A Grounded Theory of Well Succeeded Devops
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis and Exploration for New Generation Debuggers Thomas Dupriez, Guillermo Polito, Stéphane Ducasse
Analysis and exploration for new generation debuggers Thomas Dupriez, Guillermo Polito, Stéphane Ducasse To cite this version: Thomas Dupriez, Guillermo Polito, Stéphane Ducasse. Analysis and exploration for new generation debuggers. International Workshop on Smalltalk Technology IWST’17, Sep 2017, Maribor, Slovenia. pp.5:1–5:6, 10.1145/3139903.3139910. hal-01585338 HAL Id: hal-01585338 https://hal.archives-ouvertes.fr/hal-01585338 Submitted on 11 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Analysis and exploration for new generation debuggers Thomas Dupriez Guillermo Polito Stephane´ Ducasse ENS Paris-Saclay - RMoD, Inria RMoD - Univ. Lille, CNRS, Centrale RMoD, Inria Lille-Nord Europe Lille-Nord Europe Lille, Inria, UMR 9189 - CRIStAL - [email protected] [email protected] Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France [email protected] Abstract offer a different perspective to this problem: it should be Locating and fixing bugs is a well-known time consuming possible to adapt a debugger to a given domain or task. task. Advanced approaches such as object-centric or back- In this position paper we motivate the need to mature and in-time debuggers have been proposed in the literature, still develop more advanced techniques by showing a complex in many scenarios developers are left alone with primitive debugging scenario obtained from a real use case. -
Devops for Hybrid Cloud: an IBM Point of View
IBM Cloud July 2017 Thought Leadership White Paper DevOps for hybrid cloud: an IBM point of view How DevOps for hybrid cloud can help organizations succeed with digital reinvention 2 DevOps for hybrid cloud: an IBM point of view Introduction The IBM point of view on DevOps makes the following DevOps started as a culture and set of practices to support assumptions: collaboration and communication across development and oper- ations, and to apply automation to key phases of the software ●● DevOps covers the end-to-end software delivery lifecycle delivery process. It has been popularized by successful new including an expanded set of stakeholders such as business companies developing business models and related applications owners and end users, and practices such as design thinking empowered by the cloud (cloud-native applications). More and user analytics. recently, large, established enterprises have recognized the need ●● DevOps adoption is expanding in large organizations as they to deliver innovation faster to stay relevant and capitalize on enable existing IT applications for cloud (cloud-enabled industry disruption, while also improving operational metrics for applications). New methods enable organizations to success- application quality and cost. DevOps and cloud have emerged as fully implement DevOps as they move to cloud. essential parts of their IT strategy as they improve core compe- ●● Hybrid cloud architecture is becoming the norm for both tency in continuous delivery of software-driven innovation. cloud-enabled and cloud-native applications. Hybrid cloud provides flexibility in deployment, enabling organizations to choose the right platform to run their workloads. ●● DevOps solutions can vary as teams across large organizations Business as usual have different goals, processes, culture and tools. -
Software Architecture and Agility
Agility and Architecture May 18 2010 Agility and Architecture: An Oxymoron? Philippe Kruchten Saturn May 18, 2010 Philippe Kruchten, Ph.D., P.Eng., CSDP Professor of So)ware Engineering NSERC Chair in Design Engineering Department of Electrical and Computer Engineering University of BriIsh Columbia Vancouver, BC Canada [email protected] Founder and president Kruchten Engineering Services Ltd Vancouver, BC Canada [email protected] Philippe Kruchten 1 Agility and Architecture May 18 2010 Agile & Architecture? Oil & Water? • Paradox • Oxymoron • Conflict • IncompaIbility Outline • Agility?? • SoSware architecture? • A story • Seven viewpoints on a single problem • The zipper model • A clash of two cultures • Summary Philippe Kruchten 2 Agility and Architecture May 18 2010 Agility • A definiIon – Agility is the ability to both create and respond to change in order to profit in a turbulent business environment. Jim Highsmith (2002) • CharacterisIcs – IteraIve and incremental – Small release – Collocaon – Release plan/ feature backlog – IteraIon plan/task backlog Sanjiv AugusIne (2004) Agile Values: the Agile Manifesto We have come to value: • Individuals and interacIons over process and tools, • Working soSware over comprehensive documents, • Customer collaboraIon over contract negoIaIon, • Responding to change over following a plan. That is, while there is value in the items on the right, we value the items on the leS more Source: hp://www.agilemanifesto.org/ Philippe Kruchten 3 Agility and Architecture May 18 2010 Geng at the Essence of Agility • SoSware development is a knowledge acIvity – Not producIon, manufacturing, administraIon… • The “machines” are humans • Dealing with uncertainty, unknowns, fear, distrust • Feedback loop -> – reflect on business, requirements, risks, process, people, technology • CommunicaIon and collaboraIon -> – Building trust Named Agile Methods • XP = eXtreme Programming (K. -
21 Scenario-Based Programming, Usability-Oriented Perception
Scenario-Based Programming, Usability-Oriented Perception GIORA ALEXANDRON, MICHAL ARMONI, MICHAL GORDON, and DAVID HAREL, Weizmann Institute of Science In this article, we discuss the possible connection between the programming language and the paradigm behind it, and programmers’ tendency to adopt an external or internal perspective of the system they develop. Based on a qualitative analysis, we found that when working with the visual, interobject language of live sequence charts (LSC), programmers tend to adopt an external and usability-oriented view of the system, whereas when working with an intraobject language, they tend to adopt an internal and implementation- oriented viewpoint. This is explained by first discussing the possible effect of the programming paradigm on programmers’ perception and then offering a more comprehensive explanation. The latter is based on a cognitive model of programming with LSC, which is an interpretation and a projection of the model suggested by Adelson and Soloway [1985] onto LSC and scenario-based programming, the new paradigm on which LSC is based. Our model suggests that LSC fosters a kind of programming that enables iterative refinement of the artifact with fewer entries into the solution domain. Thus, the programmer can make less context switching between the solution domain and the problem domain, and consequently spend more time in the latter. We believe that these findings are interesting mainly in two ways. First, they characterize an aspect of problem-solving behavior that to the best of our knowledge has not been studied before—the programmer’s perspective. The perspective can potentially affect the outcome of the problem-solving process, such as by leading the programmer to focus on different parts of the problem. -
Reflections on Software Architecture Linda Northrop SEI Fellow
Reflections on Software Architecture Linda Northrop SEI Fellow Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213 © 2016 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited Notices Copyright 2016 Carnegie Mellon University This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Department of Defense. NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. [Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution. This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at [email protected]. Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University. -
Kruchten Frog Octopus JSS V6
Paper submitted to the Journal of Software and Systems, July 2011, resubmitted November 2011. The frog and the octopus: a conceptual model of software development Philippe Kruchten University of British Columbia 2332 Main Mall Vancouver BC V6N2T9 Canada email: [email protected] phone: +1 (604) 827-5654 fax: +1 (604) 822-5949 Abstract We propose a conceptual model of software development that encompasses all approaches: traditional or agile, light and heavy, for large and small development efforts. The model identifies both the common aspects in all software development, i.e., elements found in some form or another in each and every software development project (Intent, Product, People, Work, Time, Quality, Risk, Cost, Value), as well as the variable part, i.e., the main factors that cause the very wide variations we can find in the software development world (Size, Age, Criticality, Architecture stability, Business model, Governance, Rate of change, Geographic distribution). We show how the model can be used as an explanatory theory of software development, as a tool for analysis of practices, techniques, processes, as the basis for curriculum design or for software process adoption and improvement, and to support empirical research on software development methods. This model is also proposed as a way to depolarize the debate on agile methods versus the rest-of-the-world: a unified model. Keywords: software development, conceptual model, ontology, method, software development process, software engineering, theory Visual abstract for JSS: !"#$%& !"#$%& '()*& '()*& Alternate visual abstract for JSS: Authorʼs bio: Philippe Kruchten is professor of software engineering at the University of British Columbia, Vancouver, Canada. -
Scenario-Driven Continuous Mobility Requirements Analysis in Mobile App Maintenance
Scenario-Driven Continuous Mobility Requirements Analysis in Mobile App Maintenance Xiaozhou Li1, Zheying Zhang2 and Timo Poranen3 1 University of Tampere, Kalevantie 4, 33014, Tampere, Finland {xiaozhou.li; zheying.zhang; timo.t.poranen}@uta.fi Abstract. As mobile devices have become an indispensable part of people’s lives, the growth of mobile app market is inevitably rapid. Accordingly, the mobile app users have increasing demands on the quality of the apps. Their tol- erance towards bugs and poor usability of the apps is growing low. In addition, as the mobile devices and apps have enabled users to use them in various con- texts, the mobility of the apps, referred to as their capability to provide ubiqui- tous services with quality, is also required. In this study, we propose the scenar- io-driven approach of mobility requirements analysis with context and ways of interaction. It supports the continuous requirements analysis in the maintenance of mobile apps where their mobility is constantly maintained despite the chang- es in the features. Keywords: Mobile App, Mobility, Requirements, Scenario, Situational Con- texts, Interaction, Maintenance. 1 Introduction The mobility of mobile apps, as their most significant feature, is defined as the ability to access services ubiquitously, on the move, though wireless networks and various mobile devices [1]. It enables the users to access the services with the independence from time and space [2]. The mobility of mobile apps is closely related to their con- text of use, especially the situational context, which largely influences the post- adoption behaviors of the users, including use continuance, word-of-mouth, and com- plaints [3]. -
Accelerating Software Development Through Agile Practices - a Case Study of a Small-Scale, Time-Intensive Web Development Project at a College-Level IT Competition
Journal of Information Technology Education: Volume 11, 2012 Innovations in Practice Accelerating Software Development through Agile Practices - A Case Study of a Small-scale, Time-intensive Web Development Project at a College-level IT Competition Xuesong (Sonya) Zhang Bradley Dorn California State Polytechnic California State University, University, Pomona, CA, USA Fresno, CA, USA [email protected] [email protected] Executive Summary Agile development has received increasing interest both in industry and academia due to its bene- fits in developing software quickly, meeting customer needs, and keeping pace with the rapidly changing requirements. However, agile practices and scrum in particular have been mainly tested in mid- to large-size projects. In this paper, we present findings from a case study of agile prac- tices in a small-scale, time-intensive web development project at a college-level IT competition. Based on the observation of the development process, the interview of the project team, and the study of relevant documents, we describe how agile practices, such as daily scrums, backlogs, and sprints, were successfully adopted to the project development. We also describe several support- ing activities that the team employed, including cross-leveling of knowledge, socialization, and multiple communication modes. Finally, we discuss the benefits and challenges of implementing agile practices in the case project reported, as well as contribution and limitation of our findings. Keywords: Agile, Scrum, Software development, Project management, Web application. Introduction Created to be a lightweight software development method by 17 software developers at a ski re- sort a decade ago (“Agile Software Development,” 2011), agile development has received in- creasing interest both in industry and academia due to its benefits in developing software more quickly and at lower costs, meeting customer needs, and keeping pace with the rapidly changing requirements. -
Use Cases, User Stories and Bizdevops
Use Cases, User Stories and BizDevOps Peter Forbrig University of Rostock, Chair in Software Engineering, Albert-Einstein-Str. 22, 18055 Rostock [email protected] Abstract. DevOps is currently discussed a lot in computer science communi- ties. BizDev (business development) is only mentioned once in a computer sci- ence paper in connection with Continuous Software Engineering. Otherwise it is used in the domain of business administration only. Additionally, there seems to be a different interpretation of the term in the two communities. The paper discusses the different interpretations found in the literature. Addi- tionally, the idea of BizDevOps is discussed in conjunction with further ideas of taking new requirements for software features into account. These requirements can be described by models on different level of granularity. Starting points are use cases, use-case slices, user stories, and scenarios. They have to be commu- nicated between stakeholders. It is argued in this paper that storytelling can be a solution for that. It is used in as well in software development as in manage- ment. Keywords: BizDev, DevOps, BizDevOps, Continuous Requirements Engineer- ing, Continuous Software Engineering, Agile Software Development, Storytell- ing. 1 Introduction Developing Businesses if often related with the development of software because nowadays business processes have to be supported by IT. Continuous requirements engineering has to be performed to provide continuously the optimal support. Contin- uous business development seems to be a good description for the combined devel- opment of software and business. This term is not used so very often. Nevertheless, it exists like in [17]. However, more often the abbreviation BizDev (business development) is used. -
Software Development a Practical Approach!
Software Development A Practical Approach! Hans-Petter Halvorsen https://www.halvorsen.blog https://halvorsen.blog Software Development A Practical Approach! Hans-Petter Halvorsen Software Development A Practical Approach! Hans-Petter Halvorsen Copyright © 2020 ISBN: 978-82-691106-0-9 Publisher Identifier: 978-82-691106 https://halvorsen.blog ii Preface The main goal with this document: • To give you an overview of what software engineering is • To take you beyond programming to engineering software What is Software Development? It is a complex process to develop modern and professional software today. This document tries to give a brief overview of Software Development. This document tries to focus on a practical approach regarding Software Development. So why do we need System Engineering? Here are some key factors: • Understand Customer Requirements o What does the customer needs (because they may not know it!) o Transform Customer requirements into working software • Planning o How do we reach our goals? o Will we finish within deadline? o Resources o What can go wrong? • Implementation o What kind of platforms and architecture should be used? o Split your work into manageable pieces iii • Quality and Performance o Make sure the software fulfills the customers’ needs We will learn how to build good (i.e. high quality) software, which includes: • Requirements Specification • Technical Design • Good User Experience (UX) • Improved Code Quality and Implementation • Testing • System Documentation • User Documentation • etc. You will find additional resources on this web page: http://www.halvorsen.blog/documents/programming/software_engineering/ iv Information about the author: Hans-Petter Halvorsen The author currently works at the University of South-Eastern Norway. -
Understanding Architectural Assets
® IBM Software Group Understanding Architectural Assets Peter Eeles [email protected] © 2008 IBM Corporation IBM Software Group | Rational software Agenda Introduction Sources of architecture Types of architectural asset Characterizing architectural assets Automating asset reuse Conclusion 2 IBM Software Group | Rational software Inputs into this Presentation Working IEEE/IFIP Conference on Software Architecture (WICSA) 2008 18 – 22 February 2008, Vancouver, BC, Canada Working session: Architectural Knowledge IBM Asset Architecture Board Reusable Asset Specification Rational Asset Manager RUP for Asset-based Development © 2006 Tourism Vancouver 3 IBM Software Group | Rational software Agenda Introduction Sources of architecture Types of architectural asset Characterizing architectural assets Automating asset reuse Conclusion 4 IBM Software Group | Rational software Sources of Architecture Theft From a previous system or from technical literature Method An approach to deriving the architecture from the requirements Intuition The experience of the architect From “Mommy, Where Do Software Architectures Come From?”, Philippe Kruchten 1st International Workshop on Architectures for Software Systems, Seattle, 1995 5 IBM Software Group | Rational software Agenda Introduction Sources of architecture Types of architectural asset Characterizing architectural assets Automating asset reuse Conclusion 6 IBM Software Group | Rational software What Types of Architectural Asset are there? Reference Design Architecture -
The Software Architect -And the Software Architecture Team
The Software Architect -and the Software Architecture Team Philippe Kruchten Rational Software, 650 West 41st Avenue #638, Vancouver, B.C., V5Z 2M9 Canada pbk@ rational. com Key words: Architecture, architect, team, process Abstract: Much has been written recently about software architecture, how to represent it, and where design fits in the software development process. In this article I will focus on the people who drive this effort: the architect or a team of architects-the software architecture team. Who are they, what special skills do they have, how do they organise themselves, and where do they fit in the project or the organisation? 1. AN ARCHITECT OR AN ARCHITECTURE TEAM In his wonderful book The Mythical Man-Month, Fred Brooks wrote that a challenging project must have one architect and only one. But more recently, he agreed that "Conceptual integrity is the vital property of a software product. It can be achieved by a single builder, or a pair. But that is too slow for big products, which are built by teams."' Others concur: "The greatest architectures are the product of a single mind or, at least, of a very small, carefully structured team."2 More precisely: "Every project should have exactly one identifiable architect, although for larger projects, the principal architect should be backed up by an architecture team of modest size."3 1 Keynote address, ICSE-17, Seattle, April1995 2 Rechtin 1991 , p. 22 3 Booch 1996, p. 196 The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35563-4 35 P.