Mira Variables with Period Changes | AAVSO
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stellar Evolution in Real Time: Models Consistent with Direct Observation of Thermal Pulse in T Ursae Minoris Laszl´ O´ Molnar´ ,1, 2 Meridith Joyce,3 Andl Aszl´ O´ L
Draft version June 6, 2019 Typeset using LATEX twocolumn style in AASTeX62 Stellar Evolution in Real Time: Models Consistent with Direct Observation of Thermal Pulse in T Ursae Minoris Laszl´ o´ Molnar´ ,1, 2 Meridith Joyce,3 andL aszl´ o´ L. Kiss1, 4 1Konkoly Observatory, MTA CSFK, Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary 2MTA CSFK Lend¨uletNear-Field Cosmology Research Group, 1121, Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary 3Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 4Sydney Institute for Astronomy, School of Physics A29, University of Sydney, NSW 2006, Australia ABSTRACT Most aspects of stellar evolution proceed far too slowly to be directly observable in a single star on human timescales. The thermally pulsing asymptotic giant branch is one exception. The combination of state-of-the-art modelling techniques with data assimilated from observations collected by amateur astronomers over many decades provide, for the first time, the opportunity to identify a star occupying precisely this evolutionary stage. In this study, we show that the rapid pulsation period change and associated reduction in radius in the bright, northern variable star T Ursae Minoris are caused by the recent onset of a thermal pulse. We demonstrate that T UMi transitioned into a double-mode pulsation state, and we exploit its asteroseismic features to constrain its fundamental stellar parameters. We use evolutionary models from MESA and linear pulsation models from GYRE to track simultaneously the structural and oscillatory evolution of models with varying mass. We apply a sophisticated iterative sampling scheme to achieve time resolution ≤ 10 years at the onset of the relevant thermal pulses. -
Plotting Variable Stars on the H-R Diagram Activity
Pulsating Variable Stars and the Hertzsprung-Russell Diagram The Hertzsprung-Russell (H-R) Diagram: The H-R diagram is an important astronomical tool for understanding how stars evolve over time. Stellar evolution can not be studied by observing individual stars as most changes occur over millions and billions of years. Astrophysicists observe numerous stars at various stages in their evolutionary history to determine their changing properties and probable evolutionary tracks across the H-R diagram. The H-R diagram is a scatter graph of stars. When the absolute magnitude (MV) – intrinsic brightness – of stars is plotted against their surface temperature (stellar classification) the stars are not randomly distributed on the graph but are mostly restricted to a few well-defined regions. The stars within the same regions share a common set of characteristics. As the physical characteristics of a star change over its evolutionary history, its position on the H-R diagram The H-R Diagram changes also – so the H-R diagram can also be thought of as a graphical plot of stellar evolution. From the location of a star on the diagram, its luminosity, spectral type, color, temperature, mass, age, chemical composition and evolutionary history are known. Most stars are classified by surface temperature (spectral type) from hottest to coolest as follows: O B A F G K M. These categories are further subdivided into subclasses from hottest (0) to coolest (9). The hottest B stars are B0 and the coolest are B9, followed by spectral type A0. Each major spectral classification is characterized by its own unique spectra. -
Mira Variables: an Informal Review
MIRA VARIABLES: AN INFORMAL REVIEW ROBERT F. WING Astronomy Department, Ohio State University The Mira variables can be either fascinating or frustrating -- depending on whether one is content to watch them go through their changes or whether one insists on understanding them. Virtually every observable property of the Miras, including each detail of their extraordinarily complex spectra, is strongly time-dependent. Most of the changes are cyclic with a period equal to that of the light variation. It is well known, however, that the lengths of individual light cycles often differ noticeably from the star's mean period, the differences typically amounting to several percent. And if you observe Miras -- no matter what kind of observation you make -- your work is never done, because none of their observable properties repeats exactly from cycle to cycle. The structure of Mira variables can perhaps best be described as loose. They are enormous, distended stars, and it is clear that many differ- ent atmospheric layers contribute to the spectra (and photometric colors) that we observe. As we shall see, these layers can have greatly differing temperatures, and the cyclical temperature variations of the various layers are to some extent independent of one another. Here no doubt is the source of many of the apparent inconsistencies in the observational data, as well as the phase lags between light curves in different colors. But when speaking of "layers" in the atmosphere, we should remember that they merge into one another, and that layers that are spectroscopically distinct by virtue of thelrvertical motions may in fact be momentarily at the same height in the atmosphere. -
(NASA/Chandra X-Ray Image) Type Ia Supernova Remnant – Thermonuclear Explosion of a White Dwarf
Stellar Evolution Card Set Description and Links 1. Tycho’s SNR (NASA/Chandra X-ray image) Type Ia supernova remnant – thermonuclear explosion of a white dwarf http://chandra.harvard.edu/photo/2011/tycho2/ 2. Protostar formation (NASA/JPL/Caltech/Spitzer/R. Hurt illustration) A young star/protostar forming within a cloud of gas and dust http://www.spitzer.caltech.edu/images/1852-ssc2007-14d-Planet-Forming-Disk- Around-a-Baby-Star 3. The Crab Nebula (NASA/Chandra X-ray/Hubble optical/Spitzer IR composite image) A type II supernova remnant with a millisecond pulsar stellar core http://chandra.harvard.edu/photo/2009/crab/ 4. Cygnus X-1 (NASA/Chandra/M Weiss illustration) A stellar mass black hole in an X-ray binary system with a main sequence companion star http://chandra.harvard.edu/photo/2011/cygx1/ 5. White dwarf with red giant companion star (ESO/M. Kornmesser illustration/video) A white dwarf accreting material from a red giant companion could result in a Type Ia supernova http://www.eso.org/public/videos/eso0943b/ 6. Eight Burst Nebula (NASA/Hubble optical image) A planetary nebula with a white dwarf and companion star binary system in its center http://apod.nasa.gov/apod/ap150607.html 7. The Carina Nebula star-formation complex (NASA/Hubble optical image) A massive and active star formation region with newly forming protostars and stars http://www.spacetelescope.org/images/heic0707b/ 8. NGC 6826 (Chandra X-ray/Hubble optical composite image) A planetary nebula with a white dwarf stellar core in its center http://chandra.harvard.edu/photo/2012/pne/ 9. -
Arxiv:2001.10147V1
Magnetic fields in isolated and interacting white dwarfs Lilia Ferrario1 and Dayal Wickramasinghe2 Mathematical Sciences Institute, The Australian National University, Canberra, ACT 2601, Australia Adela Kawka3 International Centre for Radio Astronomy Research, Curtin University, Perth, WA 6102, Australia Abstract The magnetic white dwarfs (MWDs) are found either isolated or in inter- acting binaries. The isolated MWDs divide into two groups: a high field group (105 − 109 G) comprising some 13 ± 4% of all white dwarfs (WDs), and a low field group (B < 105 G) whose incidence is currently under investigation. The situation may be similar in magnetic binaries because the bright accretion discs in low field systems hide the photosphere of their WDs thus preventing the study of their magnetic fields’ strength and structure. Considerable research has been devoted to the vexed question on the origin of magnetic fields. One hypothesis is that WD magnetic fields are of fossil origin, that is, their progenitors are the magnetic main-sequence Ap/Bp stars and magnetic flux is conserved during their evolution. The other hypothesis is that magnetic fields arise from binary interaction, through differential rotation, during common envelope evolution. If the two stars merge the end product is a single high-field MWD. If close binaries survive and the primary develops a strong field, they may later evolve into the arXiv:2001.10147v1 [astro-ph.SR] 28 Jan 2020 magnetic cataclysmic variables (MCVs). The recently discovered population of hot, carbon-rich WDs exhibiting an incidence of magnetism of up to about 70% and a variability from a few minutes to a couple of days may support the [email protected] [email protected] [email protected] Preprint submitted to Journal of LATEX Templates January 29, 2020 merging binary hypothesis. -
Stellar Evolution
AccessScience from McGraw-Hill Education Page 1 of 19 www.accessscience.com Stellar evolution Contributed by: James B. Kaler Publication year: 2014 The large-scale, systematic, and irreversible changes over time of the structure and composition of a star. Types of stars Dozens of different types of stars populate the Milky Way Galaxy. The most common are main-sequence dwarfs like the Sun that fuse hydrogen into helium within their cores (the core of the Sun occupies about half its mass). Dwarfs run the full gamut of stellar masses, from perhaps as much as 200 solar masses (200 M,⊙) down to the minimum of 0.075 solar mass (beneath which the full proton-proton chain does not operate). They occupy the spectral sequence from class O (maximum effective temperature nearly 50,000 K or 90,000◦F, maximum luminosity 5 × 10,6 solar), through classes B, A, F, G, K, and M, to the new class L (2400 K or 3860◦F and under, typical luminosity below 10,−4 solar). Within the main sequence, they break into two broad groups, those under 1.3 solar masses (class F5), whose luminosities derive from the proton-proton chain, and higher-mass stars that are supported principally by the carbon cycle. Below the end of the main sequence (masses less than 0.075 M,⊙) lie the brown dwarfs that occupy half of class L and all of class T (the latter under 1400 K or 2060◦F). These shine both from gravitational energy and from fusion of their natural deuterium. Their low-mass limit is unknown. -
(AGB) Stars David Leon Gobrecht
Molecule and dust synthesis in the inner winds of oxygen-rich Asymptotic Giant Branch (A GB) stars Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von David Leon Gobrecht aus Gebenstorf Aargau Basel, 2016 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch David Leon Gobrecht Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. F.-K. Thielemann, PD Dr. Isabelle Cherchneff, PD Dr. Dahbia Talbi Basel, den 17. Februar 2015 Prof. Dr. Jörg Schibler Dekanin/Dekan IK Tau as seen by Two Micron All Sky Survey, 2MASS, (top) and Sloan Digital Sky Survey, SDSS, (bottom) from the Aladin Sky Atlas in the Simbad astronomical database (Wenger et al., 2000) 3 Abstract This thesis aims to explain the masses and compositions of prevalent molecules, dust clusters, and dust grains in the inner winds of oxygen-rich AGB stars. In this context, models have been developed, which account for various stellar conditions, reflecting all the evolutionary stages of AGB stars, as well as different metallicities. Moreover, we aim to gain insight on the nature of dust grains, synthesised by inorganic and metallic clusters with associated structures, energetics, reaction mechanisms, and finally possible formation routes. We model the circumstellar envelopes of AGB stars, covering several C/O ratios below unity and pulsation periods of 100 - 500 days, by employing a chemical-kinetic approach. Periodic shocks, induced by pulsation, with speeds of 10 - 32 km s−1 enable a non-equilibrium chemistry to take place between 1 and 10 R∗ above the photosphere. -
Pennsylvania Science Olympiad State Finals 2017 Astronomy C Division
PENNSYLVANIA SCIENCE OLYMPIAD STATE FINALS 2017 ASTRONOMY C DIVISION EXAM APRIL 29, 2017 TEAM NUMBER _____________ SCHOOL NAME_____________________________________ PARTICIPANTS__________________________________________________________________ _______________________________________________________________________________ INSTRUCTIONS: 1. Turn in all exam materials at the end of this event. Missing exam materials will result in immediate disqualification of the team in question. There is an exam packet, an image packet, and 3 blank answer sheets. 2. You may separate the exam pages. 3. Only the answers provided on the answer page will be considered. Do not write outside the designated spaces for each answer. You may write in the exam booklet. 4. Write your team number, school name, and participants’ names on the title page of the test booklet. By writing your participants’ names, you agree to the General Rules, Code of Ethics, and Spirit of the Problem as defined on the Science Olympiad website: https://www.soinc.org/code-ethics-general-rules. 5. Write your team number, school name, and participants’ names in the appropriate spaces on the answer sheets. 6. Each question is worth one point. Tiebreaker questions are indicated with a (T#) in which the number indicates the order of consultation in the event of a tie. Tiebreaker questions count toward the overall raw score, and are only used as tiebreakers when there is a tie. In such cases, (T1) will be examined first, then (T2), and so on until the tie is broken. There are 16 tiebreakers. 7. Pay close attention to the units given in the problem and the units asked for in the answer. 8. When the time is up, the time is up. -
Arxiv:1602.06269V2 [Astro-Ph.SR] 30 Oct 2016 the Incidence and Theory of Episodic Accretion in Ysos, and Mid-Infrared Wavelengths (E.G., Megeath Et Al
Mon. Not. R. Astron. Soc. 000, 1{?? (2002) Printed 11 September 2018 (MN LATEX style file v2.2) Infrared spectroscopy of eruptive variable protostars from VVV C. Contreras Pe~na1;4;2,? P. W. Lucas2, R. Kurtev3;4, D. Minniti1;7, A. Caratti o Garatti6, F. Marocco2, M.A. Thompson2, D. Froebrich5, M. S. N. Kumar2, W. Stimson2, C. Navarro Molina4;3, J. Borissova3;4, T. Gledhill2 and R. Terzi2 1Departamento de Ciencias Fisicas, Universidad Andres Bello, Republica 220, Santiago, Chile 2Centre for Astrophysics Research, University of Hertfordshire, Hatfield, AL10 9AB, UK 3Instituto de F´ısica y Astronom´ıa,Universidad de Valpara´ıso,ave. Gran Breta~na,1111, Casilla 5030, Valpara´ıso,Chile 4Millennium Institute of Astrophysics, Av. Vicuna Mackenna 4860, 782-0436, Macul, Santiago, Chile 5Centre for Astrophysics and Planetary Science, University of Kent, Canterbury CT2 7NH, UK 6Dublin Institute for Advanced Studies, School of Cosmic Physics, Astronomy & Astrophysics Section, 31 Fitzwilliam Place, Dublin 2, Ireland 7Vatican Observatory, V00120 Vatican City State, Italy 11 September 2018 ABSTRACT In a companion work (Paper I) we detected a large population of highly variable Young Stellar Objects (YSOs) in the Vista Variables in the Via Lactea (VVV) survey, typically with class I or flat spectrum spectral energy distributions and diverse light curve types. Here we present infrared spectra (0.9{2.5 µm) of 37 of these variables, many of them observed in a bright state. The spectra confirm that 15/18 sources with eruptive light curves have signatures of a high accretion rate, either showing EXor- like emission features (∆v=2 CO, Brγ) and/or FUor-like features (∆v=2 CO and H2O strongly in absorption). -
COMMISSION G4 PULSATING STARS 1. Introduction 2. Notable
Transactions IAU, Volume XXXIA Reports on Astronomy 2018-2021 © 2021 International Astronomical Union Maria Teresa Lago, ed. DOI: 00.0000/X000000000000000X COMMISSION G4 PULSATING STARS PRESIDENT Jaymie Matthews VICE-PRESIDENT Robert Szabo ACTING PRESIDENT Robert Szabo ORGANIZING COMMITTEE Victoria Antoci, Hiromoto Shibahashi, Joyce Ann Guzik, Daniel Huber, Jadwiga Daszynska-Daszkiewicz TRIENNIAL REPORT 2018-2021 1. Introduction We are witnessing a renaissance of pulsating stars. These objects are cornerstones of stellar astrophysics { asteroseismology, galactic archaeology, and extragalactic science, as well. The renewed interest in pulsations and oscillations are boosted by the fact that more precise observations are being gathered than ever, more stars are monitored than ever before, and more continuous data sets are available than a mere few years ago. Both hardware (information technology and computing power) and software (machine learning and artificial intelligence) developments make it easier to cope with and analyze the large data sets (and models!), and synergies with Solar System studies and exoplanet hunting manifest in large surveys particularly useful for studying pulsations and oscillations. The European Space Agency's Gaia mission brought a revolution in stellar astrophysics in general, and in the astrophysics of pulsating and oscillating stars in particular. Homoge- neous and high-precision astrometric, photometric, and some low-resolution spectroscopic data are now available across all the sky, as well as across galactic -
Dr Meridith P. Joyce Research Interests Academic Work Experience Education Publications: First Authorships and Co-Leads Publicat
Dr Meridith P. Joyce [email protected] • +61.476.680.932 • W35 Mt Stromlo Observatory, Weston Creek, ACT 2611, Australia www.meridithjoyce.com • https://github.com/mjoyceGR • ADS Library: DrMeridithJoyce Research Interests Theoretical and computational astrophysics: stellar structure and evolution, precision stellar modeling across the mass spectrum, asteroseismology, stellar interiors, convection and mixing, numerical methods, astronomy software development. Optical astronomy: variable and oscillating stars, low-metallicity stars, globular clusters. Academic Work Experience RSAA Postdoctoral Fellow | Australian National University, September 2018{present South African Astronomical Observatory | Postgraduate research assistant, June 2017{November 2017 Massachusetts Institute of Technology | Research assistant, June{August 2015 Dartmouth College | Research assistant, September 2013{July 2018 Positions Held Concurrently ARC Centre of Excellence ASTRO3D | Associate investigator, November 2019{present Modules for Experiments in Stellar Astrophysics (MESA) developer, September 2019{present Konkoly Observatory | Visiting resident astronomer, periodic from January 2018{present University of Cape Town | Visiting academic, periodic from June 2017{January 2019 Education Ph.D. Physics and Astronomy | Dartmouth College, 2015{2018 | Prof. Brian Chaboyer, adviser On the Scope and Fidelity of 1-D Stellar Evolution Models M.S. Physics | Dartmouth College, 2013{2015 | Prof. Brian Chaboyer, adviser Investigating the Consistency of Stellar Evolution Models with Globular Cluster Observations via the Red Giant Branch Bump B.Sc. Mathematics, B.Sc. Physics | Bucknell University, 2009{2013 Publications: First authorships and co-leads 1. Meridith Joyce, Shing-Chi Leung, L´aszl´oMoln´ar,Michael J. Ireland, Chiaki Kobayashi, Ken'ichi Nomoto, Standing on the shoulders of giants: New mass and distance estimates for Betelgeuse through combined evolutionary, asteroseismic, and hydrodynamical simulations with MESA, ApJ, October 2020 2. -
Astronomy 162, Week 6 After the Helium Flash: Late Stages of Evolution Patrick S
Astronomy 162, Week 6 After the Helium Flash: Late Stages of Evolution Patrick S. Osmer Spring, 2006 Review • Helium flash – a turning point in evolution – produces tremendous energy – example of non-equilibrium situation – very hard to calculate What happens after the flash? • Core has expanded enough to become non-degenerate • Core hot enough to fuse helium • Outer layers contract, become hotter What happens next to sun? • See Ch. 22-1, Fig. 22-1, 22-2, 22-3 • Converts helium in core to carbon • After all helium in core is fused, core contracts, heats again • Helium starts to fuse in shell around core • Hydrogen fuses in shell farther out • Sun expands almost to size of Earth’s orbit – outer layers cool, becomes red giant – Core temp. increases, heavier elements produced Mass loss, Planetary Nebulae • Star sheds mass from surface – becomes unstable - a Mira variable – produces dust around star • Hydrogen fusion gets closer to surface Ay162, Spring 2006 Week 6 p. 1 of 15 • Surface temperature increases (Fig. 22-10) • Star ionizes surrounding material • A planetary nebula becomes visible Planetary Nebulae • Ring Nebula in constellation Lyra is classic example (see others in Fig. 22-6) • Called planetary because they resemble Uranus and Neptune in small telescope • They surround very hot stars (100,000 deg) (but low luminosity - small in size) – (Stars lost much of their mass in arriving at this stage) • Nebulae have lifetimes about 50,000 years (very short) • Thus, total observed number not large • Gas observed to expand at about 30 km/sec – Evidence for ejection during red giant phase (otherwise expansion would have to be much faster) Effect of mass loss on ISM • Gas ejected from star has more heavy elements because of nuclear processing • Thus, interstellar medium gets enriched, abundance of heavy elements increases • Next generation of stars to form in ISM will have more heavy elements • This recycling necessary for earth to have its heavy elements Ay162, Spring 2006 Week 6 p.