2019 IUCN SSC Afrotheria SG Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SDG Indicator Metadata (Harmonized Metadata Template - Format Version 1.0)
Last updated: 4 January 2021 SDG indicator metadata (Harmonized metadata template - format version 1.0) 0. Indicator information 0.a. Goal Goal 15: Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss 0.b. Target Target 15.5: Take urgent and significant action to reduce the degradation of natural habitats, halt the loss of biodiversity and, by 2020, protect and prevent the extinction of threatened species 0.c. Indicator Indicator 15.5.1: Red List Index 0.d. Series 0.e. Metadata update 4 January 2021 0.f. Related indicators Disaggregations of the Red List Index are also of particular relevance as indicators towards the following SDG targets (Brooks et al. 2015): SDG 2.4 Red List Index (species used for food and medicine); SDG 2.5 Red List Index (wild relatives and local breeds); SDG 12.2 Red List Index (impacts of utilisation) (Butchart 2008); SDG 12.4 Red List Index (impacts of pollution); SDG 13.1 Red List Index (impacts of climate change); SDG 14.1 Red List Index (impacts of pollution on marine species); SDG 14.2 Red List Index (marine species); SDG 14.3 Red List Index (reef-building coral species) (Carpenter et al. 2008); SDG 14.4 Red List Index (impacts of utilisation on marine species); SDG 15.1 Red List Index (terrestrial & freshwater species); SDG 15.2 Red List Index (forest-specialist species); SDG 15.4 Red List Index (mountain species); SDG 15.7 Red List Index (impacts of utilisation) (Butchart 2008); and SDG 15.8 Red List Index (impacts of invasive alien species) (Butchart 2008, McGeoch et al. -
Critically Endangered - Wikipedia
Critically endangered - Wikipedia Not logged in Talk Contributions Create account Log in Article Talk Read Edit View history Critically endangered From Wikipedia, the free encyclopedia Main page Contents This article is about the conservation designation itself. For lists of critically endangered species, see Lists of IUCN Red List Critically Endangered Featured content species. Current events A critically endangered (CR) species is one which has been categorized by the International Union for Random article Conservation status Conservation of Nature (IUCN) as facing an extremely high risk of extinction in the wild.[1] Donate to Wikipedia by IUCN Red List category Wikipedia store As of 2014, there are 2464 animal and 2104 plant species with this assessment, compared with 1998 levels of 854 and 909, respectively.[2] Interaction Help As the IUCN Red List does not consider a species extinct until extensive, targeted surveys have been About Wikipedia conducted, species which are possibly extinct are still listed as critically endangered. IUCN maintains a list[3] Community portal of "possibly extinct" CR(PE) and "possibly extinct in the wild" CR(PEW) species, modelled on categories used Recent changes by BirdLife International to categorize these taxa. Contact page Contents Tools Extinct 1 International Union for Conservation of Nature definition What links here Extinct (EX) (list) 2 See also Related changes Extinct in the Wild (EW) (list) 3 Notes Upload file Threatened Special pages 4 References Critically Endangered (CR) (list) Permanent -
Amblysomus Robustus – Robust Golden Mole
Amblysomus robustus – Robust Golden Mole continuing decline and possible severe fragmentation of habitat. Currently known from only five locations but probably more widespread. Further field surveys and molecular data are needed to accurately delimit its range. The Highveld grasslands favoured by this species are being degraded by mining for shallow coal deposits to fuel numerous power stations that occur in the preferred high-altitude grassland habitats of this species, which is an inferred major threat. Rehabilitation attempts at these sites appear to have been largely ineffective. These power stations form the backbone of South Africa's electricity network, and disturbance is likely to increase as human populations grow and the demand for power increases. While no mining sites and power generation plants occur at the five localities where this species has been collected, an environmental authorisation application to mine coal at a site near Belfast, close to where this species occurs, is Gary Bronner currently being assessed. Given the ubiquity of mines and power stations in the Mpumalanga grasslands, impacts on this species are likely if it is more widespread than current Regional Red List status (2016) Vulnerable B1ab(iii)* records indicate, which seems probable. Farming, tourism National Red List status (2004) Endangered resort developments and agro-forestry (exotic pine and B1,2ab(i-iv) eucalyptus plantations) have also transformed habitat, but less dramatically; these do not appear to pose a major Reasons for change Non-genuine: threat. More data is required on the distribution limits, New information ecology, densities and reproduction of this species. Global Red List status (2015) Vulnerable B1ab(iii) TOPS listing (NEMBA) None Distribution CITES listing None Endemic to South Africa, this species is known from only the Steenkampsberg Mountain Plateau and in the Endemic Yes Dullstroom and Belfast areas of Mpumalanga (Figure 1), extending eastwards to Lydenburg and possibly *Watch-list Data southwards towards the Ermelo district where A. -
Lagenodelphis Hosei – Fraser's Dolphin
Lagenodelphis hosei – Fraser’s Dolphin Assessment Rationale The species is suspected to be widespread and abundant and there have been no reported population declines or major threats identified that could cause a range-wide decline. Globally, it has been listed as Least Concern and, within the assessment region, it is not a conservation priority and therefore, the regional change from Data Deficient to Least Concern reflects the lack of major threats to the species. The most prominent threat to this species globally may be incidental capture in fishing gear and, although this is not considered a major threat to this species in the assessment region, Fraser’s Dolphins have become entangled in anti-shark nets off South Africa’s east coast. This threat should be monitored. Regional Red List status (2016) Least Concern Regional population effects: Fraser’s Dolphin has a widespread, pantropical distribution, and although its National Red List status (2004) Data Deficient seasonal migration patterns in southern Africa remain Reasons for change Non-genuine change: inconclusive, no barriers to dispersal have been New information recognised, thus rescue effects are possible. Global Red List status (2012) Least Concern TOPS listing (NEMBA) (2007) None Distribution The distribution of L. hosei is suggested to be pantropical CITES listing (2003) Appendix II (Robison & Craddock 1983), and is widespread across the Endemic No Pacific and Atlantic Oceans (Ross 1984), and the species has been documented in the Indian Ocean off South This species is occasionally Africa’s east coast (Perrin et al. 1973), in Sri Lanka misidentified as the Striped Dolphin (Stenella (Leatherwood & Reeves 1989), Madagascar (Perrin et al. -
AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group
AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group Number 10 Edited by PJ Stephenson September 2014 Afrotherian Conservation is published annually by the Speaking of our website, it was over ten years old IUCN Species Survival Commission Afrotheria Specialist and suffering from outdated material and old technology, Group to promote the exchange of news and inform- making it very difficult to maintain. Charles Fox, who ation on the conservation of, and applied research into, does our web maintenance at a hugely discounted cost golden moles, sengis, hyraxes, tenrecs and the aardvark. (many thanks Charles), has reworked the site, especially the design of the home page and conservation page Published by IUCN, Gland, Switzerland. (thanks to Rob Asher for his past efforts with the latter © 2014 International Union for Conservation of Nature material, which is still the basis for the new conservation and Natural Resources page). Because some of the hyrax material was dated, Lee ISSN: 1664-6754 Koren and her colleagues completely updated the hyrax material, and we have now linked our websites. A similar Find out more about the Group on our website at update is being discussed by Tom Lehmann and his http://afrotheria.net/ASG.html and follow us on colleagues for the aardvark link. The sengi web material is Twitter @Tweeting_Tenrec largely unchanged, with the exception of updating various pages to accommodate the description of a new species from Namibia (go to the current topics tab in the Message from the Chair sengi section). Galen Rathbun Although a lot of effort has focused on our Chair, IUCN/SSC Afrotheria Specialist Group group's education goals (logo, website, newsletter), it has not over-shadowed one of the other major functions that There has been a long time gap since our last newsletter our specialist group performs: the periodic update of the was produced in October 2012. -
Afrotherian Conservation – Number 16
AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group Number 16 Edited by PJ Stephenson September 2020 Afrotherian Conservation is published annually by the measure the effectiveness of SSC’s actions on biodiversity IUCN Species Survival Commission Afrotheria Specialist conservation, identification of major new initiatives Group to promote the exchange of news and information needed to address critical conservation issues, on the conservation of, and applied research into, consultations on developing policies, guidelines and aardvarks, golden moles, hyraxes, otter shrews, sengis and standards, and increasing visibility and public awareness of tenrecs. the work of SSC, its network and key partners. Remarkably, 2020 marks the end of the current IUCN Published by IUCN, Gland, Switzerland. quadrennium, which means we will be dissolving the © 2020 International Union for Conservation of Nature membership once again in early 2021, then reassembling it and Natural Resources based on feedback from our members. I will be in touch ISSN: 1664-6754 with all members at the relevant time to find out who wishes to remain a member and whether there are any Find out more about the Group people you feel should be added to our group. No one is on our website at http://afrotheria.net/ASG.html automatically re-admitted, however, so you will all need to and on Twitter @Tweeting_Tenrec actively inform me of your wishes. We will very likely need to reassess the conservation status of all our species during the next quadrennium, so get ready for another round of Red Listing starting Message from the Chair sometime in the not too distant future. -
Informes Individuales IUCN 2018.Indd
IUCN SSC Afrotheria Specialist Group 2018 Report Galen Rathbun Andrew Taylor Co-Chairs Mission statement of golden moles in species where it is neces- Galen Rathbun (1) The IUCN SSC Afrotheria Specialist Group (ASG) sary (e.g., Amblysomus and Neamblysomus Andrew Taylor (2) facilitates the conservation of hyraxes, aard- species); (3) collect basic data for 3-4 golden varks, elephant-shrews or sengis, golden moles, mole species, including geographic distributions Red List Authority Coordinator tenrecs and their habitats by: (1) providing and natural history data; (4) conduct surveys to determine distribution and abundance of Matthew Child (3) sound scientific advice and guidance to conser- vationists, governments, and other inter- five hyrax species; (5) revise taxonomy of five hyrax species; (6) develop and assess field trials Location/Affiliation ested groups; (2) raising public awareness; for standardised camera trapping methods (1) California Academy of Sciences, and (3) developing research and conservation to determine population estimates for giant California, US programmes. sengis; (7) conduct surveys to assess distribu- (2) The Endangered Wildlife Trust, tion, abundance, threats and taxonomic status Modderfontein, Johannesburg, South Africa Projected impact for the 2017-2020 of the Data Deficient sengi species; (8) build on (3) South African National Biodiversity Institute quadrennium current research to determine the systematics (SANBI), Kirstenbosch National Botanical If the ASG achieved all of its targets, it would be of giant sengis, especially Rhynchocyon Garden, Newlands Cape Town, South Africa able to deliver more accurate, data-driven Red species; (9) survey Aardvark (Orycteropus afer) List assessments for more Afrotherian species populations to determine abundance, distribu- Number of members and, therefore, be in a better position to move tion and trends; (10) conduct taxonomic studies 34 to conservation planning, especially for priority to determine the systematics of aardvarks, with species. -
The Adapted Ears of Big Cats and Golden Moles: Exotic Outcomes of the Evolutionary Radiation of Mammals
FEATURED ARTICLE The Adapted Ears of Big Cats and Golden Moles: Exotic Outcomes of the Evolutionary Radiation of Mammals Edward J. Walsh and JoAnn McGee Through the process of natural selection, diverse organs and organ systems abound throughout the animal kingdom. In light of such abundant and assorted diversity, evolutionary adaptations have spawned a host of peculiar physiologies. The anatomical oddities that underlie these physiologies and behaviors are the telltale indicators of trait specialization. Following from this, the purpose of this article is to consider a number of auditory “inventions” brought about through natural selection in two phylogenetically distinct groups of mammals, the largely fossorial golden moles (Order Afrosoricida, Family Chrysochloridae) and the carnivorous felids of the genus Panthera along with its taxonomic neigh- bor, the clouded leopard (Neofelis nebulosa). In the Beginning The first vertebrate land invasion occurred during the Early Carboniferous period some 370 million years ago. The primitive but essential scaffolding of what would become the middle and inner ears of mammals was present at this time, although the evolution of the osseous (bony) middle ear system and the optimization of cochlear fea- tures and function would play out over the following 100 million years. Through natural selection, the evolution of the middle ear system, composed of three small articu- lated bones, the malleus, incus, and stapes, and a highly structured and coiled inner ear, came to represent all marsupial and placental (therian) mammals on the planet Figure 1. Schematics of the outer, middle, and inner ears (A) and thus far studied. The consequences of this evolution were the organ of Corti in cross section (B) of a placental mammal. -
Chromosomal Evolution in Tenrecs (Microgale and Oryzorictes, Tenrecidae) from the Central Highlands of Madagascar
Chromosome Research (2007) 15:1075–1091 # Springer 2007 DOI: 10.1007/s10577-007-1182-6 Chromosomal evolution in tenrecs (Microgale and Oryzorictes, Tenrecidae) from the Central Highlands of Madagascar C. Gilbert1, S. M. Goodman2,3, V. Soarimalala3,4, L. E. Olson5,P.C.M.O_Brien6, F. F. B. Elder7, F. Yang8, M. A. Ferguson-Smith6 & T. J. Robinson1* 1Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa; Tel: +27-21-8083955; Fax: +27-21-8082405; E-mail: [email protected]; 2Department of Zoology, Field Museum of Natural History, Lake Shore Drive, Chicago, IL, USA; 3Vahatra, BP 738, Antananarivo (101), Madagascar; 4De´partement de Biologie Animale, Universite´ d_Antananarivo, BP 906, Antananarivo (101), Madagascar; 5University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, USA; 6Centre for Veterinary Science, University of Cambridge, Cambridge, UK; 7Department of Pathology, Cytogenetics Laboratory, UT Southwestern Medical Center, Dallas, TX, USA; 8The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK *Correspondence Received 13 August 2007. Received in revised form and accepted for publication by Pat Heslop-Harrison 2 October 2007 Key words: Afrotheria, cytogenetics, evolution, speciation, Tenrecidae Abstract Tenrecs (Tenrecidae) are a widely diversified assemblage of small eutherian mammals that occur in Madagascar and Western and Central Africa. With the exception of a few early karyotypic descriptions based on conventional staining, nothing is known about the chromosomal evolution of this family. We present a detailed analysis of G-banded and molecularly defined chromosomes based on fluorescence in situ hybridization (FISH) that allows a comprehensive comparison between the karyotypes of 11 species of two closely related Malagasy genera, Microgale (10 species) and Oryzorictes (one species), of the subfamily Oryzorictinae. -
Zeitschrift Für Säugetierkunde)
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Mammalian Biology (früher Zeitschrift für Säugetierkunde) Jahr/Year: 1990 Band/Volume: 55 Autor(en)/Author(s): Bronner G., Jones Elizabeth, Coetzer D. Artikel/Article: Hyoid-dentary articulations in golden moles (Mammalia: Insectivora; Chrysochloridae) 11-15 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ Z. Säugetierkunde 55 (1990) 11-15 © 1990 Verlag Paul Parey, Hamburg und Berlin ISSN 0044-3468 Hyoid-dentary articulations in golden moles (Mammalia: Insectivora; Chrysochloridae) By G. Bronner, Elizabeth Jones and D. J. Coetzer Department of Mammals, Transvaal Museum, and Department of Anatomy, University of Pretoria, Pretoria, South Africa Receipt of Ms. 14. 4. 1988 Abstract Studied the general structure, topography and possible functions of the hyoid region in nine golden mole species. Unusual in-situ articulations between the enlarged stylohyal bones, and the dentaries, were found in all specimens examined. Osteological evidence suggests that hyoid-dentary articulation is an unique anatomical feature characteristic of all chrysochlorids. Its apparent functions are to enhance manipulatory action of, and support for, the tongue during prey handling and mastication, but this remains to be confirmed. Introduction Hyoid-mandible articulations occur in some osteichthyian fishes (de Beer 1937; Hilde- brand 1974), but have never been recorded in higher vertebrates. Improved museum preservation techniques recently enabled us to detect conspicuous articulation between the large stylohyal bone and the dentary in the Hottentot golden mole Amblysomus hotten- totus (A. Smith, 1829). Further investigation revealed that hyoid-dentary articulation (Fig. 1) in situ is an unique characteristic of all chrysochlorids. -
Guidelines for Appropriate Uses of Iucn Red List Data
GUIDELINES FOR APPROPRIATE USES OF IUCN RED LIST DATA Incorporating, as Annexes, the 1) Guidelines for Reporting on Proportion Threatened (ver. 1.1); 2) Guidelines on Scientific Collecting of Threatened Species (ver. 1.0); and 3) Guidelines for the Appropriate Use of the IUCN Red List by Business (ver. 1.0) Version 3.0 (October 2016) Citation: IUCN. 2016. Guidelines for appropriate uses of IUCN Red List Data. Incorporating, as Annexes, the 1) Guidelines for Reporting on Proportion Threatened (ver. 1.1); 2) Guidelines on Scientific Collecting of Threatened Species (ver. 1.0); and 3) Guidelines for the Appropriate Use of the IUCN Red List by Business (ver. 1.0). Version 3.0. Adopted by the IUCN Red List Committee. THE IUCN RED LIST OF THREATENED SPECIES™ GUIDELINES FOR APPROPRIATE USES OF RED LIST DATA The IUCN Red List of Threatened Species™ is the world’s most comprehensive data resource on the status of species, containing information and status assessments on over 80,000 species of animals, plants and fungi. As well as measuring the extinction risk faced by each species, the IUCN Red List includes detailed species-specific information on distribution, threats, conservation measures, and other relevant factors. The IUCN Red List of Threatened Species™ is increasingly used by scientists, governments, NGOs, businesses, and civil society for a wide variety of purposes. These Guidelines are designed to encourage and facilitate the use of IUCN Red List data and information to tackle a broad range of important conservation issues. These Guidelines give a brief introduction to The IUCN Red List of Threatened Species™ (hereafter called the IUCN Red List), the Red List Categories and Criteria, and the Red List Assessment process, followed by some key facts that all Red List users need to know to maximally take advantage of this resource. -
(Mammalia) from the Eocene of Black Crow, Namibia Martin PICKFORD
Tiny Tenrecomorpha (Mammalia) from the Eocene of Black Crow, Namibia Martin PICKFORD Sorbonne Universités (CR2P, MNHN, CNRS, UPMC - Paris VI) 8, rue Buffon, 75005, Paris, France, (e-mail : [email protected]) Abstract: The 2019 campaign of acid treatment of Eocene freshwater limestone from Black Crow, Namibia, resulted in the recovery of a minuscule mandible of an insectivoran-grade mammal representing a new genus and species of Tenrecomorpha. The specimen is the smallest mammal described from the fossil record from Africa. From the incisor alveoli to the rear end of the angle, the jaw measures a mere 8.6 mm. The jaw is relatively complete, but has lost the incisors, canine and p/2. It shows several characters that link it to the suborder Tenrecomorpha. In some morphological features it recalls Tenrecidae, in others Potamogalidae. The new genus and species throws doubt on the homogeneity of the order Afroinsectiphilia, which in its turn renders doubtful the concept of Afrotheria as currently understood. Key words: Tenrec, Ypresian/Lutetian, Mandible, Namibia To cite this paper: Pickford, M. 2019. Tiny Tenrecomorpha (Mammalia) from the Eocene of Black Crow, Namibia. Communications of the Geological Survey of Namibia, 21, 15-25. Introduction This paper is devoted to the description and Each year the Namibia Palaeontology interpretation of a minuscule mammalian Expedition has visited the locality to search for mandible from the middle Eocene limestones at blocks of limestone showing the presence of Black Crow, Namibia. The freshwater bones and teeth on their surfaces and these have limestone at Black Crow in the Sperrgebiet, been developed in the laboratory to extract the Namibia, first yielded vertebrate fossils a fossils.