Isolated Carbonate Bodies Composed of Stacked Debris-Flow Deposits on a Fine-Grained Carbonate Lower Slope of Devonian Age, Antelope Peak, Elko County, Nevada

Total Page:16

File Type:pdf, Size:1020Kb

Isolated Carbonate Bodies Composed of Stacked Debris-Flow Deposits on a Fine-Grained Carbonate Lower Slope of Devonian Age, Antelope Peak, Elko County, Nevada Isolated Carbonate Bodies Composed of Stacked Debris-Flow Deposits on a Fine-Grained Carbonate Lower Slope of Devonian Age, Antelope Peak, Elko County, Nevada U.S. GEOLOGICAL SURVEY BULLETIN 1988-E ".- -.' '.: - . .- ". ' : - ' ' ' ' .- -: '.' '-'' --'''''"''~'"""'"''' ''" AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications re­ leased prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may no longer be available. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices listed below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey offices, all of general interest (such as leaflets, pamphlets, booklets), single of which are authorized agents of the Superintendent of Docu­ copies of Earthquakes & Volcanoes, Preliminary Determination of ments. Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from ANCHORAGE, Alaska-Rm. 101,4230 University Dr. U.S. Geological Survey, Map Distribution LAKEWOOD, Colorado-Federal Center, Bldg. 810 Box 25286, MS 306, Federal Center Denver, CO 80225 MENLO PARK, California-Bldg. 3, Rm. 3128, 345 Middlefield Rd. Subscriptions to periodicals (Earthquakes & Volcanoes and Preliminary Determination of Epicenters) can be obtained ONLY RESTON, Virginia-USGS National Center, Rm. 1C402, from the 12201 Sunrise Valley Dr. Superintendent of Documents SALT LAKE CITY, Utah-Federal Bldg., Rm. 8105, Government Printing Office 125 South State St. Washington, DC 20402 SPOKANE, Washington-U.S. Post Office Bldg., Rm. 135, (Check or money order must be payable to Superintendent of West 904 Riverside Ave. Documents.) WASHINGTON, D.C.-Main Interior Bldg., Rm. 2650, Maps 18th and C Sts., NW. For maps, address mail orders to Maps Only U S. Geological Survey, Map Distribution Maps may be purchased over the counter at the following Box 25286, Bldg. 810, Federal Center U.S. Geological Survey offices: Denver, CO 80225 Residents of Alaska may order maps from FAIRBANKS, Alaska-New Federal Bldg, 101 Twelfth Ave. U.S. Geological Survey, Earth Science Information Center ROLLA, Missouri-1400 Independence Rd. 101 Twelfth Ave., Box 12 Fairbanks, AK 99701 STENNIS SPACE CENTER, Mississippi-Bldg. 3101 Isolated Carbonate Bodies Composed of Stacked Debris-Flow Deposits on a Fine-Grained Carbonate Lower Slope of Devonian Age, Antelope Peak, Elko County, Nevada By Peter M. Sheehan, John M. Pandolfi, and Keith B. Ketner EVOLUTION OF SEDIMENTARY BASINS EASTERN GREAT BASIN Harry E. Cook and Christopher J. Potter, Project Coordinators U.S. GEOLOGICAL SURVEY BULLETIN 1988-E A multidisciplinary approach to research studies of sedimentary rocks and their constituents and the evolution of sedimentary basins, both ancient and modern UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1993 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Robert M. Hirsch, Acting Director For sale by USGS Map Distribution Box 25286, Building 810 Denver Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Library of Congress Cataloging-in-Publication Data Sheehan, Peter M. Isolated carbonate bodies composed of stacked debris-flow deposits on a fine-grained carbonate lower slope of Devonian age, Antelope Peak, Elko County, Nevada / by Peter M. Sheehan, John M. Pandolfi, and Keith B. Ketner. p. cm. (U.S. Geological Survey bulletin ; 1988-E) (Evolution of sedimentary basins Eastern Great Basin ; ch. E) Includes bibliographical references. Supt.ofDocs.no.: I 19.3: 1988E 1. Rocks. Carbonate Nevada Elko County. 2. Geology, Stratigraphic Devonian. 3. Geology Nevada Elko County. I. Pandolfi, John M. II. Ketner, Keith Brindley, 1921- . III. Title. IV. Series. V. Series: Evolution of sedimentary basins Eastern Great Basin ; ch. E. QE75.B9 no. 1988-E [QE471.15.C3] 557.3 s dc20 93-3544 [552'.58'0979316] CIP CONTENTS Abstract................................................................................................................................. El Introduction........................................................................................................................... 1 Geologic Setting................................................................................................................... 2 Regional Geologic History................................................................................................... 3 The Carbonate Slope at Antelope Peak................................................................................ 4 Lower Part of the Roberts Mountains Formation....................................................... 4 Upper Part of the Roberts Mountains Formation....................................................... 5 Setting of the Roberts Mountains Formation.............................................................. 6 The Isolated Carbonate Bodies............................................................................................. 6 Origin of the Isolated Carbonate Bodies.............................................................................. 7 References Cited................................................................................................................... 9 FIGURES 1. Photographs showing carbonate body hosted in fine-grained, thin-bedded calcareous turbidites............................. E2 2. Map showing position of Silurian and Devonian carbonate-platform margin........................................................... 2 3. Sediment logs of slope deposits.................................................................................................................................. 4 4. Photographs showing calcareous slope turbidites....................................................................................................... 5 5. Sediment log of the largest carbonate body................................................................................................................ 7 6,7. Photographs showing: 6. Matrix-supported, disorganized conglomerates................................................................................................... 8 7. Large clasts from matrix-supported conglomerates ............................................................................................ 9 8. Schematic drawing showing reconstruction of the Devonian platform to basin transition........................................ 10 TABLE 1. Thickness of matrix-supported conglomerate beds and size of largest clasts in four intervals in the carbonate body described in figure 5.................................................................................................................................................... E7 Hi Isolated Carbonate Bodies Composed of Stacked Debris-Flow Deposits on a Fine-Grained Carbonate Lower Slope of Devonian Age, Antelope Peak, Elko County, Nevada By Peter M. Sheehan,1 John M. Pandolfi,2 and Keith B. Ketner3 ABSTRACT composed of stacks of numerous carbonate mud-supported sediment gravity-flow deposits. The Roberts Mountains Formation at Antelope Peak in Resedimented material deposited near carbonate shelf northeastern Nevada contains Lower Devonian isolated car­ margins is commonly derived from line sources (Schlager bonate bodies in a predominantly thin-bedded carbonate-tur- and Chermak, 1979). Line sources produce slope deposits bidi te sequence. The largest of five exposed bodies is 600 m in broad aprons arrayed parallel to the shelf margin (Cook wide and 47 m high. The turbidites that enclose the bodies and others, 1972, 1983; Cook and Mullins, 1983; Mullins, were deposited on an outer carbonate apron near the margin 1983; Mullins and others, 1984; Mullins and Cook, 1986). of a basin. The carbonate bodies are composed of as many as The aprons commonly are composed of grain flows, debris 150 discrete, matrix-supported conglomerate beds, each of flows, turbidites and periplatform ooze. In contrast, non- which was deposited by a separate debris-flow event. Clasts carbonate slopes are characterized by point sources; fans in the conglomerate beds are as much as 90 cm in diameter of sediment radiate from canyons that are fed clastic mate­ and were derived from the shallow carbonate shelf. Clasts rial by rivers and longshore currents (Mutti and Ricci Luc- include angular carbonate blocks, colonial corals, and large chi, 1978; Normark, 1978). Point-source deposits similar segments of fused pelmatozoan stems. The debris-flow
Recommended publications
  • Submarine Carbonate Breccia Beds-A
    University of Calgary PRISM: University of Calgary's Digital Repository Science Science Research & Publications 1979-01 Submarine carbonate breccia beds-a depositional model for two-layer, sediment gravity flows from the Sekwi Formation (Lower Cambrian), Mackenzie Mountains, Northwest Territories, Canada Krause, Federico F.; Oldershaw, A. E. National Research Council Canada Krause, F. F. and Oldershaw, A. E.. (1979). "Submarine carbonate breccia beds-a depositional model for two-layer, sediment gravity flows from the Sekwi Formation (Lower Cambrian), Mackenzie Mountains, Northwest Territories, Canada". Canadian Journal of Earth Sciences, 16: 189-199. http://hdl.handle.net/1880/44462 journal article Downloaded from PRISM: https://prism.ucalgary.ca 189 ine carbonate breccia beds-a depositional model for two-layer, sediment gravity ow from the Sekwi Formation (Lower Cambrian), Mackenzie Mountains, Northwest Territories, Canada F. F. KRAUSEAND A. E. OLDERSHAW I)~,portrm,rltc!f'GcoIo~y. Urli~.rrsityc!f'Crrl,<*rrr:\.. Ct11gtrr.v. Altcc.. Crrr~rrtltrT2N IN4 Received September 5. 1978 Revision accepted Septemher 22. 1978 in the Sekwi Formation. cxbonate breccia beds interhedded with slope sediments are inter- p~c~cd;I\ \uhnl:~rine sediment gravity flow\ that formed a two-layer deposit during n single II.,II\~VIevent. They are intermediate between true slump and turbidites and may initiate by \I~~nip~ng;~nvwhereon the continental slope and rise. Textural characteristics of the deposits are ;I limc~ionofttowndope transport distance. Ihm 1;1 formation de Sekwi, on interprete les cowhe\ de carbonates hl-echique\ interstratifies .,\N dc\ \idinlent\ de talus comme des coulees par gravite de sediments sousmarins qui ont Irh~r~lC(In &pOt hicouche durant un seul Cpiwcle de tran\pol-t.
    [Show full text]
  • Overview of Landslide Hydrology
    water Editorial Overview of Landslide Hydrology Roy C. Sidle 1,2,* , Roberto Greco 3 and Thom Bogaard 4 1 Mountain Societies Research Institute, University of Central Asia, Khorog GBAO 736000, Tajikistan 2 Sustainability Research Centre, University of the Sunshine Coast, 90 Sippy Downs Dr., Sippy Downs 4556, Queensland, Australia 3 Dipartimento di Ingegneria, Università degli Studi della Campania ‘L. Vanvitelli’, via Roma 9, 81031 Aversa (CE), Italy; [email protected] 4 Department of Water Management, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +996-770-822-144 Received: 11 January 2019; Accepted: 15 January 2019; Published: 16 January 2019 Most landslides and debris flows worldwide occur during or following periods of rainfall, and many of these have been associated with major disasters causing extensive property damage and loss of life [1–9]. Given concerns about the effects of climate change on precipitation regime, in the future, some mountainous areas may likely experience more landslides with a faster response to rainfall; however, most such projections are weakly based and remain untested [10,11]. Subsurface hydrology is usually the main triggering mechanism of these landslides and associated debris flows. While the effects of hillslope hydrology on runoff generation have been thoroughly studied, much less attention has been paid to these effects on landslide and debris flow initiation. Recent syntheses demonstrate that it is no longer appropriate to view the subsurface as a static media which facilitates the transit of subsurface water, rather a variety of factors affecting the dynamics of subsurface hydrology need to be considered [12,13].
    [Show full text]
  • Effects of Sediment Pulses on Channel Morphology in a Gravel-Bed River
    Effects of sediment pulses on channel morphology in a gravel-bed river Daniel F. Hoffman† Emmanuel J. Gabet‡ Department of Geosciences, University of Montana, Missoula, Montana 59802, USA ABSTRACT available to it. The delivery of sediment to riv- channel widening, braiding, and fi ning of bed ers and streams in mountain drainage basins material, followed by coarsening, construction Sediment delivery to stream channels in often comes in large, infrequent pulses from of coarse grained terraces, and formation of mountainous basins is strongly episodic, landslides and debris fl ows (Benda and Dunne, new side channels. After the sediment wave had with large pulses of sediment typically 1997; Gabet and Dunne, 2003). This sediment passed, they observed channel incision down to delivered by infrequent landslides and debris supply regime differs from that of channels an immobile bed and bedrock. Cui et al. (2003) fl ows. Identifying the role of large but rare in lowland environments with a more regular conducted fl ume experiments to investigate sed- sediment delivery events in the evolution of sediment supply and is refl ected in the form iment pulses and found that in a channel with channel morphology and fl uvial sediment and textural composition of the channel and alternate bars, the bed relief decreased with the transport is crucial to an understanding of fl oodplain. Processing large pulses of sediment arrival of the downstream edge of the sediment the development of mountain basins. In July can be slow and leave a lasting legacy on the wave, and increased as the upstream edge of the 2001, intense rainfall triggered numerous valley fl oor.
    [Show full text]
  • Bedload Transport and Large Organic Debris in Steep Mountain Streams in Forested Watersheds on the Olympic Penisula, Washington
    77 TFW-SH7-94-001 Bedload Transport and Large Organic Debris in Steep Mountain Streams in Forested Watersheds on the Olympic Penisula, Washington Final Report By Matthew O’Connor and R. Dennis Harr October 1994 BEDLOAD TRANSPORT AND LARGE ORGANIC DEBRIS IN STEEP MOUNTAIN STREAMS IN FORESTED WATERSHEDS ON THE OLYMPIC PENINSULA, WASHINGTON FINAL REPORT Submitted by Matthew O’Connor College of Forest Resources, AR-10 University of Washington Seattle, WA 98195 and R. Dennis Harr Research Hydrologist USDA Forest Service Pacific Northwest Research Station and Professor, College of Forest Resources University of Washington Seattle, WA 98195 to Timber/Fish/Wildlife Sediment, Hydrology and Mass Wasting Steering Committee and State of Washington Department of Natural Resources October 31, 1994 TABLE OF CONTENTS LIST OF FIGURES iv LIST OF TABLES vi ACKNOWLEDGEMENTS vii OVERVIEW 1 INTRODUCTION 2 BACKGROUND 3 Sediment Routing in Low-Order Channels 3 Timber/Fish/Wildlife Literature Review of Sediment Dynamics in Low-order Streams 5 Conceptual Model of Bedload Routing 6 Effects of Timber Harvest on LOD Accumulation Rates 8 MONITORING SEDIMENT TRANSPORT IN LOW-ORDER CHANNELS 11 Monitoring Objectives 11 Field Sites for Monitoring Program 12 BEDLOAD TRANSPORT MODEL 16 Model Overview 16 Stochastic Model Outputs from Predictive Relationships 17 24-Hour Precipitation 17 Synthesis of Frequency of Threshold 24-Hour Precipitation 18 Peak Discharge as a Function of 24-Hour Precipitation 21 Excess Unit Stream Power as a Function of Peak Discharge 28 Mean Scour
    [Show full text]
  • Landslides, and Affected the Eruption Patterns of Some Geysers
    Earthquake Annex I Colorado State Emergency Operations Plan LEAD AGENCY: Dept. of Local Affairs, Office of Emergency Management SUPPORTING AGENCIES: Governor's Office, Personnel & Administration, Corrections, Labor & Employment, Military Affairs, Natural Resources, Public Safety, Transportation, Education, Human Services, Red Cross, Salvation Army, COVOAD I. PURPOSE This annex has been prepared to ensure a coordinated response by state agencies to requests from local jurisdictions to reduce potential loss of life and to ensure we maintain or quickly restore essential services following an earthquake. It is designed to supplement the operational strategy outlined in the Basic Plan. II. SITUATION The Southern and Middle Rocky Mountains extend from the mountainous parts of central and western Wyoming and northeastern Utah, through the rugged mountains of central Colorado, southward into extreme north-central New Mexico. Large, damaging earthquakes in this region are uncommon, but significant historical earthquakes have caused damage. The largest earthquake in the Southern and Middle Rocky Mountains occurred on November 8, 1882, and, although poorly located, probably was in north-central Colorado, west of Fort Collins and northwest of Denver. The earthquake occurred before the development of seismometers, but it had an estimated magnitude of 6.6 and was felt throughout most of Colorado and in adjacent parts of Wyoming, Utah, Idaho, and Nebraska. The most seismically active part of the Southern and Middle Rocky Mountains is in northwestern Wyoming near Yellowstone National Park, where ongoing volcanic activity is responsible for the spectacular geysers and other unique geologic features in the park. On June 30, 1975, a magnitude 6.4 earthquake shook the park, caused rockfalls and landslides, and affected the eruption patterns of some geysers.
    [Show full text]
  • Carbonate-Hosted Zn-Pb Mineralization in the Lower
    Carbonate-hosted Zn-Pb mineralization in the Lower Cambrian Sekwi Formation, Mackenzie Mountains, NWT: Stratigraphic, structural, and lithologic controls, and constraints on ore fluid characteristics by Beth J. Fischer Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (M.Sc.) in Geology School of Graduate Studies Laurentian University Sudbury, Ontario © Beth Fischer, 2012 Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du 1+1 Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-87713-5 Our file Notre reference ISBN: 978-0-494-87713-5 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Technical Report Mackenzie Mountains
    TECHNICAL REPORT MACKENZIE MOUNTAINS IRON-COPPER PROPERTY, NORTHWEST TERRITORIES, CANADA NTS: 106F/01, 02 Mackenzie Mining District, Northwest Territories, Canada 65° 12’ N and 132° 27’ E PREPARED FOR: Metallis Resources Inc. And Seahawk Ventures Inc. PREPARED BY: Aurora Geosciences Ltd. TECHNICAL REPORT MACKENZIE MOUNTAINS IRON-COPPER PROPERTY Northwest Territories, Canada Effective Date: June 01, 2016 Prepared for METALLIS RESOURCES INC. 515 – 850 West Hastings Street Vancouver, British Columbia Canada, V6C 1E1 Phone 604.688.5077 Fax 604.688.5017 And SEAHAWK VENTURES INC. 909 Bowron Street Coquitlam, B.C. Canada, V3J 7W3 (p) 604.936.2701 (f) 604.936.2701 Prepared by: AURORA GEOSCIENCES LTD. Main Office: 3506 McDonald Drive, Yellowknife, NT, X1A 2H1 Phone: (867) 902.2729 Fax: (867) 920-2739 www.aurorageosciences.com Author: Gary Vivian, M.Sc., P. Geol. QP Metallis Resources Inc. & Seahawk Ventures Inc. Aurora Geosciences Ltd. Table of Contents 1 SUMMARY ..................................................................................................................................................... 1 2 INTRODUCTION ............................................................................................................................................. 3 3 RELIANCE ON OTHER EXPERTS ....................................................................................................................... 4 4 PROPERTY LOCATION AND DESCRIPTION .....................................................................................................
    [Show full text]
  • Lithostratigraphy of Deep-Water Lower Paleozoic Strata in the Central Misty Creek Embayment, Mackenzie Mountains, Northwest Territories
    Lithostratigraphy of deep-water lower Paleozoic strata in the central Misty Creek embayment, Mackenzie Mountains, Northwest Territories T.S. Chevrier and E.C. Turner Geological Survey of Canada Current Research 2013-14 2013 Geological Survey of Canada Current Research 2013-14 Lithostratigraphy of deep-water lower Paleozoic strata in the central Misty Creek embayment, Mackenzie Mountains, Northwest Territories T.S. Chevrier and E.C. Turner 2013 ©Her Majesty the Queen in Right of Canada 2013 ISSN 1701-4387 Catalogue No. M44-2013/14E-PDF ISBN 978-1-100-22258-5 doi:10.4095/292568 A copy of this publication is also available for reference in depository libraries across Canada through access to the Depository Services Program’s Web site at http://dsp-psd.pwgsc.gc.ca This publication is available for free download through GEOSCAN http://geoscan.ess.nrcan.gc.ca Recommended citation Chevrier, T.S. and Turner, E.C., 2013. Lithostratigraphy of deep-water lower Paleozoic strata in the central Misty Creek embayment, Mackenzie Mountains, Northwest Territories; Geological Survey of Canada, Current Research 2013-14, 21 p. doi:10.4095/292568 Critical review K. Dewing Authors T.S. Chevrier ([email protected]) E.C. Turner ([email protected]) Department of Earth Sciences Laurentian University Sudbury, Ontario P3E 2C6 Correction date: All requests for permission to reproduce this work, in whole or in part, for purposes of commercial use, resale, or redistribution shall be addressed to: Earth Sciences Sector Copyright Information Officer, Room 622C, 615 Booth Street, Ottawa, Ontario K1A 0E9. E-mail: [email protected] Lithostratigraphy of deep-water lower Paleozoic strata in the central Misty Creek embayment, Mackenzie Mountains, Northwest Territories Chevrier, T.S.
    [Show full text]
  • Potential for Debris Flow and Debris Flood Along the Wasatch Front Between Salt Lake City and Willard, Utah, and Measures for Their Mitigation
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Potential for debris flow and debris flood along the Wasatch Front between Salt Lake City and Willard, Utah, and measures for their mitigation by Gerald F. Wieczorek, Stephen Ellen, Elliott W. Lips, and Susan H. Cannon U.S. Geological Survey Menlo Park, California and Dan N. Short Los Angeles County Flood Control District Los Angeles, California with assistance from personnel of the U.S. Forest Service Open-File Report 83-635 1983 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature, Contents Introduction Purpose, scope, and level of confidence Historical setting Conditions and events of this spring The processes of debris flow and debris flood Potential for debris flow and debris flood Method used for evaluation Short-term potential Ground-water levels Partly-detached landslides Evaluation of travel distance Contributions from channels Contributions from landslides Recurrent long-term potential Methods recommended for more accurate evaluation Mitigation measures for debris flows and debris floods Approach Existing measures Methods used for evaluation Hydrologic data available Debris production anticipated Slopes of deposition General mitigation methods Debris basins Transport of debris along channels Recommendations for further studies Canyon-by-canyon evaluation of relative potential for debris flows and debris floods to reach canyon mouths, and mitigation measures Acknowledgments and responsibility References cited Illustrations Plate 1 - Map showing relative potential for both debris flows and debris floods to reach canyon mouths; scale 1:100,000, 2 sheets Figure 1 - Map showing variation in level of confidence in evaluation of potential for debris flows and debris floods; scale 1:500,000.
    [Show full text]
  • Altered Fluvial Patterns in North China Indicate Rapid Climate Change
    www.nature.com/scientificreports OPEN Altered fuvial patterns in North China indicate rapid climate change linked to the Permian-Triassic mass extinction Zhicai Zhu1, Yongqing Liu1*, Hongwei Kuang 1*, Michael J. Benton 2, Andrew J. Newell3, Huan Xu4, Wei An5, Shu’an Ji1, Shichao Xu6, Nan Peng1 & Qingguo Zhai1 The causes of the severest crisis in the history of life around the Permian-Triassic boundary (PTB) remain controversial. Here we report that the latest Permian alluvial plains in Shanxi, North China, went through a rapid transition from meandering rivers to braided rivers and aeolian systems. Soil carbonate carbon isotope (δ13C), oxygen isotope (δ18O), and geochemical signatures of weathering intensity reveal a consistent pattern of deteriorating environments (cool, arid, and anoxic conditions) and climate fuctuations across the PTB. The synchronous ecological collapse is confrmed by a dramatic reduction or disappearance of dominant plants, tetrapods and invertebrates and a bloom of microbially- induced sedimentary structures. A similar rapid switch in fuvial style is seen worldwide (e.g. Karoo Basin, Russia, Australia) in terrestrial boundary sequences, all of which may be considered against a background of global marine regression. The synchronous global expansion of alluvial fans and high- energy braided streams is a response to abrupt climate change associated with aridity, hypoxia, acid rain, and mass wasting. Where neighbouring uplands were not uplifting or basins subsiding, alluvial fans are absent, but in these areas the climate change is evidenced by the disruption of pedogenesis. Te severest ecological crisis in Earth history, the Permian-Triassic mass extinction (PTME), occurred 252 Ma and killed over 90% of marine species and about 70% of continental vertebrate families1,2.
    [Show full text]
  • The Challenge of Explaining Meander Bends in the Eberswalde Delta
    Lunar and Planetary Science XXXIX (2008) 1897.pdf THE CHALLENGE OF EXPLAINING MEANDER BENDS IN THE EBERSWALDE DELTA. E. R. Kraal1 and G. Postma2, 1Department of Geoscience, Virginia Tech, 4044 Derring Hall, Blacksburg, VA 2406 ([email protected]), 2Faculty of Geosciences, Utrecht University, PO Box 80115, 3508 TC Utrecht, The Netherlands ([email protected]). Introduction: Curved, semi- concentric loops, hypothesis and have conducted research in alternative interpreted as meander bends (point bars) have been formation mechanisms (Kraal and Postma, in prep). recognized in the delta plain of the Eberswalde Delta, Methodology: An alternative for bed-load Holden NE crater (Wood, 2005, Jerolmack et al., transport is ‘en-masse’ sediment transport triggered 2004, Malin & Edgett 2003, Moore et al. 2003). The by catastrophic events of water discharge. This structures have led to important and already deep- would require significantly less water, both within rooted paleo-climate interpretations of a long-lived, the flowing deposit and not require deposition in a Noachian-aged crater lake with persistent liquid standing body of water. To verify if similar bends as water on the Martian surface (Malin and Edgett, in Fig. 1A can be produced by ‘en-masse’ sediment 2003; Moore et al., 2003; Pondrelli et al., 2005) or as transport, we conducted a series of experiments that formation of meander bends with alluvial fans focused on morphological development of debris (Jerolmack et al., 2004). flows of variable water content. Since the ratio sediment/water exerts a primary control on viscosity Background: Meanders, while common in and strength of the flow, we thus obtained a range of some places on the earth, are non-trival features to morphologies that expresses the relative amount form.
    [Show full text]
  • Geysers Valley Hydrothermal System (Kamchatka): Recent Changes Related to Landslide of June 3, 2007
    Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Geysers Valley Hydrothermal System (Kamchatka): Recent Changes Related to Landslide of June 3, 2007 A.V. Kiryukhin, T.V. Rychkova, V.A. Droznin, E.V. Chernykh, M.Y. Puzankov, L.P. Vergasova Institute of Volcanology and Seismology FEB RAS, Piip-9, P-Kamchatsky, Russia 683006 [email protected] Keywords: Geysers, landslide, Kamchatka. landslide – the Vodopadny Creek Basin, which does not have the steep slopes and hydrothermal activity exhibited by ABSTRACT the rest of the Geysers Valley. This raises a key question – why did this landslide, which shifted 20 mln m3 of rocks 2 On June 3, 2007 catastrophic landslide took place in Geysers km downstream of the Geysernaya river, bury eight major Valley, Kamchatka. It started with steam explosion and was geysers at lower elevations under 20 - 40 m of mud debris then was transformed into debris mudflow. Within 2 minutes and flood eleven geysers located 20 m beneath Podprudnoe (D. Shpilenok, pers.com. 2007), 20 mln m3 of mud, debris, Lake? and blocks of rock were shifted away. As a result of this, eight major geysers located at lower elevations were sealed The caprock of the hydrothermal reservoir is composed of under 20-40 m of thick mud debris flow, and eleven geysers 4 Geysernya Unit (Q3 grn) lake caldera deposits (pumice sank beneath the 20 m deep Podprudnoe Lake created by tuffs, tuff gravels, tuff sandstones and lenses of breccias), rock dam across the Geysernaya river. Analysis of the dipping at an angle of 8 - 25о to North-West (Fig.
    [Show full text]