Temporal Semantics for a Live Coding Language
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synchronous Programming in Audio Processing Karim Barkati, Pierre Jouvelot
Synchronous programming in audio processing Karim Barkati, Pierre Jouvelot To cite this version: Karim Barkati, Pierre Jouvelot. Synchronous programming in audio processing. ACM Computing Surveys, Association for Computing Machinery, 2013, 46 (2), pp.24. 10.1145/2543581.2543591. hal- 01540047 HAL Id: hal-01540047 https://hal-mines-paristech.archives-ouvertes.fr/hal-01540047 Submitted on 15 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Synchronous Programming in Audio Processing: A Lookup Table Oscillator Case Study KARIM BARKATI and PIERRE JOUVELOT, CRI, Mathématiques et systèmes, MINES ParisTech, France The adequacy of a programming language to a given software project or application domain is often con- sidered a key factor of success in software development and engineering, even though little theoretical or practical information is readily available to help make an informed decision. In this paper, we address a particular version of this issue by comparing the adequacy of general-purpose synchronous programming languages to more domain-specific -
Tosca: an OSC Communication Plugin for Object-Oriented Spatialization Authoring
ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas ToscA: An OSC Communication Plugin for Object-Oriented Spatialization Authoring Thibaut Carpentier UMR 9912 STMS IRCAM-CNRS-UPMC 1, place Igor Stravinsky, 75004 Paris [email protected] ABSTRACT or consensus on the representation of spatialization metadata (in spite of several initiatives [11, 12]) complicates the inter- The paper presents ToscA, a plugin that uses the OSC proto- exchange between applications. col to transmit automation parameters between a digital audio This paper introduces ToscA, a plugin that allows to commu- workstation and a remote application. A typical use case is the nicate automation parameters between a digital audio work- production of an object-oriented spatialized mix independently station and a remote application. The main use case is the of the limitations of the host applications. production of massively multichannel object-oriented spatial- ized mixes. 1. INTRODUCTION There is today a growing interest in sound spatialization. The 2. WORKFLOW movie industry seems to be shifting towards “3D” sound sys- We propose a workflow where the spatialization rendering tems; mobile devices have radically changed our listening engine lies outside of the workstation (Figure 1). This archi- habits and multimedia broadcast companies are evolving ac- tecture requires (bi-directional) communication between the cordingly, showing substantial interest in binaural techniques DAW and the remote renderer, and both the audio streams and and interactive content; massively multichannel equipments the automation data shall be conveyed. After being processed and transmission protocols are available and they facilitate the by the remote renderer, the spatialized signals could either installation of ambitious speaker setups in concert halls [1] or feed the reproduction setup (loudspeakers or headphones), be exhibition venues. -
Chuck: a Strongly Timed Computer Music Language
Ge Wang,∗ Perry R. Cook,† ChucK: A Strongly Timed and Spencer Salazar∗ ∗Center for Computer Research in Music Computer Music Language and Acoustics (CCRMA) Stanford University 660 Lomita Drive, Stanford, California 94306, USA {ge, spencer}@ccrma.stanford.edu †Department of Computer Science Princeton University 35 Olden Street, Princeton, New Jersey 08540, USA [email protected] Abstract: ChucK is a programming language designed for computer music. It aims to be expressive and straightforward to read and write with respect to time and concurrency, and to provide a platform for precise audio synthesis and analysis and for rapid experimentation in computer music. In particular, ChucK defines the notion of a strongly timed audio programming language, comprising a versatile time-based programming model that allows programmers to flexibly and precisely control the flow of time in code and use the keyword now as a time-aware control construct, and gives programmers the ability to use the timing mechanism to realize sample-accurate concurrent programming. Several case studies are presented that illustrate the workings, properties, and personality of the language. We also discuss applications of ChucK in laptop orchestras, computer music pedagogy, and mobile music instruments. Properties and affordances of the language and its future directions are outlined. What Is ChucK? form the notion of a strongly timed computer music programming language. ChucK (Wang 2008) is a computer music program- ming language. First released in 2003, it is designed to support a wide array of real-time and interactive Two Observations about Audio Programming tasks such as sound synthesis, physical modeling, gesture mapping, algorithmic composition, sonifi- Time is intimately connected with sound and is cation, audio analysis, and live performance. -
Confessions-Of-A-Live-Coder.Pdf
Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011 CONFESSIONS OF A LIVE CODER Thor Magnusson ixi audio & Faculty of Arts and Media University of Brighton Grand Parade, BN2 0JY, UK ABSTRACT upon writing music with programming languages for very specific reasons and those are rarely comparable. This paper describes the process involved when a live At ICMC 2007, in Copenhagen, I met Andrew coder decides to learn a new musical programming Sorensen, the author of Impromptu and member of the language of another paradigm. The paper introduces the aa-cell ensemble that performed at the conference. We problems of running comparative experiments, or user discussed how one would explore and analyse the studies, within the field of live coding. It suggests that process of learning a new programming environment an autoethnographic account of the process can be for music. One of the prominent questions here is how a helpful for understanding the technological conditioning functional programming language like Impromptu of contemporary musical tools. The author is conducting would influence the thinking of a computer musician a larger research project on this theme: the part with background in an object orientated programming presented in this paper describes the adoption of a new language, such as SuperCollider? Being an avid user of musical programming environment, Impromptu [35], SuperCollider, I was intrigued by the perplexing code and how this affects the author’s musical practice. structure and work patterns demonstrated in the aa-cell performances using Impromptu [36]. I subsequently 1. INTRODUCTION decided to embark upon studying this environment and perform a reflexive study of the process. -
FAUST Tutorial for Functional Programmers
FAUST Tutorial for Functional Programmers Y. Orlarey, S. Letz, D. Fober, R. Michon ICFP 2017 / FARM 2017 What is Faust ? What is Faust? A programming language (DSL) to build electronic music instruments Some Music Programming Languages DARMS Kyma 4CED MCL DCMP LOCO PLAY2 Adagio MUSIC III/IV/V DMIX LPC PMX AML Elody Mars MusicLogo POCO AMPLE EsAC MASC Music1000 POD6 Antescofo Euterpea Max MUSIC7 POD7 Arctic Extempore Musictex PROD Autoklang MidiLisp Faust MUSIGOL Puredata Bang MidiLogo MusicXML PWGL Canon Flavors Band MODE Musixtex Ravel CHANT Fluxus MOM NIFF FOIL Moxc SALIERI Chuck NOTELIST FORMES MSX SCORE CLCE Nyquist FORMULA MUS10 ScoreFile CMIX OPAL Fugue MUS8 SCRIPT Cmusic OpenMusic Gibber MUSCMP SIREN CMUSIC Organum1 GROOVE MuseData SMDL Common Lisp Outperform SMOKE Music GUIDO MusES Overtone SSP Common HARP MUSIC 10 PE Music Haskore MUSIC 11 SSSP Patchwork Common HMSL MUSIC 360 ST Music PILE Notation INV MUSIC 4B Supercollider Pla invokator MUSIC 4BF Symbolic Composer Csound PLACOMP KERN MUSIC 4F Tidal CyberBand PLAY1 Keynote MUSIC 6 Brief Overview to Faust Faust offers end-users a high-level alternative to C to develop audio applications for a large variety of platforms. The role of the Faust compiler is to synthesize the most efficient implementations for the target language (C, C++, LLVM, Javascript, etc.). Faust is used on stage for concerts and artistic productions, for education and research, for open sources projects and commercial applications : What Is Faust Used For ? Artistic Applications Sonik Cube (Trafik/Orlarey), Smartfaust (Gracia), etc. Open-Source projects Guitarix: Hermann Meyer WebAudio Applications YC20 Emulator Thanks to the HTML5/WebAudio API and Asm.js it is now possible to run synthesizers and audio effects from a simple web page ! Sound Spatialization Ambitools: Pierre Lecomte, CNAM Ambitools (Faust Award 2016), 3-D sound spatialization using Ambisonic techniques. -
Implementing Stochastic Synthesis for Supercollider and Iphone
Implementing stochastic synthesis for SuperCollider and iPhone Nick Collins Department of Informatics, University of Sussex, UK N [dot] Collins ]at[ sussex [dot] ac [dot] uk - http://www.cogs.susx.ac.uk/users/nc81/index.html Proceedings of the Xenakis International Symposium Southbank Centre, London, 1-3 April 2011 - www.gold.ac.uk/ccmc/xenakis-international-symposium This article reflects on Xenakis' contribution to sound synthesis, and explores practical tools for music making touched by his ideas on stochastic waveform generation. Implementations of the GENDYN algorithm for the SuperCollider audio programming language and in an iPhone app will be discussed. Some technical specifics will be reported without overburdening the exposition, including original directions in computer music research inspired by his ideas. The mass exposure of the iGendyn iPhone app in particular has provided a chance to reach a wider audience. Stochastic construction in music can apply at many timescales, and Xenakis was intrigued by the possibility of compositional unification through simultaneous engagement at multiple levels. In General Dynamic Stochastic Synthesis Xenakis found a potent way to extend stochastic music to the sample level in digital sound synthesis (Xenakis 1992, Serra 1993, Roads 1996, Hoffmann 2000, Harley 2004, Brown 2005, Luque 2006, Collins 2008, Luque 2009). In the central algorithm, samples are specified as a result of breakpoint interpolation synthesis (Roads 1996), where breakpoint positions in time and amplitude are subject to probabilistic perturbation. Random walks (up to second order) are followed with respect to various probability distributions for perturbation size. Figure 1 illustrates this for a single breakpoint; a full GENDYN implementation would allow a set of breakpoints, with each breakpoint in the set updated by individual perturbations each cycle. -
Isupercolliderkit: a Toolkit for Ios Using an Internal Supercollider Server As a Sound Engine
ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas iSuperColliderKit: A Toolkit for iOS Using an Internal SuperCollider Server as a Sound Engine Akinori Ito Kengo Watanabe Genki Kuroda Ken’ichiro Ito Tokyo University of Tech- Watanabe-DENKI Inc. Tokyo University of Tech- Tokyo University of Tech- nology [email protected] nology nology [email protected]. [email protected]. [email protected]. ac.jp ac.jp ac.jp The editor client sends the OSC code-fragments to its server. ABSTRACT Due to adopting the model, SuperCollider has feature that a iSuperColliderKit is a toolkit for iOS using an internal programmer can dynamically change some musical ele- SuperCollider Server as a sound engine. Through this re- ments, phrases, rhythms, scales and so on. The real-time search, we have adapted the exiting SuperCollider source interactivity is effectively utilized mainly in the live-coding code for iOS to the latest environment. Further we attempt- field. If the iOS developers would make their application ed to detach the UI from the sound engine so that the native adopting the “sound-server” model, using SuperCollider iOS visual objects built by objective-C or Swift, send to the seems to be a reasonable choice. However, the porting situa- internal SuperCollider server with any user interaction tion is not so good. SonicPi[5] is the one of a musical pro- events. As a result, iSuperColliderKit makes it possible to gramming environment that has SuperCollider server inter- utilize the vast resources of dynamic real-time changing nally. However, it is only for Raspberry Pi, Windows and musical elements or algorithmic composition on SuperCol- OSX. -
Pynchon's Sound of Music
Pynchon’s Sound of Music Christian Hänggi Pynchon’s Sound of Music DIAPHANES PUBLISHED WITH SUPPORT BY THE SWISS NATIONAL SCIENCE FOUNDATION 1ST EDITION ISBN 978-3-0358-0233-7 10.4472/9783035802337 DIESES WERK IST LIZENZIERT UNTER EINER CREATIVE COMMONS NAMENSNENNUNG 3.0 SCHWEIZ LIZENZ. LAYOUT AND PREPRESS: 2EDIT, ZURICH WWW.DIAPHANES.NET Contents Preface 7 Introduction 9 1 The Job of Sorting It All Out 17 A Brief Biography in Music 17 An Inventory of Pynchon’s Musical Techniques and Strategies 26 Pynchon on Record, Vol. 4 51 2 Lessons in Organology 53 The Harmonica 56 The Kazoo 79 The Saxophone 93 3 The Sounds of Societies to Come 121 The Age of Representation 127 The Age of Repetition 149 The Age of Composition 165 4 Analyzing the Pynchon Playlist 183 Conclusion 227 Appendix 231 Index of Musical Instruments 233 The Pynchon Playlist 239 Bibliography 289 Index of Musicians 309 Acknowledgments 315 Preface When I first read Gravity’s Rainbow, back in the days before I started to study literature more systematically, I noticed the nov- el’s many references to saxophones. Having played the instru- ment for, then, almost two decades, I thought that a novelist would not, could not, feature specialty instruments such as the C-melody sax if he did not play the horn himself. Once the saxophone had caught my attention, I noticed all sorts of uncommon references that seemed to confirm my hunch that Thomas Pynchon himself played the instrument: McClintic Sphere’s 4½ reed, the contra- bass sax of Against the Day, Gravity’s Rainbow’s Charlie Parker passage. -
Sonic on Mellanox Spectrum™ Switches
SOFTWARE PRODUCT BRIEF SONiC on Mellanox Spectrum™ Switches Delivering the promises of data center disaggregation – SONiC – Software for Open Networking in the Cloud, is a Microsoft-driven open-source network operating system (NOS), HIGHLIGHTS delivering a collection of networking software components aimed at – scenarios where simplicity and scale are the highest priority. • 100% free open source software • Easy portability Mellanox Spectrum family of switches combined with SONiC deliver a performant Open Ethernet data center cloud solution with • Uniform Linux interfaces monitoring and diagnostic capabilities. • Fully supported by the Github community • Industry’s highest performance switch THE VALUE OF SONiC systems portfolio, including the high- Built on top of the popular Switch Abstraction Interface (SAI) specification for common APIs, SONiC density half-width Mellanox SN2010 is a fully open-sourced, hardware-agnostic network operating system (NOS), perfect for preventing • Support for home-grown applications vendor lock-in and serving as the ideal NOS for next-generation data centers. SONiC is built over such as telemetry streaming, load industry-leading open source projects and technologies such as Docker for containers, Redis for balancing, unique tunneling, etc. key-value database, or Quagga BGP and LLDP routing protocols. It’s modular containerized design makes it very flexible, enabling customers to tailor SONiC to their needs. For more information on • Support for small to large-scale deployments open-source SONiC development, visit https://github.com/Azure/SONiC. MELLANOX OPEN ETHERNET SOLUTIONS AND SONiC Mellanox pioneered the Open Ethernet approach to network disaggregation. Open Ethernet offers the freedom to use any software on top of any switches hardware, thereby optimizing utilization, efficiency and overall return on investment (ROI). -
The Viability of the Web Browser As a Computer Music Platform
Lonce Wyse and Srikumar Subramanian The Viability of the Web Communications and New Media Department National University of Singapore Blk AS6, #03-41 Browser as a Computer 11 Computing Drive Singapore 117416 Music Platform [email protected] [email protected] Abstract: The computer music community has historically pushed the boundaries of technologies for music-making, using and developing cutting-edge computing, communication, and interfaces in a wide variety of creative practices to meet exacting standards of quality. Several separate systems and protocols have been developed to serve this community, such as Max/MSP and Pd for synthesis and teaching, JackTrip for networked audio, MIDI/OSC for communication, as well as Max/MSP and TouchOSC for interface design, to name a few. With the still-nascent Web Audio API standard and related technologies, we are now, more than ever, seeing an increase in these capabilities and their integration in a single ubiquitous platform: the Web browser. In this article, we examine the suitability of the Web browser as a computer music platform in critical aspects of audio synthesis, timing, I/O, and communication. We focus on the new Web Audio API and situate it in the context of associated technologies to understand how well they together can be expected to meet the musical, computational, and development needs of the computer music community. We identify timing and extensibility as two key areas that still need work in order to meet those needs. To date, despite the work of a few intrepid musical Why would musicians care about working in explorers, the Web browser platform has not been the browser, a platform not specifically designed widely considered as a viable platform for the de- for computer music? Max/MSP is an example of a velopment of computer music. -
List of Section 13F Securities
List of Section 13F Securities 1st Quarter FY 2004 Copyright (c) 2004 American Bankers Association. CUSIP Numbers and descriptions are used with permission by Standard & Poors CUSIP Service Bureau, a division of The McGraw-Hill Companies, Inc. All rights reserved. No redistribution without permission from Standard & Poors CUSIP Service Bureau. Standard & Poors CUSIP Service Bureau does not guarantee the accuracy or completeness of the CUSIP Numbers and standard descriptions included herein and neither the American Bankers Association nor Standard & Poor's CUSIP Service Bureau shall be responsible for any errors, omissions or damages arising out of the use of such information. U.S. Securities and Exchange Commission OFFICIAL LIST OF SECTION 13(f) SECURITIES USER INFORMATION SHEET General This list of “Section 13(f) securities” as defined by Rule 13f-1(c) [17 CFR 240.13f-1(c)] is made available to the public pursuant to Section13 (f) (3) of the Securities Exchange Act of 1934 [15 USC 78m(f) (3)]. It is made available for use in the preparation of reports filed with the Securities and Exhange Commission pursuant to Rule 13f-1 [17 CFR 240.13f-1] under Section 13(f) of the Securities Exchange Act of 1934. An updated list is published on a quarterly basis. This list is current as of March 15, 2004, and may be relied on by institutional investment managers filing Form 13F reports for the calendar quarter ending March 31, 2004. Institutional investment managers should report holdings--number of shares and fair market value--as of the last day of the calendar quarter as required by Section 13(f)(1) and Rule 13f-1 thereunder. -
Build Reliable Cloud Networks with Sonic and ONE
Build Reliable Cloud Networks with SONiC and ONE Wei Bai 白巍 Microsoft Research Asia OCP China Technology Day, Shenzhen, China 1 54 100K+ 130+ $15B+ REGIONS WORLDWIDE MILES OF FIBER AND SUBSEA CABLE EDGE SITES Investments Two Open Source Cornerstones for High Reliability Networking OS: SONiC Network Verification: ONE 3 Networking OS: SONiC 4 A Solution to Unblock Hardware Innovation Monitoring, Management, Deployment Tools, Cutting Edge SDN SONiC SONiC SONiC SONiC Switch Abstraction Interface (SAI) Merchant Silicon Switch Abstraction Interface (SAI) NetworkNetwork ApplicationsApplicationsNetwork Applications Simple, consistent, and stable Hello network application stack Switch Abstraction Interface Help consume the underlying complex, heterogeneous частный 你好 नमते Bonjour hardware easily and faster https://github.com/opencomputeproject/SAI 6 SONiC High-Level Architecture Switch State Service (SWSS) • APP DB: persist App objects • SAI DB: persist SAI objects • Orchestration Agent: translation between apps and SAI objects, resolution of dependency and conflict • SyncD: sync SAI objects between software and hardware Key Goal: Evolve components independently 8 SONiC Containerization 9 SONiC Containerization • Components developed in different environments • Source code may not be available • Enables choices on a per- component basis 10 SONiC – Powering Microsoft At Cloud Scale Tier 3 - Regional Spine T3-1 T3-2 T3-3 T3-4 … … … Tier 2 - Spine T2-1-1 T2-1-2 T2-1-8 T2-4-1 T2-4-2 T2-4-4 Features and Roadmap Current: BGP, ECMP, ECN, WRED, LAG, SNMP,