Structures for Epistemic Logic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Logic, Reasoning, and Revision
Logic, Reasoning, and Revision Abstract The traditional connection between logic and reasoning has been under pressure ever since Gilbert Harman attacked the received view that logic yields norms for what we should believe. In this paper I first place Harman’s challenge in the broader context of the dialectic between logical revisionists like Bob Meyer and sceptics about the role of logic in reasoning like Harman. I then develop a formal model based on contemporary epistemic and doxastic logic in which the relation between logic and norms for belief can be captured. introduction The canons of classical deductive logic provide, at least according to a widespread but presumably naive view, general as well as infallible norms for reasoning. Obviously, few instances of actual reasoning have such prop- erties, and it is therefore not surprising that the naive view has been chal- lenged in many ways. Four kinds of challenges are relevant to the question of where the naive view goes wrong, but each of these challenges is also in- teresting because it allows us to focus on a particular aspect of the relation between deductive logic, reasoning, and logical revision. Challenges to the naive view that classical deductive logic directly yields norms for reason- ing come in two sorts. Two of them are straightforwardly revisionist; they claim that the consequence relation of classical logic is the culprit. The remaining two directly question the naive view about the normative role of logic for reasoning; they do not think that the philosophical notion of en- tailment (however conceived) is as relevant to reasoning as has traditionally been assumed. -
Semantical Investigations
Bulletin of the Section of Logic Volume 49/3 (2020), pp. 231{253 http://dx.doi.org/10.18778/0138-0680.2020.12 Satoru Niki EMPIRICAL NEGATION, CO-NEGATION AND THE CONTRAPOSITION RULE I: SEMANTICAL INVESTIGATIONS Abstract We investigate the relationship between M. De's empirical negation in Kripke and Beth Semantics. It turns out empirical negation, as well as co-negation, corresponds to different logics under different semantics. We then establish the relationship between logics related to these negations under unified syntax and semantics based on R. Sylvan's CC!. Keywords: Empirical negation, co-negation, Beth semantics, Kripke semantics, intuitionism. 1. Introduction The philosophy of Intuitionism has long acknowledged that there is more to negation than the customary, reduction to absurdity. Brouwer [1] has al- ready introduced the notion of apartness as a positive version of inequality, such that from two apart objects (e.g. points, sequences) one can learn not only they are unequal, but also how much or where they are different. (cf. [19, pp.319{320]). He also introduced the notion of weak counterexample, in which a statement is reduced to a constructively unacceptable principle, to conclude we cannot expect to prove the statement [17]. Presented by: Andrzej Indrzejczak Received: April 18, 2020 Published online: August 15, 2020 c Copyright for this edition by UniwersytetL´odzki, L´od´z2020 232 Satoru Niki Another type of negation was discussed in the dialogue of Heyting [8, pp. 17{19]. In it mathematical negation characterised by reduction to absurdity is distinguished from factual negation, which concerns the present state of our knowledge. -
Epistemic Modality, Mind, and Mathematics
Epistemic Modality, Mind, and Mathematics Hasen Khudairi June 20, 2017 c Hasen Khudairi 2017, 2020 All rights reserved. 1 Abstract This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as con- cerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality relates to the compu- tational theory of mind; metaphysical modality; deontic modality; the types of mathematical modality; to the epistemic status of undecidable proposi- tions and abstraction principles in the philosophy of mathematics; to the apriori-aposteriori distinction; to the modal profile of rational propositional intuition; and to the types of intention, when the latter is interpreted as a modal mental state. Each essay is informed by either epistemic logic, modal and cylindric algebra or coalgebra, intensional semantics or hyperin- tensional semantics. The book’s original contributions include theories of: (i) epistemic modal algebras and coalgebras; (ii) cognitivism about epistemic modality; (iii) two-dimensional truthmaker semantics, and interpretations thereof; (iv) the ground-theoretic ontology of consciousness; (v) fixed-points in vagueness; (vi) the modal foundations of mathematical platonism; (vii) a solution to the Julius Caesar problem based on metaphysical definitions availing of notions of ground and essence; (viii) the application of epistemic two-dimensional semantics to the epistemology of mathematics; and (ix) a modal logic for rational intuition. I develop, further, a novel approach to conditions of self-knowledge in the setting of the modal µ-calculus, as well as novel epistemicist solutions to Curry’s and the liar paradoxes. -
Introduction Nml:Syn:Int: Modal Logic Deals with Modal Propositions and the Entailment Relations Among Sec Them
syn.1 Introduction nml:syn:int: Modal logic deals with modal propositions and the entailment relations among sec them. Examples of modal propositions are the following: 1. It is necessary that 2 + 2 = 4. 2. It is necessarily possible that it will rain tomorrow. 3. If it is necessarily possible that ' then it is possible that '. Possibility and necessity are not the only modalities: other unary connectives are also classified as modalities, for instance, \it ought to be the case that '," \It will be the case that '," \Dana knows that '," or \Dana believes that '." Modal logic makes its first appearance in Aristotle's De Interpretatione: he was the first to notice that necessity implies possibility, but not vice versa; that possibility and necessity are inter-definable; that If ' ^ is possibly true then ' is possibly true and is possibly true, but not conversely; and that if ' ! is necessary, then if ' is necessary, so is . The first modern approach to modal logic was the work of C. I. Lewis,cul- minating with Lewis and Langford, Symbolic Logic (1932). Lewis & Langford were unhappy with the representation of implication by means of the mate- rial conditional: ' ! is a poor substitute for \' implies ." Instead, they proposed to characterize implication as \Necessarily, if ' then ," symbolized as ' J . In trying to sort out the different properties, Lewis identified five different modal systems, S1,..., S4, S5, the last two of which are still in use. The approach of Lewis and Langford was purely syntactical: they identified reasonable axioms and rules and investigated what was provable with those means. -
On the Logic of Two-Dimensional Semantics
Matrices and Modalities: On the Logic of Two-Dimensional Semantics MSc Thesis (Afstudeerscriptie) written by Peter Fritz (born March 4, 1984 in Ludwigsburg, Germany) under the supervision of Dr Paul Dekker and Prof Dr Yde Venema, and submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of MSc in Logic at the Universiteit van Amsterdam. Date of the public defense: Members of the Thesis Committee: June 29, 2011 Dr Paul Dekker Dr Emar Maier Dr Alessandra Palmigiano Prof Dr Frank Veltman Prof Dr Yde Venema Abstract Two-dimensional semantics is a theory in the philosophy of language that pro- vides an account of meaning which is sensitive to the distinction between ne- cessity and apriority. Usually, this theory is presented in an informal manner. In this thesis, I take first steps in formalizing it, and use the formalization to present some considerations in favor of two-dimensional semantics. To do so, I define a semantics for a propositional modal logic with operators for the modalities of necessity, actuality, and apriority that captures the relevant ideas of two-dimensional semantics. I use this to show that some criticisms of two- dimensional semantics that claim that the theory is incoherent are not justified. I also axiomatize the logic, and compare it to the most important proposals in the literature that define similar logics. To indicate that two-dimensional semantics is a plausible semantic theory, I give an argument that shows that all theorems of the logic can be philosophically justified independently of two-dimensional semantics. Acknowledgements I thank my supervisors Paul Dekker and Yde Venema for their help and encour- agement in preparing this thesis. -
Contextual Epistemic Logic Manuel Rebuschi, Franck Lihoreau
Contextual Epistemic Logic Manuel Rebuschi, Franck Lihoreau To cite this version: Manuel Rebuschi, Franck Lihoreau. Contextual Epistemic Logic. C. Degrémont, L. Keiff & H. Rückert. Dialogues, Logics and Other Strange Things. Essays in Honour of Shahid Rahman, King’s College Publication, pp.305-335, 2008, Tributes. hal-00133359 HAL Id: hal-00133359 https://hal.archives-ouvertes.fr/hal-00133359 Submitted on 11 Jan 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Contextual Epistemic Logic Manuel Rebuschi Franck Lihoreau L.H.S.P. – Archives H. Poincar´e Instituto de Filosofia da Linguagem Universit´eNancy 2 Universidade Nova de Lisboa [email protected] [email protected] Abstract One of the highlights of recent informal epistemology is its growing theoretical emphasis upon various notions of context. The present paper addresses the connections between knowledge and context within a formal approach. To this end, a “contextual epistemic logic”, CEL, is proposed, which consists of an extension of standard S5 epistemic modal logic with appropriate reduction axioms to deal with an extra contextual operator. We describe the axiomatics and supply both a Kripkean and a dialogical semantics for CEL. -
Principles of Knowledge, Belief and Conditional Belief Guillaume Aucher
Principles of Knowledge, Belief and Conditional Belief Guillaume Aucher To cite this version: Guillaume Aucher. Principles of Knowledge, Belief and Conditional Belief. Interdisciplinary Works in Logic, Epistemology, Psychology and Linguistics, pp.97 - 134, 2014, 10.1007/978-3-319-03044-9_5. hal-01098789 HAL Id: hal-01098789 https://hal.inria.fr/hal-01098789 Submitted on 29 Dec 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Principles of knowledge, belief and conditional belief Guillaume Aucher 1 Introduction Elucidating the nature of the relationship between knowledge and belief is an old issue in epistemology dating back at least to Plato. Two approaches to addressing this problem stand out from the rest. The first consists in providing a definition of knowledge, in terms of belief, that would somehow pin down the essential ingredient binding knowledge to belief. The second consists in providing a complete characterization of this relationship in terms of logical principles relating these two notions. The accomplishement of either of these two objectives would certainly contribute to solving this problem. The success of the first approach is hindered by the so-called ‘Gettier problem’. Until recently, the view that knowledge could be defined in terms of belief as ‘justified true belief’ was endorsed by most philosophers. -
Implicit Versus Explicit Knowledge in Dialogical Logic Manuel Rebuschi
Implicit versus Explicit Knowledge in Dialogical Logic Manuel Rebuschi To cite this version: Manuel Rebuschi. Implicit versus Explicit Knowledge in Dialogical Logic. Ondrej Majer, Ahti-Veikko Pietarinen and Tero Tulenheimo. Games: Unifying Logic, Language, and Philosophy, Springer, pp.229-246, 2009, 10.1007/978-1-4020-9374-6_10. halshs-00556250 HAL Id: halshs-00556250 https://halshs.archives-ouvertes.fr/halshs-00556250 Submitted on 16 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Implicit versus Explicit Knowledge in Dialogical Logic Manuel Rebuschi L.P.H.S. – Archives H. Poincar´e Universit´ede Nancy 2 [email protected] [The final version of this paper is published in: O. Majer et al. (eds.), Games: Unifying Logic, Language, and Philosophy, Dordrecht, Springer, 2009, 229-246.] Abstract A dialogical version of (modal) epistemic logic is outlined, with an intuitionistic variant. Another version of dialogical epistemic logic is then provided by means of the S4 mapping of intuitionistic logic. Both systems cast new light on the relationship between intuitionism, modal logic and dialogical games. Introduction Two main approaches to knowledge in logic can be distinguished [1]. The first one is an implicit way of encoding knowledge and consists in an epistemic interpretation of usual logic. -
On the Unusual Effectiveness of Proof Theory in Epistemology
WORKSHOP ON RECENT TRENDS IN PROOF THEORY, Bern, July 9-11, 2008 On the unusual effectiveness of proof theory in epistemology Sergei Artemov The City University of New York Bern, July 11, 2008 This is a report about the extending the ideas and methods of Proof Theory to a new, promising area. It seems that this is a kind of development in which Proof Theory might be interested. This is a report about the extending the ideas and methods of Proof Theory to a new, promising area. It seems that this is a kind of development in which Proof Theory might be interested. Similar stories about what the Logic of Proofs brings to foundations, constructive semantics, combinatory logic and lambda-calculi, the- ory of verification, cryptography, etc., lie mostly outside the scope of this talk. Mainstream Epistemology: tripartite approach to knowledge (usually attributed to Plato) Knowledge Justified True Belief. ∼ A core topic in Epistemology, especially in the wake of papers by Russell, Gettier, and others: questioned, criticized, revised; now is generally regarded as a necessary condition for knowledge. Logic of Knowledge: the model-theoretic approach (Kripke, Hin- tikka, . .) has dominated modal logic and formal epistemology since the 1960s. F F holds at all possible worlds (situations). ! ∼ Logic of Knowledge: the model-theoretic approach (Kripke, Hin- tikka, . .) has dominated modal logic and formal epistemology since the 1960s. F F holds at all possible worlds (situations). ! ∼ Easy, visual, useful in many cases, but misses the mark considerably: What if F holds at all possible worlds, e.g., a mathematical truth, say P = NP , but the agent is simply not aware of the fact due to " lack of evidence, proof, justification, etc.? Logic of Knowledge: the model-theoretic approach (Kripke, Hin- tikka, . -
Interactions of Metaphysical and Epistemic Concepts
Interactions of metaphysical and epistemic concepts Th`esepr´esent´ee`ala Facult´edes lettres et sciences humaines Universit´ede Neuchˆatel- CH Pour l’obtention du grade de docteur `eslettres Par Alexandre Fernandes Batista Costa Leite Accept´eesur proposition du jury: Prof. Jean-Yves B´eziau, Universit´ede Neuchˆatel, directeur de th`ese Prof. Pascal Engel, Universit´ede Gen`eve, rapporteur Prof. Paul Gochet, Universit´ede Li`ege,rapporteur Prof. Arnold Koslow, The City University of New York, rapporteur Soutenue le 03 Juillet 2007 Universit´ede Neuchˆatel 2007 lnlTT Faculté des lettres et sciences humaines Le doyen r EspaceLouis-Agassiz 1 I CH-2000Neuchâtel IMPRIMATUR La Facultédes lettreset scienceshumaines de I'Universitéde Neuchâtel,sur les rapportsde Mon- sieurJean-Yves Béziau, directeur de thèse,professeur assistant de psychologieà I'Université de Neu- châtel; M. PascalEngel, professeur à I'Universitéde Genève; M. Paul Gochet,professeur à I'Universitéde Liège;M. ArnoldKoslow, professeur à CityUniversity of NewYork autorise I'impres- sionde la thèseprésentée par Monsieur Alexandre Costa Leite, en laissantà I'auteurla responsabilité desopinions énoncées. .\A \.\ i \,^_ Neuchâtel,le 3 juillet2007 Le doyen J.-J.Aubert r Téléphone'.+41 32718 17 0O r Fax: +4132718 17 01 . E-mail: [email protected] www.unine.ch/lettres Abstract This work sets out the results of research on topics at the intersection of logic and philosophy. It shows how methods for combining logics can be applied to the study of epistemology and metaphysics. In a broader per- spective, it investigates interactions of modal concepts in order to create a bridge between metaphysics and epistemology. -
Intuitionistic Modal Logic IS5 Formalizations, Interpretation, Analysis
Uniwersytet Wroclawski Wydzia lMatematyki i Informatyki Instytut Informatyki Intuitionistic Modal Logic IS5 Formalizations, Interpretation, Analysis Agata Murawska A Master's Thesis written under the supervision of Ma lgorzataBiernacka Wroclaw, May 2013 1 2 Abstract IS5 is an intuitionistic variant of S5 modal logic, one of the normal modal logics, with accessibility relation defined as an equivalence. In this thesis we formalize two known variants of natural deduction systems for IS5 along with their corresponding languages. First, the syntactically pure IS5LF vari- ant that does not name the modal worlds, is due to Galmiche and Sahli. The second one, IS5L, using world names (labels) in inference rules and in terms of its language, is due to Tom Murphy et al. For each of the languages accompanying these logics we prove standard properties such as progress and preservation. We show the connection be- tween these languages via a series of type-preserving transformations of terms and contexts. Finally, we give a proof of termination for the call-by-name strategy of evaluation using logical relations method. The formalization of all of the above properties is done in Coq1 proof assistant. In particular, the proof of termination allows { via Curry-Howard isomorphism { to extract the evaluator in OCaml from the proof. Our contributions include providing a term language LIS5-LF for IS5LF, as well as creating an in-between logic IS5Hyb and the corresponding language LIS5-Hyb, used when showing the connection between LIS5-L and LIS5-LF. For the former language we formalize the termination of call-by-name evaluation strategy. 1The Coq development is available at author's github page, http://github.com/ Ayertienna/IS5. -
Probabilistic Semantics for Modal Logic
Probabilistic Semantics for Modal Logic By Tamar Ariela Lando A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Philosophy in the Graduate Division of the University of California, Berkeley Committee in Charge: Paolo Mancosu (Co-Chair) Barry Stroud (Co-Chair) Christos Papadimitriou Spring, 2012 Abstract Probabilistic Semantics for Modal Logic by Tamar Ariela Lando Doctor of Philosophy in Philosophy University of California, Berkeley Professor Paolo Mancosu & Professor Barry Stroud, Co-Chairs We develop a probabilistic semantics for modal logic, which was introduced in recent years by Dana Scott. This semantics is intimately related to an older, topological semantics for modal logic developed by Tarski in the 1940’s. Instead of interpreting modal languages in topological spaces, as Tarski did, we interpret them in the Lebesgue measure algebra, or algebra of measurable subsets of the real interval, [0, 1], modulo sets of measure zero. In the probabilistic semantics, each formula is assigned to some element of the algebra, and acquires a corresponding probability (or measure) value. A formula is satisfed in a model over the algebra if it is assigned to the top element in the algebra—or, equivalently, has probability 1. The dissertation focuses on questions of completeness. We show that the propo- sitional modal logic, S4, is sound and complete for the probabilistic semantics (formally, S4 is sound and complete for the Lebesgue measure algebra). We then show that we can extend this semantics to more complex, multi-modal languages. In particular, we prove that the dynamic topological logic, S4C, is sound and com- plete for the probabilistic semantics (formally, S4C is sound and complete for the Lebesgue measure algebra with O-operators).