Weyl's Law for Singular Algebraic Varieties
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1908.09677V4 [Math.AG] 13 Jul 2021 6 Hr Ro Fterm12.1 Theorem of Proof Third a 16
AN ANALYTIC VERSION OF THE LANGLANDS CORRESPONDENCE FOR COMPLEX CURVES PAVEL ETINGOF, EDWARD FRENKEL, AND DAVID KAZHDAN In memory of Boris Dubrovin Abstract. The Langlands correspondence for complex curves is traditionally for- mulated in terms of sheaves rather than functions. Recently, Langlands asked whether it is possible to construct a function-theoretic version. In this paper we use the algebra of commuting global differential operators (quantum Hitchin Hamilto- nians and their complex conjugates) on the moduli space of G-bundles of a complex algebraic curve to formulate a function-theoretic correspondence. We conjecture the existence of a canonical self-adjoint extension of the symmetric part of this al- gebra acting on an appropriate Hilbert space and link its spectrum with the set of opers for the Langlands dual group of G satisfying a certain reality condition, as predicted earlier by Teschner. We prove this conjecture for G = GL1 and in the simplest non-abelian case. Contents 1. Introduction 2 Part I 8 2. Differential operators on line bundles 8 3. Differential operators on BunG 11 4. The spectrum and opers 15 5. The abelian case 19 6. Bundles with parabolic structures 26 1 7. The case of SL2 and P with marked points 28 arXiv:1908.09677v4 [math.AG] 13 Jul 2021 8. Proofs of two results 30 Part II 33 9. Darboux operators 34 10. EigenfunctionsandmonodromyforDarbouxoperators 38 11. Essentially self-adjoint algebras of unbounded operators 43 12. The main theorem 49 13. Generalized Sobolev and Schwartz spaces attached to the operator L. 49 14. Proof of Theorem 12.1 60 15. -
Arxiv:2107.01242V1 [Math.OA] 2 Jul 2021 Euneo Ievle ( Eigenvalues of Sequence a Eetdacrigt T Agbac Utpiiy Y[ by Multiplicity
CONNES’ INTEGRATION AND WEYL’S LAWS RAPHAEL¨ PONGE Abstract. This paper deal with some questions regarding the notion of integral in the frame- work of Connes’s noncommutative geometry. First, we present a purely spectral theoretic con- struction of Connes’ integral. This answers a question of Alain Connes. We also deal with the compatibility of Dixmier traces with Lebesgue’s integral. This answers another question of Alain Connes. We further clarify the relationship of Connes’ integration with Weyl’s laws for compact operators and Birman-Solomyak’s perturbation theory. We also give a ”soft proof” of Birman-Solomyak’s Weyl’s law for negative order pseudodifferential operators on closed mani- fold. This Weyl’s law yields a stronger form of Connes’ trace theorem. Finally, we explain the relationship between Connes’ integral and semiclassical Weyl’s law for Schr¨odinger operators. This is an easy consequence of the Birman-Schwinger principle. We thus get a neat link between noncommutative geometry and semiclassical analysis. 1. Introduction The quantized calculus of Connes [18] aims at translating the main tools of the classical infin- itesimal calculus into the operator theoretic language of quantum mechanics. As an Ansatz the integral in this setup should be a positive trace on the weak trace class L1,∞ (see Section 2). Natural choices are given by the traces Trω of Dixmier [23] (see also [18, 34] and Section 2). These traces are associated with extended limits. Following Connes [18] we say that an operator A L is measurable when the value of Tr (A) is independent of the extended limit. -
WEYL's LAW on RIEMANNIAN MANIFOLDS Contents 1. the Role of Weyl's Law in the Ultraviolet Catastrophe 1 2. Riemannian Manifol
WEYL'S LAW ON RIEMANNIAN MANIFOLDS SETH MUSSER Abstract. We motivate Weyl's law by demonstrating the relevance of the distribution of eigenvalues of the Laplacian to the ultraviolet catastrophe of physics. We then introduce Riemannian geometry, define the Laplacian on a general Riemannian manifold, and find geometric analogs of various concepts in Rn, along the way using S2 as a clarifying example. Finally, we use analogy with Rn and the results we have built up to prove Weyl's law, making sure at each step to demonstrate the physical significance of any major ideas. Contents 1. The Role of Weyl's Law in the Ultraviolet Catastrophe 1 2. Riemannian Manifolds 3 3. Weyl's Law 11 4. Acknowledgements 20 References 20 1. The Role of Weyl's Law in the Ultraviolet Catastrophe In the year 1900 Lord Rayleigh used the equipartition theorem of thermodynamics to de- duce the famous Rayleigh-Jeans law of radiation. Rayleigh began with an idealized physical concept of the blackbody; a body which is a perfect absorber of electromagnetic radiation and which radiates all the energy it absorbs independent of spatial direction. We sketch his proof to find the amount of radiation energy emitted by the blackbody at a given frequency. Take a blackbody in the shape of a cube for definiteness, and assume it is made of con- ducting material and is at a temperature T . We will denote the cube by D = [0;L]3 ⊆ R3. Inside this cube we have electromagnetic radiation that obeys Maxwell's equations bouncing around. The equipartition theorem of thermodynamics says that every wave which has con- stant spatial structure with oscillating amplitude, i.e. -
Quantitative Tauberian Theorems
Quantitative Tauberian theorems omas Powell University of Bath Mathematical Logic: Proof Theory, Constructive Mathematics MFO (delivered online) 11 November 2020 ese slides are available at https://t-powell.github.io/talks Introduction Abel’s theorem Let fang be a sequence of reals, and suppose that the power series 1 X i F(x) := aix i=0 converges on jxj < 1. en whenever 1 X ai = s i=0 it follows that F(x) ! s as x % 1: is is a classical result in elementary analysis called Abel’s theorem (N.b. it also holds in the complex setting). You can use it to e.g. prove that 1 X (−1)i = log(2): i + 1 i=0 Does the converse of Abel’s theorem hold? NO. For a counterexample, define F :(−1; 1) ! R by 1 1 X F(x) = = (−1)ixi 1 + x i=0 en 1 F(x) ! as x % 1 2 but 1 X (−1)i does not converge i=0 Tauber’s theorem fixes this Let fang be a sequence of reals, and suppose that the power series 1 X i F(x) := aix i=0 converges on jxj < 1. en whenever F(x) ! s as x % 1 AND jnanj ! 0 it follows that 1 X ai = s i=0 is is Tauber’s theorem, proven in 1897 by Austrian mathematician Alfred Tauber (1866 - 1942). Tauberian theorems e basic structure of Tauber’s theorem is: 1 X i Let F(x) = aix i=0 en if we know (A) Something about the behaviour of F(x) as x % 1 (B) Something about the growth of fang as n ! 1 en we can conclude P1 (C) Something about the convergence of i=0 ai. -
Scalar Curvature for Noncommutative Four-Tori
SCALAR CURVATURE FOR NONCOMMUTATIVE FOUR-TORI FARZAD FATHIZADEH AND MASOUD KHALKHALI Abstract. In this paper we study the curved geometry of noncommutative 4 4-tori Tθ. We use a Weyl conformal factor to perturb the standard volume form and obtain the Laplacian that encodes the local geometric information. We use Connes' pseudodifferential calculus to explicitly compute the terms in the small time heat kernel expansion of the perturbed Laplacian which corre- 4 spond to the volume and scalar curvature of Tθ. We establish the analogue of Weyl's law, define a noncommutative residue, prove the analogue of Connes' trace theorem, and find explicit formulas for the local functions that describe 4 the scalar curvature of Tθ. We also study the analogue of the Einstein-Hilbert action for these spaces and show that metrics with constant scalar curvature are critical for this action. Contents 1. Introduction 1 2. Noncommutative Tori 3 2.1. Noncommutative real tori. 3 2.2. Noncommutative complex tori. 4 3. Laplacian and its Heat Kernel 5 4 3.1. Perturbed Laplacian on Tθ. 5 4 3.2. Connes' pseudodifferential calculus for Tθ. 7 3.3. Small time asymptotic expansion for Trace(e−t4' ). 8 4. Weyl's Law and Connes' Trace Theorem 10 4.1. Asymptotic distribution of the eigenvalues of 4'. 10 4 4.2. A noncommutative residue for Tθ. 12 4 4.3. Connes' trace theorem for Tθ. 15 5. Scalar Curvature and Einstein-Hilbert Action 16 5.1. Scalar curvature for 4. 17 arXiv:1301.6135v1 [math.QA] 25 Jan 2013 Tθ 4 5.2. -
The Littlewood Tauberian Theorem
Cambridge University Press 978-1-107-05945-0 - Twelve Landmarks of Twentieth-Century Analysis D. Choimet and H. Queffélec Excerpt More information 1 The Littlewood Tauberian theorem 1.1 Introduction In 1897, the Austrian mathematician Alfred Tauber published a short article on the convergence of numerical series [173], which can be summarised as follows. ∞ = Let an be a convergent series of complex numbers, with n=0 an .A theorem of Abel [1] states that ∞ n f (x) = an x → as x 1. (1.1) n=0 A theorem of Kronecker [116] states that n 1 → . n kak 0 (1.2) k=1 The converse of these two theorems is false: neither of the two conditions (1) nor (2) is sufficient to imply the convergence of the series an. However, if both conditions are satisfied simultaneously, the series an converges, giving the following theorem. 1.1.1 Theorem A necessary and sufficient condition for an to converge (with sum ) is that: ∞ (1) f (x) = a xn → as x 1, n=0 n 1 n → (2) n k=1 kak 0. The proof of Theorem 1.1.1 follows that of the following special case. 1 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-05945-0 - Twelve Landmarks of Twentieth-Century Analysis D. Choimet and H. Queffélec Excerpt More information 2 The Littlewood Tauberian theorem ( ) → → ∞ = 1.1.2 Theorem f x as x 1, and nan 0 implies n=0 an . A few remarks on this article: the theorem of Abel cited above gave rise to Abelian theorems [113], that is, theorems of the form If an is a convergent complex series with sum , and (bn,x ) an infinite rectangular matrix indexed by N × X, where X is a set with an associated point at infinity satisfying bn,x −→ 1 forevery n ∈ N, x→∞ then ∞ f (x) = anbn,x n=0 is defined for x ∈ X and f (x) → as x →∞. -
Location and Weyl Formula for the Eigenvalues of Some Non Self-Adjoint Operators
Location and Weyl formula for the eigenvalues of some non self-adjoint operators Vesselin Petkov Abstract We present a survey of some recent results concerning the location and the Weyl formula for the complex eigenvalues of two non self-adjoint operators. We study the eigenvalues of the generator G of the contraction semigroup etG, t ≥ 0, related to the wave equation in an unbounded domain Ω with dissipative boundary conditions on ∂Ω. Also one examines the interior transmission eigenvalues (ITE) in a bounded domain K obtaining a Weyl formula with remainder for the counting function N(r) of complex (ITE). The analysis is based on a semi-classical approach. 1 Introduction ∞ Let P(x,Dx) be a second order differential operator with C (K) real-valued coef- d ficients in a bounded domain K ⊂ R , d ≥ 2, with C∞ boundary ∂K. Consider a boundary problem ( P(x,D )u = f in K, x (1.1) B(x,Dx)u = g on ∂K, where B(x,Dx) is a differential operator with order less or equal to 1 and the princi- 2 pal symbol P(x,ξ) of P(x,Dx) satisfies p(x,ξ) ≥ c0|ξ| , c0 > 0. Assume that there exists 0 < ϕ < π such that the problem ( (P(x,D ) − z)u = f in K, x (1.2) B(x,Dx)u = g on ∂K. is parameter-elliptic for every z ∈ Γψ = {z : argz = ψ}, 0 < |ψ| ≤ ϕ. Then following a classical result of Agranovich-Vishik [1] we can find a closed operator A with Vesselin Petkov Institut de Mathematiques´ de Bordeaux, 351, Cours de la Liberation,´ 33405 Talence, France , e- mail: [email protected] 1 2 Vesselin Petkov domain D(A) ⊂ H2(K) related to the problem (1.1). -
An Introduction to Pseudo-Differential Operators
An introduction to pseudo-differential operators Jean-Marc Bouclet1 Universit´ede Toulouse 3 Institut de Math´ematiquesde Toulouse [email protected] 2 Contents 1 Background on analysis on manifolds 7 2 The Weyl law: statement of the problem 13 3 Pseudodifferential calculus 19 3.1 The Fourier transform . 19 3.2 Definition of pseudo-differential operators . 21 3.3 Symbolic calculus . 24 3.4 Proofs . 27 4 Some tools of spectral theory 41 4.1 Hilbert-Schmidt operators . 41 4.2 Trace class operators . 44 4.3 Functional calculus via the Helffer-Sj¨ostrandformula . 50 5 L2 bounds for pseudo-differential operators 55 5.1 L2 estimates . 55 5.2 Hilbert-Schmidt estimates . 60 5.3 Trace class estimates . 61 6 Elliptic parametrix and applications 65 n 6.1 Parametrix on R ................................ 65 6.2 Localization of the parametrix . 71 7 Proof of the Weyl law 75 7.1 The resolvent of the Laplacian on a compact manifold . 75 7.2 Diagonalization of ∆g .............................. 78 7.3 Proof of the Weyl law . 81 A Proof of the Peetre Theorem 85 3 4 CONTENTS Introduction The spirit of these notes is to use the famous Weyl law (on the asymptotic distribution of eigenvalues of the Laplace operator on a compact manifold) as a case study to introduce and illustrate one of the many applications of the pseudo-differential calculus. The material presented here corresponds to a 24 hours course taught in Toulouse in 2012 and 2013. We introduce all tools required to give a complete proof of the Weyl law, mainly the semiclassical pseudo-differential calculus, and then of course prove it! The price to pay is that we avoid presenting many classical concepts or results which are not necessary for our purpose (such as Borel summations, principal symbols, invariance by diffeomorphism or the G˚ardinginequality). -
An Application of Tauber Theory: Proving the Prime Number Theorem
faculty of science mathematics and applied and engineering mathematics An application of Tauber theory: proving the Prime Number Theorem Bachelor’s Project Mathematics February 2018 Student: J. Koolstra Supervisors: Prof.dr. J. Top and Dr. A. Sterk Abstract We look at the origins of Tauber theory, and apply it to prove the prime number theorem (PNT). Specifically, we prove a weak version of the Wiener-Ikehara Tauberian theorem due to Newman. Its appli- cation requires us to establish some properties of the Riemann zeta function. Most notably with regard to its meromorphic continuation, and the distribution of its zeros. 2 Contents Introduction 5 Discrete Tauber theory 7 Summability methods . .7 The theorems of Tauber and Hardy-Littlewood . 13 The Wiener-Ikehara theorem 19 Some complex analytic technicalities . 19 A proof of the Wiener-Ikehara theorem . 19 The Riemann zeta function 28 The meromorphic continuation of the zeta function . 28 The zeta function is nonzero on the line Re z =1.......... 32 The prime number theorem 37 The linear bound on the Tchebychef -function . 37 Equivalent formulations of PNT . 39 Appendix A: the prime polynomial theorem 42 References 48 3 Even before I had begun my more detailed investigations into higher arithmetic, one of my first projects was to turn my attention to the decreasing frequency of primes, to which end I counted primes in several chiliads. I soon recognized that behind all of its fluctuations, this frequency is on average inversely proportional to the logarithm. Gauss to Encke, 1849 It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. -
What Is Noncommutative Geometry ? How a Geometry Can Be Commutative and Why Mine Is Not
What is Noncommutative Geometry ? How a geometry can be commutative and why mine is not Alessandro Rubin Junior Math Days 2019/20 SISSA - Scuola Internazionale Superiore di Studi Avanzati This means that the algebra C∞(M) contains enough information to codify the whole geometry of the manifold: 1. Vector fields: linear derivations of C∞(M) 2. Differential 1-forms: C∞(M)-linear forms on vector fields 3. ... Question Do we really need a manifold’s points to study it ? Do we really use the commutativity of the algebra C∞(M) to define the aforementioned objects ? Doing Geometry Without a Geometric Space Theorem Two smooth manifolds M, N are diffeomorphic if and only if their algebras of smooth functions C∞(M) and C∞(N) are isomorphic. 1/41 Question Do we really need a manifold’s points to study it ? Do we really use the commutativity of the algebra C∞(M) to define the aforementioned objects ? Doing Geometry Without a Geometric Space Theorem Two smooth manifolds M, N are diffeomorphic if and only if their algebras of smooth functions C∞(M) and C∞(N) are isomorphic. This means that the algebra C∞(M) contains enough information to codify the whole geometry of the manifold: 1. Vector fields: linear derivations of C∞(M) 2. Differential 1-forms: C∞(M)-linear forms on vector fields 3. ... 1/41 Do we really use the commutativity of the algebra C∞(M) to define the aforementioned objects ? Doing Geometry Without a Geometric Space Theorem Two smooth manifolds M, N are diffeomorphic if and only if their algebras of smooth functions C∞(M) and C∞(N) are isomorphic. -
A Century of Complex Tauberian Theory 1
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 39, Number 4, Pages 475{531 S 0273-0979(02)00951-5 Article electronically published on July 8, 2002 A CENTURY OF COMPLEX TAUBERIAN THEORY J. KOREVAAR Abstract. Complex-analytic and related boundary properties of transforms give information on the behavior of pre-images. The transforms may be power series, Dirichlet series or Laplace-type integrals; the pre-images are series (of numbers) or functions. The chief impulse for complex Tauberian theory came from number the- ory. The first part of the survey emphasizes methods which permit simple derivations of the prime number theorem, associated with the labels Landau- Wiener-Ikehara and Newman. Other important areas in complex Tauberian theory are associated with the names Fatou-Riesz and Ingham. Recent re- finements have been motivated by operator theory and include local H1 and pseudofunction boundary behavior of transforms. Complex information has also led to better remainder estimates in connection with classical Tauberian theorems. Applications include the distribution of zeros and eigenvalues. 1. Introduction Tauberian theorems involve a class of objects S (functions, series, sequences) and a transformation . The transformation is an `averaging' operation. It must have a continuity property:T certain limit behavior of the original S implies related limit behavior of the image S. The aim of a Tauberian is to reverse the averaging: to go from a limit propertyT of S to a limit property of S, or another transform of S. The converses typically requireT an additional condition, a `Tauberian condition', on S and perhaps a condition on the transform S. -
Notes on the Quantum Harmonic Oscillator Brief Discussion of Coherent States, Weyl's Law and the Mehler Kernel
Notes on the Quantum Harmonic Oscillator Brief Discussion of Coherent States, Weyl's Law and the Mehler Kernel Brendon Phillips 250817875 April 22, 2015 1 The Harmonic Oscillators Recall that any object oscillating in one dimension about the point 0 (say, a mass-spring system) obeys Hooke's law Fx = −ksx, where x is the compression of the spring, and ks is the spring constant of the system. By Newton's second law of motion, we then have the equation of the Classical Harmonic Oscillator @2x m = −k x (1) @t2 s 1 Now, Fx is conservative, so we can recover the potential energy function as follows : @V 1 −F = =) V (x) = k x2 (2) x @x 2 s The solution to (1) is given by r ! k x(t) = A cos s t + (3) m The frequency of oscillation is then r 1 1 k f = = s (4) T 2π m Let the oscillating object be a particle. Now, classical mechanics only provides a good ap- proximation of the system as long as E >> hf, whereE is the total energy of the particle, f is the classical frequency, and h is the Planck constant. Assume that this is not the case; we now see the system as a Quantum Mechanical Os- cillator. As a consequence of the Heisenberg Uncertainty Principle ∆^x∆^p ≥ } (5) 2 1We assume without loss of generality that the constant of integration is 0. 1 (wherex ^ represents the position operator,p ^ represents the momentum operator, and } is the reduced Planck constant), we lose our grasp of the particle's trajectory, since we now switch our focus from the position of the particle to its wavefunction (x; t).