro Michael Farber Vol. 27 Nicolas Raymond: Bound States of the Magnetic Schrödinger (Queen Mary University of London, UK) Operator Michael Röckner 978-3-03719-169-9. 2017. 394 pages. 64.00 Euro (Universität Bielefeld, Germany, Vol. 26 Vincent Guedj and Ahmed Zeriahi: Degenerate Complex Monge– and Purdue University, USA) Ampère Equations Vladimir Turaev 978-3-03719-167-5. 2017. 496 pages. 88.00 Euro (Indiana University, Bloomington, USA) Vol. 25 Yves Cornulier and Pierre de la Harpe: Metric Geometry of Locally Alexander Varchenko Compact Groups (University of North Carolina at Chapel Hill, USA) ISBN 978-3-03719-166-8. 2016. 243 pages. 62.00 Euro Vol. 24 Hans Triebel: Hybrid Function Spaces, Heat and Navier-Stokes Equations This series includes advanced texts and monographs covering all fields in pure 978-3-03719-150-7. 2015. 196 pages. 48.00 Euro and applied mathematics. Tracts will give a reliable introduction and reference to special fields of current research. The books in the series will in most cases be Forthcoming title: authored monographs, although edited volumes may be published if appropriate. They are addressed to graduate students seeking access to research topics as well Alexander V. Kosyak: Regular, Quasiregular and Induced Representations of as to the experts in the field working at the frontier of research. Infinite-dimensional Groups European Mathematical Society Publishing House Scheuchzerstrasse 70 [email protected] Seminar for Applied Mathematics, ETH-Zentrum SEW A21 CH-8092 Zürich, Switzerland www.ems-ph.org Contents Editorial Team Editor-in-Chief Gemma Huguet European (Research Centres) Valentin Zagrebnov Departament de Matemàtiques Institut de Mathématiques de ETSEIB-UPC Marseille (UMR 7373) – CMI Avda. Diagonal 647 Mathematical Technopôle Château-Gombert 08028 Barcelona, Spain 39, rue F. Joliot Curie e-mail: [email protected] 13453 Marseille Cedex 13, France Vladimir R. Kostic Society e-mail: [email protected] (Social Media) Department of Mathematics Copy Editor and Informatics University of Novi Sad Newsletter No. 107, March 2018 Chris Nunn 21000 Novi Sad, Serbia 119 St Michaels Road, e-mail: [email protected] Aldershot, GU12 4JW, UK Editorial – Message from the President - P. Exner ....................... 3 e-mail: [email protected] Octavio Paniagua Taboada (zbMATH Column) Farewells within the Editorial Board of the EMS Newsletter .......... 4 Editors FIZ Karlsruhe New Editors Appointed .............................................................. 4 Franklinstr. 11 Jean-Paul Allouche 10587 Berlin, Germany The EMS Gordin Prize ................................................................ 5 (Book Reviews) e-mail: [email protected] Annales Henri Lebesgue - X. Caruso et al. ................................. 6 IMJ-PRG, UPMC 4, Place Jussieu, Case 247 Vladimir L. Popov From Grothendieck to Naor: A Stroll Through the Metric 75252 Paris Cedex 05, France (Features and Discussions) Analysis of Banach Spaces - G. Godefroy ................................ 9 e-mail: [email protected] Steklov Mathematical Institute Russian Academy of Sciences Interview with Ragni Piene - U. A. Persson .................................. 17 Jean-Bernard Bru Gubkina 8 History of Mathematics in the Netherlands: Where to find it (Contacts with SMF) 119991 Moscow, Russia Departamento de Matemáticas e-mail: [email protected] D. Beckers ............................................................................ 23 Universidad del País Vasco Maryam Mirzakhani (1977–2017) - A. Zorich ............................. 28 Apartado 644 Michael Th. Rassias 48080 Bilbao, Spain (Problem Corner) A Mathematical Polyglot - E. Strickland ...................................... 34 e-mail: [email protected] Institute of Mathematics Pi Day: An International Festival of Mathematics - University of Zurich Fernando Pestana da Costa Winterthurerstrasse 190 E. Berardini et al. .................................................................. 36 (Societies) 8057 Zürich Fondation Sciences Mathématiques de Paris (FSMP) - Depto de Ciências e Tecnolo- e-mail: [email protected] gia, Secção de Matemática, G. Octavia ............................................................................. 37 Universidade Aberta Volker R. Remmert The Turkish Mathematical Society - B. Tanbay & A. As¸kar ........... 40 Rua da Escola Politécnica, nº (History of Mathematics) 141–147 IZWT, Wuppertal University ICMI Column - J.-L. Dorier ......................................................... 42 1269-001 Lisboa, Portugal D-42119 Wuppertal, Germany ERME Column - O. Buchbinder et al. .......................................... 45 e-mail: [email protected] e-mail: [email protected] Mathematicians and Primary School Teachers Learning Jean-Luc Dorier Vladimir Salnikov From Each Other - J. Cooper & A. Arcavi ................................. 46 (Math. Education) (Young Mathematicians’ Column) FPSE – Université de Genève La Rochelle University Book Reviews ........................................................................... 52 Bd du pont d’Arve, 40 LaSIE, Avenue Michel Crépeau Solved and Unsolved Problems - M. Th. Rassias .......................... 57 1211 Genève 4, Switzerland 17042 La Rochelle Cedex 1, e-mail: [email protected] France e-mail: [email protected] Javier Fresán (Young Mathematicians’ Column) Dierk Schleicher Centre de Mathématiques (Features and Discussions) The views expressed in this Newsletter are those of the Laurent Schwartz Research I authors and do not necessarily represent those of the École Polytechnique Jacobs University Bremen EMS or the Editorial Team. 91128 Palaiseau, France Postfach 750 561 e-mail: [email protected] 28725 Bremen, Germany ISSN 1027-488X e-mail: [email protected] © 2018 European Mathematical Society Published by the EMS Publishing House ETH-Zentrum SEW A21 CH-8092 Zürich, Switzerland. homepage: www.ems-ph.org Scan the QR code to go to the Newsletter web page: For advertisements and reprint permission requests http://euro-math-soc.eu/newsletter contact: [email protected] EMS Newsletter March 2018 1 EMS Agenda EMS Executive Committee EMS Agenda President Prof. Stefan Jackowski 2018 (2017–2020) Prof. Pavel Exner Institute of Mathematics 13 – 15 April (2015–2018) University of Warsaw Meeting of Presidents, Maynooth University, Dublin, Ireland Doppler Institute Banacha 2 Czech Technical University 02-097 Warszawa 23 – 24 June Brˇehová 7 Poland EMS Council, Prague, Czech Republic 11519 Prague 1 e-mail: [email protected] Czech Republic Prof. Vicente Muñoz 29 – 30 July e-mail: [email protected] (2017–2020) IMU General Assembly, São Paulo, Brazil Departamento de Geometria y Vice-Presidents Topologia Facultad de Matematicas Prof. Volker Mehrmann Universidad Complutense de EMS Scientific Events (2017–2018) Madrid Institut für Mathematik Plaza de Ciencias 3 2018 TU Berlin MA 4–5 28040 Madrid Strasse des 17. Juni 136 Spain 3 – 6 April 10623 Berlin e-mail: [email protected] British Congress of Mathematics Education, Warwick, UK Germany Prof. Beatrice Pelloni e-mail: [email protected] (2017–2020) 4 – 6 April Prof. Armen Sergeev School of Mathematical & Probability, Analysis and Dynamics ’18, (2017–2020) Computer Sciences University of Bristol, UK Steklov Mathematical Institute Heriot-Watt University Russian Academy of Sciences Edinburgh EH14 4AS
Recommended publications
  • 2006 Annual Report
    Contents Clay Mathematics Institute 2006 James A. Carlson Letter from the President 2 Recognizing Achievement Fields Medal Winner Terence Tao 3 Persi Diaconis Mathematics & Magic Tricks 4 Annual Meeting Clay Lectures at Cambridge University 6 Researchers, Workshops & Conferences Summary of 2006 Research Activities 8 Profile Interview with Research Fellow Ben Green 10 Davar Khoshnevisan Normal Numbers are Normal 15 Feature Article CMI—Göttingen Library Project: 16 Eugene Chislenko The Felix Klein Protocols Digitized The Klein Protokolle 18 Summer School Arithmetic Geometry at the Mathematisches Institut, Göttingen, Germany 22 Program Overview The Ross Program at Ohio State University 24 PROMYS at Boston University Institute News Awards & Honors 26 Deadlines Nominations, Proposals and Applications 32 Publications Selected Articles by Research Fellows 33 Books & Videos Activities 2007 Institute Calendar 36 2006 Another major change this year concerns the editorial board for the Clay Mathematics Institute Monograph Series, published jointly with the American Mathematical Society. Simon Donaldson and Andrew Wiles will serve as editors-in-chief, while I will serve as managing editor. Associate editors are Brian Conrad, Ingrid Daubechies, Charles Fefferman, János Kollár, Andrei Okounkov, David Morrison, Cliff Taubes, Peter Ozsváth, and Karen Smith. The Monograph Series publishes Letter from the president selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. The next volume in the series will be Ricci Flow and the Poincaré Conjecture, by John Morgan and Gang Tian. Their book will appear in the summer of 2007. In related publishing news, the Institute has had the complete record of the Göttingen seminars of Felix Klein, 1872–1912, digitized and made available on James Carlson.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Larry Guth Education B.S. Mathematics, Yale University, 2000 PhD Mathematics, MIT, 2005 Employment Samelson Fellow, Stanford University 2005-6 Szego Assistant Professor, Stanford University, 2006 - 2008 National Science Foundation Postdoctoral Fellow, 2006 - 2008 Tenure-stream Assistant Professor, University of Toronto, 2008 - 2011 Member, Institute for Advanced Study, 2010 - 2011 Professor, New York University, 2011 - 2012 Professor, MIT, 2012 - Fellowships National Science Foundation Graduate Fellowship, 2001 - 2003 National Science Foundation Postdoctoral Fellowship , 2006 - 2008 Alfred P. Sloan Research Fellowship, 2010 - 2014 Simons Investigator, 2014 - Honors Salem prize 2013 Invited talks Invited sectional speaker at the 2010 International Congress of Mathematics Marston Morse lectures, IAS, 2013 Namboodiri lectures, University of Chicago, 2015 1 Selected publications 1. Lipshitz maps from surfaces, Geom. Funct. Anal. 15 (2005), no. 5, 1052-109 2. The width-volume inequality, Geom. Funct. Anal. 17 (2007) no. 4, 1139-1179 3. Notes on Gromov's systolic estimate, Geom. Dedicata 123 (2006) 113-129 4. Symplectic embeddings of polydisks, Invent. Math. 172 (2008) no. 3, 477-489 5. Minimax problems related to cup powers and Steenrod squares, Geom. Funct. Anal. 18 (2009), no. 6, 1917{1987 6. The endpoint case of the Bennett-Carbery-Tao multilinear Kakeya conjecture, Acta Math. 205 (2010), no. 2, 263-286. 7. Systolic inequalities and minimal hypersurfaces, Geom. Funct. Anal. 19 (2010), no. 6, 1688-1692. 8. Volumes of balls in large Riemannian manifolds, Ann. of Math. (2) 173 (2011), no. 1, 5176. 9. Area-expanding embeddings of rectangles, preprint 10. Algebraic methods in discrete analogs of the Kakeya problem (joint with Nets Katz), Adv.
    [Show full text]
  • A Tour Through Mirzakhani's Work on Moduli Spaces of Riemann Surfaces
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 57, Number 3, July 2020, Pages 359–408 https://doi.org/10.1090/bull/1687 Article electronically published on February 3, 2020 A TOUR THROUGH MIRZAKHANI’S WORK ON MODULI SPACES OF RIEMANN SURFACES ALEX WRIGHT Abstract. We survey Mirzakhani’s work relating to Riemann surfaces, which spans about 20 papers. We target the discussion at a broad audience of non- experts. Contents 1. Introduction 359 2. Preliminaries on Teichm¨uller theory 361 3. The volume of M1,1 366 4. Integrating geometric functions over moduli space 367 5. Generalizing McShane’s identity 369 6. Computation of volumes using McShane identities 370 7. Computation of volumes using symplectic reduction 371 8. Witten’s conjecture 374 9. Counting simple closed geodesics 376 10. Random surfaces of large genus 379 11. Preliminaries on dynamics on moduli spaces 382 12. Earthquake flow 386 13. Horocyclic measures 389 14. Counting with respect to the Teichm¨uller metric 391 15. From orbits of curves to orbits in Teichm¨uller space 393 16. SL(2, R)-invariant measures and orbit closures 395 17. Classification of SL(2, R)-orbit closures 398 18. Effective counting of simple closed curves 400 19. Random walks on the mapping class group 401 Acknowledgments 402 About the author 402 References 403 1. Introduction This survey aims to be a tour through Maryam Mirzakhani’s remarkable work on Riemann surfaces, dynamics, and geometry. The star characters, all across Received by the editors May 12, 2019. 2010 Mathematics Subject Classification. Primary 32G15. c 2020 American Mathematical Society 359 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 360 ALEX WRIGHT 2 3117 4 5 12 14 16 18 19 9106 13 15 17 8 Figure 1.1.
    [Show full text]
  • February 19, 2016
    February 19, 2016 Professor HELGE HOLDEN SECRETARY OF THE INTERNATIONAL MATHEMATICAL UNION Dear Professor Holden, The Turkish Mathematical Society (TMD) as the Adhering Organization, applies to promote Turkey from Group I to Group II as a member of IMU. We attach an overview of the developments of Mathematics in Turkey during the last 10 years (2005- 2015) preceded by a historical account. With best regards, Betül Tanbay President of the Turkish Mathematical Society Report on the state of mathematics in Turkey (2005-2015) This is an overview of the status of Mathematics in Turkey, prepared for the IMU for promotion from Group I to Group II by the adhering organization, the Turkish Mathematical Society (TMD). 1-HISTORICAL BACKGROUND 2-SOCIETIES AND CENTERS RELATED TO MATHEMATICAL SCIENCES 3-NUMBER OF PUBLICATIONS BY SUBJECT CATEGORIES 4-NATIONAL CONFERENCES AND WORKSHOPS HELD IN TURKEY BETWEEN 2013-2015 5-INTERNATIONAL CONFERENCES AND WORKSHOPS HELD IN TURKEY BETWEEN 2013-2015 6-NUMBERS OF STUDENTS AND TEACHING STAFF IN MATHEMATICAL SCIENCES IN TURKEY FOR THE 2013-2014 ACADEMIC YEAR AND THE 2014-2015 ACADEMIC YEAR 7- RANKING AND DOCUMENTS OF TURKEY IN MATHEMATICAL SCIENCES 8- PERIODICALS AND PUBLICATIONS 1-HISTORICAL BACKGROUND Two universities, the Istanbul University and the Istanbul Technical University have been influential in creating a mathematical community in Turkey. The Royal School of Naval Engineering, "Muhendishane-i Bahr-i Humayun", was established in 1773 with the responsibility to educate chart masters and ship builders. Gaining university status in 1928, the Engineering Academy continued to provide education in the fields of engineering and architecture and, in 1946, Istanbul Technical University became an autonomous university which included the Faculties of Architecture, Civil Engineering, Mechanical Engineering, and Electrical and Electronic Engineering.
    [Show full text]
  • CURRICULUM VITAE PISIER Gilles Jean Georges Born November 18 1950 in Nouméa, New Caledonia. French Nationality 1966-67 Mathéma
    CURRICULUM VITAE PISIER Gilles Jean Georges Born November 18 1950 in Noum´ea,New Caledonia. French Nationality 1966-67 Math´ematiquesEl´ementaires at Lyc´eeBuffon, Paris. 1967 Baccalaur´eat,section C. 1967-68 Math´ematiquesSup´erieuresand Math´ematiquesSp´eciales 1968-69 at Lyc´eeLouis-le Grand, Paris. 1969-72 Student at Ecole´ Polytechnique. 1971 Ma^ıtrisede math´ematiquesUniversit´ePARIS VII. 1972 D.E.A. de Math´ematiquespures Universit´ePARIS VI. Oct. 72 Stragiaire de Recherche at C.N.R.S. Oct. 74 Attach´ede Recherche at C.N.R.S. Nov. 77 Th`esede doctorat d'´etat `es-sciencesmath´ematiques, soutenue le 10 Novembre 1977 from Universit´ePARIS VII under the supervision of L. Schwartz. Oct. 79 Charg´ede Recherche at C.N.R.S. Oct. 81 Professor at the University of PARIS VI. Oct. 84-Jan.85 Visiting Professor at IHES (Bures s. Yvette). Sept. 85 Distinguished Professor (Owen Chair of Mathematics), Texas A&M University. Nov. 88 Short term Visitor, Institute of Advanced Study (Princeton). Feb. 90-Apr.90 Visiting Professor at IHES (Bures s. Yvette). Feb. 1991 Professeur de Classe Exceptionnelle (Universit´eParis 6) 1 VARIOUS DISTINCTIONS { Salem Prize 1979. { Cours Peccot at Coll`egede France 1981. { Prix Carri`erede l'Acad´emiedes Science de Paris 1982. { Invited speaker at the International Congress of Mathematicians (Warsaw,1983). {Fellow of the Institute of Mathematical Statistics 1989. {Grands prix de l'Acad´emiedes Sciences de Paris: Prix Fond´epar l'Etat 1992 {Invited one hour address at A.M.S. meeting in College Station, october 93. {Faculty Distinguished Achievement Award in Research 1993, Texas A&M University (from the Association of Former Students) {Elected \Membre correspondant" by \Acad´emiedes Sciences de Paris", April 94.
    [Show full text]
  • Cahit Arf: Exploring His Scientific Influence Using Social Network Analysis and Author Co-Citation Maps
    Cahit Arf: Exploring His Scientific Influence Using Social Network Analysis and Author Co-citation Maps 1 2 Yaşar Tonta and A. Esra Özkan Çelik 1 [email protected] Department of Information Management, Hacettepe University, 06800 Beytepe, Ankara, TR 2 [email protected] Registrar's Office, Hacettepe University, 06800 Beytepe, Ankara, TR Abstract Cahit Arf (1910-1997), a famous Turkish scientist whose picture is depicted in one of the Turkish banknotes, is a well known figure in mathematics with his discoveries named after him (e.g., Arf invariant, Arf rings, the Hasse- Arf theorem). Although Arf may not be considered as a prolific scientist in terms of number of papers (he authored a total of 23 papers), his influence on mathematics and related disciplines was profound. As he was active before, during and after the World War II, Arf’s contributions were not properly listed in citation indexes and thus did not generate that many citations even though several papers with “Arf” in their titles appeared in the literature. This paper traces the influence of Arf in scientific world using citation analysis techniques first. It reviews the scientific impact of Arf by analyzing both the papers authored by Arf and papers whose titles or keywords contain various combinations of “Arf rings”, “Arf invariant”, and so on. The paper then goes on to study Arf’s contributions using social network analysis and author co-citation analysis techniques. CiteSpace and pennant diagrams are used to explore the scientific impact of Arf by mapping his cited references derived from Thomson Reuters’ Web of Science (WoS) database.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Assaf Naor Address: Princeton University Department of Mathematics Fine Hall 1005 Washington Road Princeton, NJ 08544-1000 USA Telephone number: +1 609-258-4198 Fax number: +1 609-258-1367 Electronic mail: [email protected] Web site: http://web.math.princeton.edu/~naor/ Personal Data: Date of Birth: May 7, 1975. Citizenship: USA, Israel, Czech Republic. Employment: • 2002{2004: Post-doctoral Researcher, Theory Group, Microsoft Research. • 2004{2007: Permanent Member, Theory Group, Microsoft Research. • 2005{2007: Affiliate Assistant Professor of Mathematics, University of Washington. • 2006{2009: Associate Professor of Mathematics, Courant Institute of Mathematical Sciences, New York University (on leave Fall 2006). • 2008{2015: Associated faculty member in computer science, Courant Institute of Mathematical Sciences, New York University (on leave in the academic year 2014{2015). • 2009{2015: Professor of Mathematics, Courant Institute of Mathematical Sciences, New York University (on leave in the academic year 2014{2015). • 2014{present: Professor of Mathematics, Princeton University. • 2014{present: Associated Faculty, The Program in Applied and Computational Mathematics (PACM), Princeton University. • 2016 Fall semester: Henry Burchard Fine Professor of Mathematics, Princeton University. • 2017{2018: Member, Institute for Advanced Study. • 2020 Spring semester: Henry Burchard Fine Professor of Mathematics, Princeton University. 1 Education: • 1993{1996: Studies for a B.Sc. degree in Mathematics at the Hebrew University in Jerusalem. Graduated Summa Cum Laude in 1996. • 1996{1998: Studies for an M.Sc. degree in Mathematics at the Hebrew University in Jerusalem. M.Sc. thesis: \Geometric Problems in Non-Linear Functional Analysis," prepared under the supervision of Joram Lindenstrauss. Graduated Summa Cum Laude in 1998.
    [Show full text]
  • Shtukas for Reductive Groups and Langlands Correspondence for Functions Fields
    SHTUKAS FOR REDUCTIVE GROUPS AND LANGLANDS CORRESPONDENCE FOR FUNCTIONS FIELDS VINCENT LAFFORGUE This text gives an introduction to the Langlands correspondence for function fields and in particular to some recent works in this subject. We begin with a short historical account (all notions used below are recalled in the text). The Langlands correspondence [49] is a conjecture of utmost impor- tance, concerning global fields, i.e. number fields and function fields. Many excellent surveys are available, for example [39, 14, 13, 79, 31, 5]. The Langlands correspondence belongs to a huge system of conjectures (Langlands functoriality, Grothendieck’s vision of motives, special val- ues of L-functions, Ramanujan-Petersson conjecture, generalized Rie- mann hypothesis). This system has a remarkable deepness and logical coherence and many cases of these conjectures have already been es- tablished. Moreover the Langlands correspondence over function fields admits a geometrization, the “geometric Langlands program”, which is related to conformal field theory in Theoretical Physics. Let G be a connected reductive group over a global field F . For the sake of simplicity we assume G is split. The Langlands correspondence relates two fundamental objects, of very different nature, whose definition will be recalled later, • the automorphic forms for G, • the global Langlands parameters , i.e. the conjugacy classes of morphisms from the Galois group Gal(F =F ) to the Langlands b dual group G(Q`). b For G = GL1 we have G = GL1 and this is class field theory, which describes the abelianization of Gal(F =F ) (one particular case of it for Q is the law of quadratic reciprocity, which dates back to Euler, Legendre and Gauss).
    [Show full text]
  • Simply-Riemann-1588263529. Print
    Simply Riemann Simply Riemann JEREMY GRAY SIMPLY CHARLY NEW YORK Copyright © 2020 by Jeremy Gray Cover Illustration by José Ramos Cover Design by Scarlett Rugers All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below. [email protected] ISBN: 978-1-943657-21-6 Brought to you by http://simplycharly.com Contents Praise for Simply Riemann vii Other Great Lives x Series Editor's Foreword xi Preface xii Introduction 1 1. Riemann's life and times 7 2. Geometry 41 3. Complex functions 64 4. Primes and the zeta function 87 5. Minimal surfaces 97 6. Real functions 108 7. And another thing . 124 8. Riemann's Legacy 126 References 143 Suggested Reading 150 About the Author 152 A Word from the Publisher 153 Praise for Simply Riemann “Jeremy Gray is one of the world’s leading historians of mathematics, and an accomplished author of popular science. In Simply Riemann he combines both talents to give us clear and accessible insights into the astonishing discoveries of Bernhard Riemann—a brilliant but enigmatic mathematician who laid the foundations for several major areas of today’s mathematics, and for Albert Einstein’s General Theory of Relativity.Readable, organized—and simple. Highly recommended.” —Ian Stewart, Emeritus Professor of Mathematics at Warwick University and author of Significant Figures “Very few mathematicians have exercised an influence on the later development of their science comparable to Riemann’s whose work reshaped whole fields and created new ones.
    [Show full text]
  • On the Stability Conjecture for Geodesic Flows of Manifolds Without
    Annales Henri Lebesgue 4 (2021) 759-784 LUDOVICRIFFORD RAFAELRUGGIERO ONTHESTABILITY CONJECTUREFORGEODESIC FLOWSOFMANIFOLDSWITHOUT CONJUGATE POINTS SURLACONJECTUREDELASTABILITÉ POURLESFLOTSGÉODÉSIQUESSANS POINTSCONJUGUÉS Abstract. — We study the C2-structural stability conjecture from Mañé’s viewpoint for geodesics flows of compact manifolds without conjugate points. The structural stability conjecture is an open problem in the category of geodesic flows because the C1 closing lemma is not known in this context. Without the C1 closing lemma, we combine the geometry of manifolds without conjugate points and a recent version of Franks’ Lemma from Mañé’s viewpoint to prove the conjecture for compact surfaces, for compact three dimensional manifolds with quasi-convex universal coverings where geodesic rays diverge, and for n-dimensional, generalized rank one manifolds. Keywords: Geodesic flow, structural stability, closing lemma, conjugate points, quasi-convex space, Gromov hyperbolic space. 2020 Mathematics Subject Classification: 37C20, 37D40, 53C22, 20F65. DOI: https://doi.org/10.5802/ahl.87 (*) The research project was partially supported by CNPq, Programa de Estágio Sênior CAPES, CNRS, unité FR2291 FRUMAM. 760 L. RIFFORD & R. RUGGIERO Résumé. — Nous étudions la conjecture de stabilité en topologie C2 du point de vue de Mañé pour le flots géodésiques sans points conjugués sur les variétés compactes. La conjecture de stabilité en topologie C1 pour les flots géodésiques est un problème ouvert car le C1-Closing Lemma n’est pas connu dans ce contexte. Sans Closing Lemma, nous démontrons que la théorie des variétés sans points conjugués et une version récente du Lemme de Franks du point de vue de Mañé permettent d’obtenir une réponse positive à la conjecture dans le cas des variétés compactes sans points conjugués de dimension 2 et 3 ayant un revêtement universel quasi-convexe avec des rayons géodésiques divergents, ainsi que pour les variétés de dimension n de rank un généralisées.
    [Show full text]
  • Amenability, Group C -Algebras and Operator Spaces (WEP and LLP For
    Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Gilles Pisier Texas A&M University Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Main Source... E. Kirchberg, On nonsemisplit extensions, tensor products and exactness of group C∗-algebras. Invent. Math. 112 (1993), 449{489. Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) C ∗-algebras A C ∗-algebra is a closed self-adjoint subalgebra A ⊂ B(H) of the space of bounded operators on a Hilbert space H An operator space is a (closed) subspace E ⊂ A of a C ∗-algebra I will restrict to unital C ∗-algebras The norm on the ∗-algebra A satisfies 8x; y 2 A kxyk ≤ kxkkyk kxk = kx∗k kx∗xk = kxk2 Such norms are called C ∗-norms After completion (or if A is already complete): there is a unique C ∗-norm on A Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Then any such A can be written as A = span[π(G)] for some discrete group G and some unitary representation π : G ! B(H) of G on H Typical operator space E = span[π(S)] S ⊂ G Throughout I will restrict to discrete groups Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Tensor products On the algebraic tensor product (BEFORE completion) A ⊗ B there is a minimal and a maximal C ∗-norm denoted by k kmin and k kmax and in general k kmin ≤6= k kmax C ∗-norms 8x; y 2 A kxyk ≤ kxkkyk kxk = kx∗k kx∗xk = kxk2 Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Nuclear pairs Let A; B be C ∗-algebras Definition The pair (A; B) is said to be a nuclear pair if the minimal and maximal C ∗-norms coincide on the algebraic tensor product A ⊗ B, in other words A ⊗min B = A ⊗max B Definition A C ∗-algebra A is called nuclear if this holds for ANY B Gilles Pisier Amenability, Group C ∗-algebras and Operator spaces (WEP and LLP for C ∗(G)) Let A1 = span[π(G1)] ⊂ B(H1) A2 = span[π(G2)] ⊂ B(H2) for some unitary rep.
    [Show full text]
  • 2017-2018 Annual Report
    Institute for Computational and Experimental Research in Mathematics Annual Report May 1, 2017 – April 30, 2018 Brendan Hassett, Director Mathew Borton, IT Director Jeff Brock, Associate Director Ruth Crane, Assistant Director Sigal Gottlieb, Deputy Director Elisenda Grigsby, Deputy Director Jeffrey Hoffstein, Consulting Associate Director Caroline Klivans, Associate Director Jill Pipher, Consulting Associate Director Bjorn Sandstede, Associate Director Homer Walker, Consulting Associate Director Ulrica Wilson, Associate Director for Diversity and Outreach Table of Contents Mission ....................................................................................................................................... 6 Core Programs and Events ......................................................................................................... 6 Participant Summaries by Program Type ................................................................................... 9 ICERM Funded Participants ................................................................................................................. 9 All Participants (ICERM funded and Non-ICERM funded) .................................................................. 10 ICERM Funded Speakers ................................................................................................................... 11 All Speakers (ICERM funded and Non-ICERM funded) ...................................................................... 12 ICERM Funded Postdocs ..................................................................................................................
    [Show full text]