Hot Start Taq and Beyond

Total Page:16

File Type:pdf, Size:1020Kb

Hot Start Taq and Beyond be INSPIRED FEATURE ARTICLE drive DISCOVERY stay GENUINE Using aptamers to control enzyme activities: Hot Start Ta q and beyond by Nicole M. Nichols, Ph.D. and Nathan A. Tanner, Ph.D., New England Biolabs, Inc. As molecular biology and diagnostic applications have become more demanding and more restrictive, high temperature condition – a sensitive, the ability to control enzymatic activities, and therefore reaction specificity, so-called “hot start” reaction. This method has naturally followed. Biotechnological innovations have led to several “hot start” worked, but required the user to open reaction tubes and make very small volume additions, a approaches to control of DNA polymerases, enabling the spread of PCR from the labor-intensive and contamination-prone process. lab to the clinic with precise enzyme activation. Though powerful, these traditional Subsequent methods aimed to improve upon methods typically require long activation times and very high temperature incubations this approach included sequestering reaction that are incompatible with essential enzymes like reverse transcriptases. The aptamer- components with wax layers or beads (3). This based hot start approach involves the selection of specific, modified aptamers for was also effective, but was not widely adopted by control of any enzymatic target of interest, even those that can’t tolerate the extreme the research community. temperatures of PCR. NEB’s selection of aptamers targeted to RTs and isothermal The next generation of hot start methods, still polymerases has enabled the first “warm start” enzymes that can be used in RT-qPCR in use today, didn’t involve physical removal and isothermal amplification. Control of enzyme activities remains a critical feature for or exclusion, but instead focused on covalent demanding nucleic acid amplification methods, and the use of aptamer technology and non-covalent enzyme interactions or modifications to block activity. The most common brings the benefits of hot start/warm start enzymes to the next generation of rapid, of these methods involved the development of sensitive, and even isothermal molecular tests. an antibody specific to Taq Polymerase, which renders Taq inactive at room temperature, but denatures and dissociates from the enzyme INTRODUCTION INCREASING after the initial, high-temperature denaturation The polymerase chain reaction (PCR) is a REACTION SPECIFICITY step (4,5). Antibody-based Hot Start Taq widely used technique, and the foundation Early methods focused on the exclusion of key (Ab-Taq) addressed many of the concerns with of numerous diagnostic applications that reaction components to mitigate undesired prior approaches, and soon became a popular seek to detect minute amounts of DNA via activity at low temperature. As the temperature option for anyone looking to increase reaction exponential amplification. Successful PCR was increased, any missing components (e.g., specificity. However, original Ab-Taq offerings requires a number of components, including polymerase, cofactor) could be spiked into utilized animal-derived antibodies (increasing a DNA polymerase capable of tolerating high the mixture, triggering the reaction under a the possibility of reaction contamination) and temperature incubations (94°C or higher) that occur during a typical thermal cycling protocol. Taq DNA Polymerase, originally isolated from Thermus aquaticus, is most commonly used in FIGURE 1: PCR assays (1). In the early stages of PCR Monitoring hot start effectiveness via reaction specificity development, it became clear that reaction A. To assess reaction specificity, primers that create a stable, primer-dimer product via 3 complementary bases at their 3´ ends were used in PCR with specificity impacted experimental success (2). Taq or Hot Start Taq. Like many non-proofreading Family A DNA B. Post reaction melt-temp analysis demonstrates the presence of the non specific product only in the absence of template (NTC) for the Hot Start Taq polymerases, Taq Polymerase possesses the reactions (purple curve, right) but reaction specificity is observed at all other inputs. However, in the absence of a hot start mechanism (left), primer- ability to add bases onto the end of ssDNA in a dimer product can be observed with two lower input concentrations as well as in the NTC sample. Reactions (25 µl) contained 0.2 µM primers. non-template-dependent manner (i.e., terminal A 5´ 3´ transferase activity). This activity is present, CAG 100 ng gDNA 0.1 ng gDNA 10 ng gDNA NTC even at room temperature, and can result in the 3´ GTC 5´ 1 ng gDNA addition of non-specific bases onto the ends of DNA primers in the reaction, enabling them B to bind to undesired locations on the DNA Melt temperature Melt temperature and reducing overall reaction specificity. In 200 contrast, at higher temperatures, nonspecific 200 binding is reduced as annealing becomes more 150 stringent. As PCR applications became more 150 complex and demanding, preventing this low 100 100 temperature activity became critically important -d(RFU)/dT -d(RFU)/dT to increasing reaction specificity, and numerous 50 50 techniques and methods have been employed to achieve this protection. 0 0 60 70 80 90 60 70 80 90 Temperature (˚C) Temperature (˚C) continued on page 2... 1 were limited in commercial practice to those with a license; it was not surprising that other FIGURE 2: solutions continued to appear in the marketplace. Target specificity of commercially-available Ta q products The most successful of these alternatives was Endpoint PCR analysis of various Hot Start Taq polymerases on human genomic DNA amplicons. Triplicate reactions were conducted according the use of chemicals to reversibly modify amino to manufacturer’s recommendations in the buffer supplied with each enzyme. Input template concentration (20 ng), number of PCR cycles (30) and source of dNTPs (NEB) were held constant for all reactions. Products were quantitated by microfluidic LabChip® analysis and specificity of the final acid side chains of the polymerase (6). Initial product was calculated as % purity of the expected amplicon. work in this area yielded effective results, but came at a cost: the enzyme could clearly be A. B. C. D. E. inactivated but required long activation times at 500 bp, 47% GC 550 bp, 55% GC 650 bp, 46% GC 1 kb, 27% GC 1.1 kb, 55% GC Repetitive primers CpG island HIV co-receptor High AT target Repetitive target very high temperatures to reactivate, and even CCR5 then, only a fraction of the initial protein activity 100 could be restored. Advances in this approach, namely changes to the covalent side chain 90 modifications, have resulted in improved versions of chemically-based Hot Start Taq (Chem-Taq), 80 with shorter activation times (4 minutes instead of 10–15 minutes). The increased potential of 70 inducing DNA damage and the persistent need to add significant amounts of protein may have 60 kept this approach from becoming more widely employed. Purity (% of Total DNA) 50 DEVELOPMENT OF APTAMER- 40 BASED APPROACH DELIVERS ADDITIONAL IMPROVEMENTS 30 A number of years ago, NEB investigated the use of aptamers to impart hot start activation of Hot Start Ta q (NEB) AmpliTaq Gold® 360 (Invitrogen) Platinum® Ta q (Invitrogen) FastStart Ta q (Roche) our enzymes. Generally, aptamers are engineered Hot Start Ta q 2X GoTaq® Hot Start (Promega) HotStarTaq® (Qiagen) oligonucleotides that bind to a specific target Master Mix (NEB) JumpStart™ Taq (Sigma) Maxima Hot Start Taq (Thermo) molecule through non-covalent interactions. SOMAmers, the aptamer-based technology developed by SomaLogic that we have further adapted for use in our products, include specific also for reaction specificity. For example, one negative samples, such as in workflows that nucleobase modifications that can improve assay includes an excess of off-target DNA in the include a significant delay between interrogation inhibition profiles and/or reduce unintended reaction and results in the production of multiple of the first and the last samples of a set (e.g., side effects (7,8). As with previously-designed amplicons in the presence of non-Hot Start Taq, strip-tubes, 96-well plates, or droplet digital Taq inhibitors, the Taq aptamer evolved and but only a single, target product in the presence PCR). The second major difference lies in the engineered by NEB also inhibited polymerase of the aptamer-based Hot Start Taq (NEB- release of inhibition. Whereas Ab-Taq and activity at room temperature. This function can HSTaq). Another assay employed at NEB includes Chem-Taq are only activated once the reaction be monitored by a variety of assays that include two primers that contain three complementary temperature is raised to 94–95°C, the aptamer read-outs not just for polymerase activity, but bases at the 3´ end of each primer (9). These in NEB-HSTaq dissociates from the polymerase “poor” primers can serve as a substrate for Taq, at much lower temperatures (Tm = approximately and even in the presence of additional input 45°C), eliminating the need for a specific high DNA, can generate a clear primer-dimer product temperature activation step, and enabling faster TABLE 1: in the presence of Taq alone. However, in the protocols (Table 1). Furthermore, reaction Polymerase activation times presence of NEB-HSTaq, only the desired target- specificity is not impaired (Figure 2). The DNA HOT START ACTIVATION specific product is observed (Figure 1, page 1). benefits of an aptamer-based hot start approach POLYMERASE METHOD TIME* Although the main function of an aptamer- can be seen in the numerous NEB products that AmpliTaq Gold® 360 Chem 10 min. based inhibitor is similar to other hot start contain NEB-HSTaq, from the flexible OneTaq (Applied Biosystems) mechanisms, there are some key differences family of routine PCR products, to the recently- Platinum® Taq (Invitrogen) Ab 30 sec. between NEB-HSTaq and either Chem-Taq or released Luna products that support best-in-class qPCR and RT-qPCR performance. Hot Start Taq (NEB) Aptamer None Ab-Taq.
Recommended publications
  • Aptamer-Mediated Cancer Gene Therapy Dongxi Xiang , Sarah
    Aptamer-Mediated Cancer Gene Therapy Dongxi Xiang1*, Sarah Shigdar 1*, Greg Qiao2, Shu-Feng Zhou3, Yong Li4, Ming Q Wei5, 6 1 7 8 9** Liang Qiao , Hadi Al.Shamaileh , Yimin Zhu , Conglong Zheng , Chunwen Pu and Wei Duan1** 1School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria, 3217, Australia. 2 Department of Chemical and Biomolecular Engineering, Melbourne School of Engineering The University of Melbourne, Parkville, Victoria 3010, Australia 3Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA. 4Cancer Care Centre, St George Hospital, Kogarah, NSW2217, and St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, NSW2052, Australia 5Division of Molecular and Gene Therapies, Griffith Health Institute and School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia 6Storr Liver Unit, at the Westmead Millennium Institute, the University of Sydney at the Westmead Hospital, Westmead NSW, 2145, Australia 7Suzhou Key Laboratory of Nanobiomedicine, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, China, 215123 8Department of Biology, Medical College, Dalian University, Liaoning, People’s Republic of China 9The Affiliated Zhongshan Hospital of Dalian University, 6 Jiefang Road, Dalian, Liaoning, The People's Republic of China, 116001. 1 * These authors contributed equally. ** Corresponding authors: E-mail: [email protected] (C. Pu); or [email protected] (W. Duan). 2 Abstract Cancer as a genetic disorder is one of the leading causes of death worldwide. Conventional anticancer options such as chemo- and/or radio-therapy have their own drawbacks and could not provide a cure in most cases at present.
    [Show full text]
  • Lab-On-A-Chip Systems for Aptamer-Based Biosensing
    micromachines Review Lab-on-a-Chip Systems for Aptamer-Based Biosensing Niazul I. Khan 1 and Edward Song 1,2,* 1 Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, USA; [email protected] 2 Materials Science Program, University of New Hampshire, Durham, NH 03824, USA * Correspondence: [email protected]; Tel.: +1-603-862-5498 Received: 6 January 2020; Accepted: 17 February 2020; Published: 20 February 2020 Abstract: Aptamers are oligonucleotides or peptides that are selected from a pool of random sequences that exhibit high affinity toward a specific biomolecular species of interest. Therefore, they are ideal for use as recognition elements and ligands for binding to the target. In recent years, aptamers have gained a great deal of attention in the field of biosensing as the next-generation target receptors that could potentially replace the functions of antibodies. Consequently, it is increasingly becoming popular to integrate aptamers into a variety of sensing platforms to enhance specificity and selectivity in analyte detection. Simultaneously, as the fields of lab-on-a-chip (LOC) technology, point-of-care (POC) diagnostics, and personal medicine become topics of great interest, integration of such aptamer-based sensors with LOC devices are showing promising results as evidenced by the recent growth of literature in this area. The focus of this review article is to highlight the recent progress in aptamer-based biosensor development with emphasis on the integration between aptamers and the various forms of LOC devices including microfluidic chips and paper-based microfluidics. As aptamers are extremely versatile in terms of their utilization in different detection principles, a broad range of techniques are covered including electrochemical, optical, colorimetric, and gravimetric sensing as well as surface acoustics waves and transistor-based detection.
    [Show full text]
  • Real-Time PCR for Direct Aptamer Quantification on Functionalized
    www.nature.com/scientificreports OPEN Real-time PCR for direct aptamer quantifcation on functionalized graphene surfaces Viviane C. F. dos Santos1,2*, Nathalie B. F. Almeida1,2, Thiago A. S. L. de Sousa1, Eduardo N. D. Araujo3, Antero S. R. de Andrade2 & Flávio Plentz1 In this study, we develop a real-time PCR strategy to directly detect and quantify DNA aptamers on functionalized graphene surfaces using a Staphylococcus aureus aptamer (SA20) as demonstration case. We show that real-time PCR allowed aptamer quantifcation in the range of 0.05 fg to 2.5 ng. Using this quantitative technique, it was possible to determine that graphene functionalization with amino modifed SA20 (preceded by a graphene surface modifcation with thionine) was much more efcient than the process using SA20 with a pyrene modifcation. We also demonstrated that the functionalization methods investigated were selective to graphene as compared to bare silicon dioxide surfaces. The precise quantifcation of aptamers immobilized on graphene surface was performed for the frst time by molecular biology techniques, introducing a novel methodology of wide application. DNA (deoxyribonucleic acid) aptamers are single strand oligonucleotides that presents high afnity and speci- fcity to their binders1. In comparison with traditional ligands, such as antibodies, aptamers present some advan- tages. Tey are chemically stable, cost-efective, more resistant to pH and temperature variations, and are more fexible in the design of their structures2. Due to these characteristics, they have great potential as sensing compo- nents in diagnostic and detection assays. Biosensor platforms based on DNA aptamers are more stable for storage and transport than the antibodies counterparts2.
    [Show full text]
  • Design Strategies for Aptamer-Based Biosensors
    Sensors 2010, 10, 4541-4557; doi:10.3390/s100504541 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Design Strategies for Aptamer-Based Biosensors Kun Han 1,2, Zhiqiang Liang 3 and Nandi Zhou 1,4,* 1 Department of Biochemistry and National Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China 2 Suzhou Institute of Biomedical Engineering Technology, Chinese Academy of Science, Suzhou 215163, China; E-Mail: [email protected] 3 Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China; E-Mail: [email protected] 4 School of Biotechnology and the Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-510-8591-8116; Fax: +86-510-8591-8116. Received: 11 February 2010; in revised form: 1 April 2010 / Accepted: 4 April 2010 / Published: 4 May 2010 Abstract: Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications.
    [Show full text]
  • Highly Specific, Multiplexed Isothermal Pathogen Detection with Fluorescent Aptamer Readout
    Downloaded from rnajournal.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Highly specific, multiplexed isothermal pathogen detection with fluorescent aptamer readout LAUREN M. AUFDEMBRINK,1 PAVANA KHAN,1 NATHANIEL J. GAUT,2 KATARZYNA P. ADAMALA,1,2 and AARON E. ENGELHART1,2 1Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA 2Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA ABSTRACT Isothermal, cell-free, synthetic biology-based approaches to pathogen detection leverage the power of tools available in biological systems, such as highly active polymerases compatible with lyophilization, without the complexity inherent to live-cell systems, of which nucleic acid sequence based amplification (NASBA) is well known. Despite the reduced complex- ity associated with cell-free systems, side reactions are a common characteristic of these systems. As a result, these systems often exhibit false positives from reactions lacking an amplicon. Here we show that the inclusion of a DNA duplex lacking a promoter and unassociated with the amplicon fully suppresses false positives, enabling a suite of fluorescent aptamers to be used as NASBA tags (Apta-NASBA). Apta-NASBA has a 1 pM detection limit and can provide multiplexed, multicolor fluorescent readout. Furthermore, Apta-NASBA can be performed using a variety of equipment, for example, a fluores- cence microplate reader, a qPCR instrument, or an ultra-low-cost Raspberry Pi-based 3D-printed detection platform using a cell phone camera module, compatible with field detection. Keywords: NASBA; T7 RNA polymerase; fluorescent aptamer; isothermal amplification; pathogen detection INTRODUCTION cally monitored by expensive oligonucleotide probes or nonspecific DNA intercalating dyes (Arya et al.
    [Show full text]
  • Download Article (PDF)
    DNA and RNA Nanotechnology 2015; 2: 42–52 Mini review Open Access Martin Panigaj*, Jakob Reiser Aptamer guided delivery of nucleic acid-based nanoparticles DOI 10.1515/rnan-2015-0005 Evolution of Ligands by Exponential enrichment) [4,5]. Received July 15, 2015; accepted October 3, 2015 Nucleic acid-based aptamers are especially well suited Abstract: Targeted delivery of bioactive compounds is a for the delivery of nucleic acid-based therapeutics. Any key part of successful therapies. In this context, nucleic nucleic acid with therapeutic potential can be linked acid and protein-based aptamers have been shown to to an aptamer sequence [6], resulting in a bivalent bind therapeutically relevant targets including receptors. molecule endowed with a targeting aptamer moiety and In the last decade, nucleic acid-based therapeutics a functional RNA/DNA moiety like a small interfering coupled to aptamers have emerged as a viable strategy for RNA (siRNA), a micro RNA (miRNA), a miRNA antagonist cell specific delivery. Additionally, recent developments (antimiR), deoxyribozymes (DNAzymes), etc. In addition in nucleic acid nanotechnology offer an abundance of to the specific binding, many aptamers upon receptor possibilities to rationally design aptamer targeted RNA recognition elicit antagonistic or agonistic responses that, or DNA nanoparticles involving combinatorial use of in combination with conjugated functional nucleic acids various intrinsic functionalities. Although a host of issues have the potential of synergism. Since the first report including stability, safety and intracellular trafficking describing an aptamer-siRNA delivery approach in 2006 remain to be addressed, aptamers as simple functional many functional RNAs and DNAs conjugated to aptamer chimeras or as parts of multifunctional self-assembled sequences have been tested in vitro and in vivo [7-9].
    [Show full text]
  • Characterization of a Bifunctional Synthetic RNA Aptamer
    www.nature.com/scientificreports OPEN Characterization of A Bifunctional Synthetic RNA Aptamer and A Truncated Form for Ability to Inhibit Growth of Non-Small Cell Lung Cancer Hanlu Wang1,2, Meng Qin2,3, Rihe Liu1,4, Xinxin Ding1,5, Irvin S. Y. Chen6 & Yongping Jiang1,2* An in vitro-transcribed RNA aptamer (trans-RA16) that targets non-small cell lung cancer (NSCLC) was previously identifed through in vivo SELEX. Trans-RA16 can specifcally target and inhibit human NCI-H460 cells in vitro and xenograft tumors in vivo. Here, in a follow-up study, we obtained a chemically-synthesized version of this RNA aptamer (syn-RA16) and a truncated form, and compared them to trans-RA16 for abilities to target and inhibit NCI-H460 cells. The syn-RA16, preferred for drug development, was by design to difer from trans-RA16 in the extents of RNA modifcations by biotin, which may afect RA16’s anti-tumor efects. We observed aptamer binding to NCI-H460 cells with KD values of 24.75 ± 2.28 nM and 12.14 ± 1.46 nM for syn-RA16 and trans-RA16, respectively. Similar to trans-RA16, syn-RA16 was capable of inhibiting NCI-H460 cell viability in a dose-dependent manner. IC50 values were 118.4 nM (n = 4) for syn-RA16 and 105.7 nM (n = 4) for trans-RA16. Further studies using syn-RA16 demonstrated its internalization into NCI-H460 cells and inhibition of NCI-H460 cell growth. Moreover, in vivo imaging demonstrated the gradual accumulation of both syn-RA16 and trans-RA16 at the grafted tumor site, and qRT-PCR showed high retention of syn-RA16 in tumor tissues.
    [Show full text]
  • DNA and Peptide Aptamer Selection for Diagnostic Applications
    DNA and Peptide Aptamer Selection for Diagnostic Applications vorgelegt von Diplom-Ingenieurin Janine Michel aus Berlin Von der Fakultät III – Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Ingenieurwissenschaften -Dr.-Ing.- genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Leif-A. Garbe Berichter: Prof. Dr. Jens Kurreck Berichter: PD Dr. Andreas Nitsche Tag der wissenschaftlichen Aussprache: 27.09.2013 Berlin 2013 D83 To Olaf and my loving family, especially to grandpa Bernd. I miss you! I Acknowledgments This work would have been impossible to complete without the help of many persons, including colleagues, family, and friends. Since there are so many of them I cannot acknowledge every single contribution by name, but I would like to thank everyone who helped me through this demanding and challenging but interesting time, regardless of the type of support. Above all, I would like to thank Andreas Nitsche for giving me the opportunity to do my PhD project and for the continuous support. Many thanks go to my dear colleagues Lilija Miller and Daniel Stern who helped me especially in the beginning of this project. Thank you for introducing me to the basics of phage display and aptamers and for the fruitful and valuable scientific discussions and for frequent encouragement. I am grateful to Lilija Miller who helped me with phage display selections and subsequent peptide characterizations. Further, I would like to thank all members of the ZBS1 group for the friendly atmosphere and the company during lunch. A considerable contribution was made by students I supervised during my PhD project. Carolin Ulbricht, Daniel John and Alina Sobiech contributed to the “DNA aptamer selection and characterization project” during their bachelor’s thesis, internships, and master’s thesis, respectively.
    [Show full text]
  • Rnase-H-Based Assays Utilizing Modified Rna
    (19) TZZ ¥_T (11) EP 2 279 263 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12Q 1/68 (2006.01) 04.09.2013 Bulletin 2013/36 (86) International application number: (21) Application number: 09739895.2 PCT/US2009/042454 (22) Date of filing: 30.04.2009 (87) International publication number: WO 2009/135093 (05.11.2009 Gazette 2009/45) (54) RNASE-H-BASED ASSAYS UTILIZING MODIFIED RNA MONOMERS TESTS AUF RNASE-H-BASIS MIT MODIFIZIERTEN RNA-MONOMEREN DOSAGES À BASE DE RNASE-H UTILISANT DES MONOMÈRES D’ARN MODIFIÉS (84) Designated Contracting States: • ROSE, Scott AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Coralville, IA 52241 (US) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • DOBOSY, Joseph PT RO SE SI SK TR Coralville, IA 52241 (US) (30) Priority: 30.04.2008 US 49204 P (74) Representative: Grünecker, Kinkeldey, Stockmair & Schwanhäusser (43) Date of publication of application: Leopoldstrasse 4 02.02.2011 Bulletin 2011/05 80802 München (DE) (60) Divisional application: (56) References cited: 13173388.3 EP-A- 1 367 136 WO-A-01/21813 13173389.1 WO-A-03/074724 WO-A-2004/059012 13173390.9 WO-A-2007/062495 WO-A2-2005/021776 13173391.7 WO-A2-2007/141580 US-A- 5 744 308 US-A- 5 830 664 (73) Proprietor: Integrated Dna Technologies, Inc. Coralville, IA 52241 (US) • ITAYA M ET AL: "Molecular cloning of a ribonuclease H (RNase HI) gene from an extreme (72) Inventors: thermophile Thermus thermophilus HB8: a • WALDER, Joseph, Alan thermostable RNase H can functionally replace Chicago, IL 60645 (US) the Escherichia coli enzyme in vivo." NUCLEIC • BEHLKE, Mark, Aaron ACIDS RESEARCH 25 AUG 1991, vol.
    [Show full text]
  • An Insight Into Aptamer–Protein Complexes
    ISSN: 2514-3247 Aptamers, 2018, Vol 2, 55–63 MINI-REVIEW An insight into aptamer–protein complexes Anastasia A Novoseltseva1,2,*, Elena G Zavyalova1,2, Andrey V Golovin2,3, Alexey M Kopylov1,2 1Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia; 2Apto-Pharm Ltd., Moscow, Russia; 3Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia *Correspondence to: Anastasia Novoseltseva, Email: [email protected], Tel: +749 59393149, Fax: +749 59393181 Received: 04 May 2018 | Revised: 12 July 2018 | Accepted: 23 August 2018 | Published: 24 August 2018 © Copyright The Author(s). This is an open access article, published under the terms of the Creative Commons Attribu- tion Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0). This license permits non-commercial use, distribution and reproduction of this article, provided the original work is appropriately acknowledged, with correct citation details. ABSTRACT A total of forty-five X-ray structures of aptamer–protein complexes have been resolved so far. We uniformly analysed a large dataset using common aptamer parameters such as the type of nucleic acid, aptamer length and presence of chemical modifications, and the various parameters of complexes such as interface area, number of polar contacts and Gibbs free energy change. For the overall aptamer dataset, Gibbs free energy change was found to have no correlation with the interface area or with the number of polar contacts. The elements of the dataset with heterogeneous parameters were clustered, providing a possibility to reveal structure–affinity relationship, SAR. Complexes with DNA aptamers and RNA aptamers had the same charac- teristics.
    [Show full text]
  • Routine Characterization of DNA Aptamer Affinity to Recombinant Protein Targets Ilavarasi Gandhi, Research Assistant, Base Pair Biotechnologies, Inc., George W
    InteractIons • sPrInG 2012 Routine Characterization of DNA Aptamer Affinity to Recombinant Protein Targets Ilavarasi Gandhi, Research Assistant, Base Pair Biotechnologies, Inc., George W. Jackson, Ph.D., Founder and Chief Scientist, Base Pair Biotechnologies, Inc. Nucleic acid aptamers are high affinity, ing to a variety of targets such as proteins, tion of the protein itself requires less total high-selectivity ligands produced in vitro by a peptides, and even small molecules with affin- protein, but immobilization (primarily through process commonly known as SELEX . While the ity and specificity rivaling that of antibodies . lysine residues) may be perturbing to protein selection of DNA and RNA aptamers has been They are typically selected in vitro by a process epitopes and may require protein-to-protein described for some time, the SELEX process commonly referred to as SELEX 1, 2 . The initial optimization depending on the nature of was traditionally performed against a single randomized library applied to an immobilized the target . Ultimately, both approaches are target at a time requiring weeks to months target comprises approximately 1015 unique complementary and we therefore present for successful execution . We have developed oligonucleotide sequences of 30–40 bases in facile protocols for each below . a proprietary process for multiplexing SELEX length bracketed by constant regions for PCR to discover aptamers against multiple targets priming . The output of the process is therefore METHOD 1: APTAMER simultaneously, thereby greatly
    [Show full text]
  • Aptamers: Smart Synthetic Molecule of Unlimited Potential
    Aptamers: Smart synthetic molecule of unlimited potential. While antibodies can be made to limited antigens, there may oligonucleotide is primarily due to the base composition led be an Aptamer for every substance provided one has the intra-molecular hybridization that initiates folding to a strategy to find it. Aptamers could function as antibodies; particular molecular shape. This molecular shape assists in play the role of a protein or enzyme, acts as a catalyst or an binding through shape specific recognition to it targets inhibitor. Aptamers are short synthetic piece of DNA, RNA, leading to considerable three dimensional structure stability or peptide. Most interesting aspect of Aptamers is their and thus the high degree of affinity. potential use as ‘Chemical or Synthetic Antibodies”. Aptamers offer powerful alternatives to monoclonal Theoretically it is possible to engineer and select aptamers antibodies in therapeutics, diagnostics, drugs and vaccine virtually against any molecular target; aptamers have been development. Aptamers are opening new avenues that were selected for small molecules (e.g. ATP), peptides (Hisx6), not possible with antibodies or chemical drugs. Aptamers proteins (Erythropoietin or EPO) as well as whole viruses and are routinely and reliably produced in labs with DNA/Peptide bacteria. Aptamers can distinguish between closely related synthesizers in bulk quantities. Therefore, there is no safety but non-identical members of a protein family, or between concern due to the use of animal or cell lines, animal or different functional or conformational states of the same human-derived by products. Their low cost, stability, and protein. In a striking example of specificity, an aptamer to the safety profiles are even more attractive for big Pharma, small molecule theophylline (1,3-dimethylxanthine) binds with Biotech and Vaccine companies.
    [Show full text]