<<

STUDYTHEINTERACTIONANDCOMPATIBILITYOFLOW DENSITY/POLYACRYLICACIDBLENDS BYRHEOLOGICALBEHAVIORANDFTIRMEASUREMENT + درااذبوااااء اوا اآا اكاوتاااء TahseenA.Saki *A.A.Sultan** ,AyadI.Haddad***AfafS. Matooq**** Abstract: Blendsoflowdensitypolyethylenegraftedwithmaleicanhydride(LDPEg MAH)andseveralratios(1%,3%,5%,7%and10%)ofpolyacrylicacid(PAA) were prepared via melt mixer and their rheological properties was studied. Shearstress,shearrate,viscosityanddieswellwerecalculatedattemperatures 210and230oC.Allblendsshowedthatshearstressreducewithincreasesshear rate.Thepseudoplasticbehaviorforallblendswasobservedwhiletheapparent viscosity decreases with increasing shear rate. Activation energy (E a) for these blends was determined at temperatures 170,190,210 and 230 oC. The characteristicgroupsofMAHinLDPE,carboxylicacid in PAA, the interface between this functional groups were indicated by Fourier transform infrared spectroscopy(FTIR).Theresultsshowthedisappearoneofthemaleicanhydride bands in the LDPEgMAH and appearance of strong band at 1730cm 1approximatelyintheLDPEgMAH/PAA(90/10wt/wt)blendsspectrum. ﺍﻝﻤ ﺴﺘﺨﻠﺹ : ﺘﻤﺕﻓﻲﻫﺫﻩﺍﻝﺩﺭﺍﺴﺔﺘﺤﻀﻴﺭﺨﻼﺌﻁﺒﻭﻝﻴﻤﺭﻴﺔﻤﻥﺍﻝﺒﻭﻝﻲﺍﺜﻴﻠﻴﻥﻭﺍﻁﺊﺍﻝﻜﺜﺎﻓﺔﺍﻝﻤﻁﻌﻡﺒﺤﺎﻤﺽﺍﻝﻤﺎﻝﻴﻙ ﺍﻝﻼﻤﺎﺌﻲﻤﻊﻨﺴﺏﻤﺨﺘﻠﻔﺔ ١( % ٣، % ٥، % ٧، % ، ١٠ %) ﻤﻥﺍﻝﺒﻭﻝﻲﺍﻜﺭﻴﻠﻙﻋﻥﻁﺭﻴﻕﻤﺯﺝﺍﻝﻤﻨﺼﻬﺭ ﻝﻠﺒﻭﻝﻴﻤﺭﻴﻥ . ﺩﺭﺴﺕﺍﻨﺴﺠﺎﻤﻴﺔﺍﻝﺨﻼﺌﻁﺒﺎﺴﺘﺨﺩﺍﻡﺠﻬﺎﺯﻗﻴﺎﺱﺍﻝﺼﻔﺎﺕﺍﻻﻨﺴﻴﺎﺒ ﻴﺔ( ﺠﻬﺩﺍﻝﻘﻁﻊ،ﺴﺭﻋﺔﺍﻝﻘﻁﻊ ،ﺍﻝﻠﺯﻭﺠﺔ،ﺍﻨﺘﻔﺎﺥﺍﻝﻘﺎﻝﺏ ) ﻋﻨﺩﺩﺭﺠﺎﺕﺤﺭﺍﺭﺓ ٢١٠ ﻭ ٢٣٠ ﺩﺭﺠﺔﻤﺌﻭﻴﺔ،ﺇﺫﺃﻅﻬﺭﺕﺠﻤﻴﻊﺍﻝﺨﻼﺌﻁ ﺍﻨﺨﻔﺎﻀﺎﹰﻓﻲﺠﻬﺩﺍﻝﻘﻁﻊﻭﺍﻝﻠﺯﻭﺠﺔﻤﻊﺯﻴﺎﺩﺓﺴﺭﻋﺔﺍﻝﻘﻁﻊ . ﻜﺫﻝﻙﺘﻡﺤﺴﺎﺏﻁﺎﻗﺔﺍﻝﺘﻨﺸﻴﻁﻝﻠﺨﻼﺌﻁﺍﻝﻤﺤﻀﺭﺓ ﺒﺩﺭﺠﺎﺕ ﺤﺭﺍﺭﺓ ﻤﺨﺘﻠﻔﺔ ( ١٧٠ ، ١٩٠ ، ٢١٠ ، ٢٣٠ ﺩﺭﺠﺔ ﻤﺌﻭﻴﺔ ) ﺤﻴﺙ ﻝﻭﺤﻅ ﺃﻥ ﺯﻴﺎﺩﺓ ﻨﺴﺒﺔ ﺍﻝﺒﻭﻝﻲ +Receivedon6/10/2008,Acceptedon8/11/2009 *Asst.LecturerBasrahuniversity,CollegeofScience,ChemistryDepartment ** Asst.prof/TechnicalCollege,Basrah *** Lecturer / TechnicalcollegeforHealthandmedicine **** StateCompanyforPetrochemical/TechnicalCollege,Basrah ﺍﻜﺭﻴﻠﻙﻓﻲﺍﻝﺨﻠﻴﻁﻴﺅﺩﻱﺇﻝﻰﺍﻨﺨﻔﺎﺽﻓﻲﻁﺎﻗﺔﺍﻝﺘﻨﺸﻴﻁ . ﻜﻤﺎﻝﻭﺤﻅﺃﻥﺯﻴﺎﺩﺓﻨﺴﺒﺔﺍﻝﺒﻭﻝﻲﺍﻜﺭﻴﻠﻙﺒﺎﻝﺨﻠﻴﻁ ﺍﻝﺒﻭﻝﻴﻤﺭﻱ ﺃﺩﻯ ﺇﻝﻰ ﺍﻨﺨﻔﺎﺽ ﻗﻠﻴل ﻻﻨﺘﻔﺎﺥ ﺍﻝﻘﺎﻝﺏ ﺨﺎﺼﺔ ﻋﻨﺩ ﺩﺭﺠﺔ ﺤﺭﺍﺭﺓ ٢٣٠ ﺩﺭﺠﺔ ﻤﺌﻭﻴﺔ . ﺍﻝﺘﺩﺍﺨل ﻭﺍﻝﺘﺠﺎﺫﺏﺒﻴﻥﻤﺠﻤﻭﻋﺔﺤﺎﻤﺽﺍﻝﻤﺎﻝﻴ ﻙﺍﻝﻼﻤﺎﺌﻲﺍﻝﻤﻁﻌﻡﻋﻠﻰﺍﻝﺒﻭﻝﻲﺍﺜﻴﻠﻴﻥﻭﺍﻁﺊﺍﻝﻜﺜﺎﻓﺔﻭﻤﺠﻤﻭﻋﺔﺤﺎﻤﺽ ﺍﻻﻜﺭﻴﻠﻙﻓﻲﺍﻝﺒﻭﻝﻲﺍﻜﺭﻴﻠﻙ،ﺘﻡﺍﻻﺴﺘﺩﻻلﻋﻠﻴﻬﺎﺒﺎﺴﺘﺨﺩﺍﻡﺘﻘﻨﻴﺔﺍﻷﺸﻌﺔﺘﺤﺕﺍﻝﺤﻤﺭﺍﺀﺤﻴﺙﺍﺨﺘﻔﺕﺇﺤﺩﻯ ﺤﺯﻡ ﺤﺎﻤﺽ ﺍﻝﻤﺎﻝﻴﻙ ﺍﻝﻼﻤﺎﺌﻲ ﻭﻅﻬﺭﺕ ﺤﺯﻤﺔ ﻗﻭﻴﺔ ﻋﻨﺩ cm 1١٧٣٠ ﻓﻲ ﻁﻴﻑ ﺍﻝﺨﻠﻴﻁ ﺍﻝﺒﻭﻝﻴﻤﺭﻱ ١/٩ ( ﻭﺯﻥ/ ﻭﺯﻥ ) ﺒﻭﻝﻲ ﺍﺜﻴﻠﻴﻥﻤﻁﻌﻡﺒﺤﺎﻤﺽﺍﻝﻤﺎﻝﻴﻙﺍﻝﻼﻤﺎﺌﻲ / ﺒﻭﻝﻲﺍﻜﺭﻴﻠﻙ . Introduction: Mixing two or more together to produce blends or alloys is a well establishedstrategyforachievingaspecificcombinationofphysicalproperties[12] Normallyblendingisusedtocombinetheproperties of two or more polymers andisperformedinmixers.Howeveritisoftenfoundthatthematerialpropertiesare notasgoodasexpectedduetoapoorinterfacialadhesionbetweentheminorandthe majorcomponent.Thereforeaneedarisestolookforwaystoimprovethematerial properties.Manypolymerscanbedissolvedinawidespectrumof,evenif theresultingpolymersareincompatible.Monomersaremixedwithaninitiatorand then absorbed in a . After the temperature increases polymerizes andisgraftedonthepolymerchains.Graftareformed,forming in situ an alloyingagentintheminorphase,duringtheblendingprocess. Soanessentialprocessforthe in situ productionofanalloyingagentisgraftingor functionalizing the polymer chains of the dispersed phase. A popular route of functionalizing polyolefin is the use of unsaturated carboxylic derivatives. For free radical grafting some of the most interesting monomers are unsaturated carboxylic derivatives,suchasmaleicor itaconicanhydrides,andvinylicoracrylic substances containingasecondfunctionality.Maleicanhydride(MAH)hassuperiorityoverother monomersbecauseitcanhardlyhomopolimerize,butisalsoreluctanttofreeradical grafting, due to a deficiency of electrons in its double bond. This is due to the electronattracting nature of the carbonyl group, the symmetry of the double bond, andasterichindranceduetodisubstitution.Therefore various methods have been used to grafting MAH on polyethylene ,such as melt, solution[3], UV[4] and ultrasonic[5].Several research was publish on rheological properties of blends like LDPE/PP[6], Starch/LLDPE[7], PET/SBR[8] and LDPE/PA6[9]. In this study ,this MAH grafted on LDPE could be used a potential compatibilizer for LDPE /PAA blends,wherethesecondcomponentoftheblends(PAA)couldbeapolarpolymer sinceamoreeffectiveinteractionbetweentheblendcomponentscouldoccur.Weused maleatedlowdensitypolyethylene(LDPEgMAH)insteadofLDPEaloneandmixed withseveralratio(1%,3%,5%,7%and10%wt/wt)frompolyacrylicacid(PAA). For compatibility of blend between LDPEgMAH and PAA we study rheological properties (shear stress, shear rate, viscosity and die swell as well as activation energy)atdifferenttemperatures. Experimental: PolymersandChemicals Thefollowingmaterialswereused: MaleatedlowdensitypolyethyleneMFI=1.578gm/10min,Density=0.9237gm/cm 3, maleic anhydride(%MAH)=9.8 from state company for petrochemical (SCPI) (Basrah–Iraq).AcrylicacidwasobtainedfromBDHcompanyandpolymerizedto polyacrylicacidwhichofviscosityaveragemolecularweight(Mv)=1137011376). BlendsPreparation AllblendsfromLDPEgMAHandPAAwerepreparedinHaakeRheocordTorque Rheometer with a speed of 32 rpm , after LDPEgMAH melt at 165 o C several weightratio(1%,3%,5%,7%and10%wt/wt)frompolyacrylicacidwasmixed withLDPEgMAH. ForrheologicalmeasurementusedInstroncapillaryRheometermachine(thecapillary barrel diameter was 1.257mm , capillary length to diameter L/D ratio 80/9 , load weighing was constant 2000 Kg) .The blend products from LDPEgMAH / PAA werecompression–moldedasdiscs(2cmdiameter2mmthickness)for9minat175 oCunderapressure15tonandpreparedthinfilmabout0.05mmthicknessforFourier transforminfraredray(FTIR)measurementwhichisdonebyShimadzuFTIR8400S forthesamples. Resultsanddiscussion : Mechanismofcompatibility Reasons for incompatibility of LDPE / PAA blends are poor interaction adhesion betweenthetowcomponents(LDPEnonpolar,PAApolarpolymers).However,the phenomenon of compatibility can be induced in an immiscible binary system by modification the LDPE surface with polar group .Used grafted polymer (LDPEg MAH)reducetheinterfacialtensionbetweenphases,increasesthesurfaceareaofthe dispersedphase,promotesadhesionbetweenthephasecomponents,andstabilizers thedispersedphasemorphology[10]. TheLDPEgMAHwasusedinsteadoffLDPEisbasedontowfactors:(1)theester may be forming ability of anhydride group with hydroxyl group on PAA (scheme 1).(2)ThehydrogenbondformingabilitybetweencarbonylgroupsofMAHandits hydrolyzedwithcarboxylicacidonPAA. FTIRspectraoftheblendsproductandLDPEgMAH,PAApureareshowninfig. (1a) and (1b), we observed from this figure PAA bands, 3232 cm 1 to –OH carboxylic acid stretching, 1728 cm 1 for C=O group and CO bond vibration in 1288cm 1.TheLDPEgMAHspectrumshowtwosmallbandsat1890and1791cm 1 corresponded to carbonyl anhydride group and 1724 cm 1 may be to carbonyl of hydrolyzedanhydridependantgroupsonLDPEchains. ThespectraofblendLDPEgMAH/PAAinfigure(1b),allbandsshiftstosomewhat lowernumberwave.Thecarbonylgroupat1730cm 1isstrongerthanthatofPAAand LDPEgMAH spectra. The band at 1791 cm 1 for maleic anhydride (carbonyl symmetrical)disappeargraduallywithincreasePAApercentage(>1%)besidesthe 3232cm 1bandcharacteristicofhydroxylcarboxylicacidgroupofthePAAwasnot observedinthespectrumoftheblendperhapsduetoformingesterlinkage. LDP E LDP E

O O O O O meltmixing OH O In terfa c e O

OH O

PA A PA A Scheme(1) Smooth 2 Smooth 1

%T

1

1791

2

4000 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 600 11 tahseen(MALeated P.E) 1/cm Fig.(1a)FTIRspectrafor1maleatedpolyethylene(LDPEgMAH)and2polyacrylicacid (PAA) Smooth Smooth Cut Smooth 5 Smooth %T

1

2

3

4

1791

3900 3600 3300 3000 2700 2400 2100 1950 1800 1650 1500 1350 1200 1050 900 750 600 450 1tahseen1% 1/cm Fig(1b)FTIRspectraformaleatedpolyethylene(LDPEgMAH)withvariouspercentage (1)1%,(2)3%,(3)5%,(4)7%and(5)10%fromPAA Rheology: Compatibilityreferstostabilizingpolymerblendsandcloselyrelatedtoitsrheology [11],therefore,severaldatawascalculatedforLDPEgMAH/PAAblends: 1)Thewallshearstresswascalculatedfromrelationship: 5 τw =3.44*10 *Fdc/L Where τ w is the wall shear stress (K.pa.), F plunger force (Kg), dc is capillary diameter(cm),andListhelengthofthecapillary(cm). 2)Shearratewascalculatedfromthefollowingequation: 2 3 γ w =0.133[(3n+1)/4n]V XH (dB /dC ) 1 where γ w is the Shear rate (sec ) , n is the slope from thegraphofLnτ w against Ln(8V/dc),Vspeedoftheflowofthefluid,dBdiameterofthecylinder(cm),and VXH isthecrossheadspeed(cm/min). 3)Theapparentviscosityήa(Poise)wascalculatedfromequation: ήa =τ w /γ w 4)TheactivationenergyofviscousflowwasderivedfromofArrheniusequation: ή=A.e Ea/RT Whereή,viscosity;A,constant; Ea,activationenergy;T,absolutetemperature;and R,Universalgasconstant. Figures(2),(3),(4)and(5)referstocurvesofshearstressagainstshearrate(fig.2 and3)withseveralweightsratioPAAandagainst%PAAwithvariousshearrate (fig.4and 5) at temperature 210 and 230 oC. In this figures we can see the shear stress increasing with increased shear rate at the same percentage of PAA, while increasesslightlywith%PAAconstituentatshearrate(6.15,20.5,61.58,205.2and 615.8). which may be the polarity nature of maleic anhydride group grafting on LDPE produce a better interfacial adhesion of the PAA to the LDPE matrix this interaction among polar –nonpolar chains as well as hydrogen bonding formed betweenfunctionalgroupsinbothpolymersprovidedstrongchainsinblendprevent orreducefromflowing. Another way, at the low percentage of PAA the interaction between functional groupsislowthatleadtofreechainmovement,thusdecreasetheshearstress.

0% 1% 900 3% 800 5% 700 7% 10% 600 500 400 300 ShearStress( kPa) kPa) ShearStress( 200 100 0 6.15 20.526 61.58 205.269 615.8 Shear Rate (1/S) Fig.(2)CurvesshearstresswithshearrateforLDPEgMAH/PAAblendsat210oC

900 0% 800 1% 700 3% 5% 600 7% 500 10%

400

300 SearStress(kPa)

200

100

0 6.193 20.643 61.93 206.433 619.301 Shear Rate (1/S) Fig.(3)CurvesshearstresswithshearrateforLDPEgMAH/PAAblendsat230oC

ShareShear Stress Rate=6.15 ShareShear Stress Rate=20.5 ShareShear Stress Rate=61.58 900 Shear Stress 800 Share Rate=205.2 700 ShareShear Stress Rate=615.8 600 500 400 300

Shear Stress(kPa) Shear 200 100 0 0 1 3 5 7 10 %PAA Fig.(4)Effect%PAAconstituentontheshearstressofLDPEgMAH/PAAblendsatvariousshear rateandtemperature210 oC ShearShare Stress Rate=6.19 ShearShare Stress Rate=20.64 ShearShare Stress Rate=61.9 900 ShearShare Stress Rate=206.4 800 ShearShare Stress Rate=619.3 700

600

500

400

300 shear Stress(kPa) shear 200

100

0 0 1 3 5 7 10 %PAA

Fig.(5)Effect%PAAconstituentontheshearstressofLDPEgMAH/PAAblendsatvariousshear rateandtemperature230 oC Figures (6) and (7) show the apparent viscosity at various shear rates and temperature 210 and 230 o C for LDPEgMAH and its blends. The pseudoplastic behavior in the flow of all types of blends was observed. That is, the viscosity decreasedwithanincreaseintheshareratethesameresultswaspublishedat190and 170oC[11.12]. Theviscosityinthepolymerblendsdependsontheinterfaceadhesioninotherside theblendscharacteristicsasummedpropertiespolymersinthisblends[12].Figures (8)and(9)referstoincreaseofviscositywithincreasedpercentageratioofPAAin theblendsat210and230oCinthesameshearrate,inthiscase,forlowcontentthe PAA bonding and chemical interaction(dipole–dipole and/or hydrogen bonding interactions between the pendant functional groups) takes place in some LDPEg MAHchains(smallnumberofgraftedmoleculesofMAHonLDPEhere)thatleadto limited chemical bond formed in the interface LDPEgMAH/PAA properties. For higher PAAcontents,thebondingandinteractionoccurs along the polymer chains .WhileallblendsrevealedincreaseofviscositywithincreasethePAAcontent. 50 0% 45 1% 40 3% 35 5% 30 7% 10% 25 20

Viscosity Kpa.S Viscosity 15 10 5 0 6,158 20,526 61,58 205,269 615,808 Shear Rate 1/S Fig.(6)EffectofshearrateontheviscosityofLDPEgMAH/PAA Blendsat210oC.

0% 60 1% 50 3% 5% 40 7% 10% 30

20 Viscosity Kpa.S Viscosity 10

0 6.193 20.643 61.93 206.433 619.301 ShearRate 1/S Fig.(7)EffectofshearrateontheviscosityofLDPEgMAH/PAAblendsat230oC 50 ShearShara Stress Rate=6.15 45 Shearshare Stress Rate=20.5 40 Shear Stress share Rate=61.58 35 Shear Stress ShearShare Stress 30 Rate =205.2 25

20

Viscosity Kpa.S 15

10

5

0 0 1 3 5 7 10 %PAA Fig.(8)EffectofPAApercentontheviscosityofLDPEgMAH/PAAblendsatvariousshearrate and210oC

60 ShearShare Stress Rate=6.19 Shear Stress Share Rate=20.6 50 Shear Stress ShearShare Stress Rate=61.9 40 ShearShare Stress 30 Rate =206.4

Viscosity Kpa.S Viscosity 20

10

0 0 1 3 5 7 10 %PAA Fig.(9)EffectofPAApercentontheviscosityofLDPEgMAH/PAAblendsatvariousshearrate and230oC Arrheniusequationpermitsthecalculationofactivationenergiesofviscousflowfor LDPEgMAH/PAAblendsinordertotheinfluenceoftemperature.InFigures(10), (11)and(12),logarithmofviscosityisplottedasafunctionofreciprocaltemperature. Theactivationenergy( Ea)offlow,calculatedfromtheslopeoftheselines.

4

3.95

3.9 3.85 0% 3.8 1% 3.75 3% 3.7 5% ln viscosity 3.65 7% 3.6 10% 3.55

3.5

3.45 0.00225 0.00215 0.00207 0.00198 1/T Fig.(10)Theeffectofabsolutereciprocaltemperature(170,190,210and230oC)ontheviscosityof LDPEgMAH/PAAblendsatvariouspercentofPAAwhenshearrate=6.19s1

0% 1% 3 3% 5% 2.9 7% 2.8 10%

2.7

2.6 Ln Viscosity Ln 2.5

2.4 0.00225 0.00215 0.00207 0.00198 1/T Fig.(11)Theeffectofabsolutereciprocaltemperature(170,190,210and230oC)ontheviscosityof LDPEgMAH/PAAblendsatvariouspercentofPAAwhenshearrate=20.6s 1 1.4

1.2 0%

1 1% 3% 0.8 5% 0.6

ln viscosity ln 7% 0.4 10% 0.2

0 0.00225 0.00215 0.00207 0.00198 1/T Fig.(12)Theeffectofabsolutereciprocaltemperature(170,190,210and230oC)ontheviscosityof LDPEgMAH/PAAblendsatvariouspercentofPAAwhenshearrate= 206.4s 1 Fromfig.(13)wecanseethattheincreaseinPAAcontentdecreasestheactivation energyoftheLDPEgMAH/PAAformulationatshearrate (6.19,20.6and206.4 s1)andcross headspeed0.06,0.2and2cm/min),thesameresultswasreportedby Mousa[13]forPVC/NBRandalsoGeorgeandJoseph[14]whenstudiedblendof SBR/NR. 0.06 0.9 0.2 0.8 2 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Activation Energy (J/Kmol) Activation 0 0 1 3 5 7 10

%PAA content Fig.(13)TheeffectPAAcontentontheactivationenergyofLDPEgMAH/PAAblendsat0.06,0.2 and2cm/mincrossheadspeed andshearrate6.19,20.6and 206.4s 1. Dieswell: The die swell is an important parameter for determining the size of extrudate polymerproductthatleadtomeasurementofthisbehaviorbecomewidelyrecognized intheindustriesasanimportantindicationofpolymerprocessability[15]. Fig. (14) and (15) shown the effect of wt% PAA on the die swell of LDPEg MAH/PAAblendsatcrossheadspeed(0.06,0.2,0.6,2,6and20cm/min)at210and 230oC,allcurvesappearsincreasesin%PAAwasfewaffectiveonthedieswellfor blends,alsowecanseedecreasingindieswellslightlyspeciallyattemperature230 oC,maybetheincreaseofnetworkproducesarestraintofthebothpolymerchains movementduetohydrogenandchemicalbondingoccur,andinthiscase,thechains polymersoftheblendsorientationincreasethatleadtodecreasinginswellingratioof blends.

1.8 0.06 1.6 0.2 1.4 0.6 2 1.2 6 1 20 0.8

Die Swell 0.6 0.4 0.2 0 0 1 3 5 7 10 %PAA Fig.(14)showeffectpercentageweightofPAAondieswellatcrossheadspeed(0.06,0.2,0.6,2.0,6.0 and20.0cm/min)and210oC 1.6 1.4 0.06 0.2 1.2 0.6 2 1 6 0.8 20 0.6 Die Sewll Die 0.4 0.2 0 0 1 3 5 7 10 %PAA Fig.(15)showeffectpercentageweightofPAAondieswellatcrossheadspeed(0.06,0.2,0.6,2.0,6.0 and20.0cm/min)and230oC Conclution: Fromthisstudy,themaleicanhydridegraftedonLDPEpromotedinteractionand enhancementofcompatibilitybetweenLDPEandPAAinspiteofdifferentpolymers inpolaritytheFTIRshowninterfacethefunctionalgrouppeaksinbothpolymersin theblends(LDPEgMAH/PAA).Allcurvesthatdrewamongrheologicaldata,shear stress, shear rate and melt viscosity exhibited pseudoplastic behavior. When increasingtheweightratioofPAAintheblendsincreasedtheshearstress,viscosity andreducethedieswellbesidesactivationenergy. IncreasingPAAcontentintheblendcausedrestrictchainmobilityormovementdue tointeractionmaleicanhydrideonLDPEandPAAgroups,thatleadtoincreasethe activationenergyatlowershearrateespeciallyat3%PAA,butbyincreasingshear ratethatinteractionwillbedisjointedthatcausesdecreasinginactivationenergy. References: 1.WuS.,Phasestructureandadhesioninpolymerblends: A criterion for rubber toughening,Polymer, 26 ,1855,1985. 2. Triacca V.J., Ziaee S., Barlow J.W., Keskkula H. and Paul D.R.,Reactive compatibilizeation of blends of Nylon6 and ABS materials, Polymer , 32, 1401,1991. 3.MachadoA.V.,CovasJ.A.,vanDuinM.,Effectofpolyolefinstructureonmaleic anhydridegrafting, Polymer ,42, 36493655,2001 . 4. Martý ´nez J.G. ,Benavides R., Guerrero C., Reyes B.E., UV sensitization of polyethylene for grafting of maleic anhydride, and Stability , 86 ,129134,2004. 5.ZhangY.,ChenJ.andLiH.,Fictionalizationofpolyolefin'swithmaleicanhydride inmeltstatethroughultrasonicinitiation, Polymer ,47,4750–4759,2006. 6.LiC.,ZhangYongandZhangYinxi,Meltgraftingofmaleicanhydrideontolow density polyethylene/ blends, Polymer Testing , 22,191 195, 2003. 7. Wang S., Yu Jiugao. and Yu. Jinglin, Influence of maleic anhydride on the compatibility of thermal plasticized starch and linear lowdensity polyethylene, J.Appl.Poly.Sci. ,93,686695,2004. 8.SanchezSolisA.,CalderasF.,ManeroO.,Influenceofmaleicanhydridegrafting on rheological properties of polyethylene terephthalatestyrene butadiene blends, polymer ,42,7335 7342,2001. 9. Filippone G. , Netti P.A. and Acierno D., Micro structural evolutions of LDPE/PA6blendsbyrheologicalandrheoopticalanalyses:Influenceofflow andcompatibilizeronbreakupandcoalescenceprocesses, Polymer ,48 ,564 573,2007. 10 Tedesco A., Barbosa R. V.,NachtigallS.M.B.andMaulerR.S.,Comparative study of PPMA and PPGMA as compatibilizing agents on polypropylene/6blends, Polymer Testing , 21 ,1115,2002 11TahseenA.Saki"EffectoftheFunctionalGroupontheRheologicalProperties ofMLDPE/PAABlends", Iraqi Journal Polymers ,Vol.9,No.1,93106,2005 12A.A.Sultan,TahseenA.Saki,MoayadN.Khalaf,AfafS.Matooq,FaisJ. Mohammad " Rheological Study of MALDPE/PAA Blend " , National Journal of Chemistry , 26,284294,2007 13. Mousa A., Studies on rheological behaviour of elstomer derived from PVC and SBR using torque rheometry, Iran. Polym. J., 13 , 455461, 2004. 14.GeorgeR.S.andJosephR.,TheUtilizationofWasteLatexProductsinStyrene ButadieneRubber, Iran. Polym. J ., 5,199 205 , 1996 . 15.CheremisinoffN.P.,PolymerMixingandExtrusionTechnology,MarcelDekker, INC.NewYork,1987.