Oracle Rdb™ SQL Reference Manual Volume 1

Total Page:16

File Type:pdf, Size:1020Kb

Oracle Rdb™ SQL Reference Manual Volume 1 Oracle Rdb™ SQL Reference Manual Volume 1 Oracle Rdb Release 7.1.4.3 for OpenVMS Alpha December 2005 ® DEC_Callout (encoded characters) FullName: DEC Modular Callouts Distiller, PostScript v3011.104 r0 Notice: Copyright 1988 - 1993, Digital Equipment Corporation. Font version: 1.3, 13-Oct-1993 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 40 1.000 41 1.000 42 1.000 43 1.000 44 1.000 45 1.000 46 1.000 47 1.000 50 1.000 51 1.000 52 0.500 53 0.500 54 0.500 55 0.500 56 0.500 57 0.500 cx0 cx1 cx2 cx3 cx4 cx5 cx6 cx7 cx8 cx9 bx0 bx1 bx2 bx3 bx4 bx5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 60 0.500 61 0.500 62 0.500 63 0.500 64 0.375 65 0.375 66 0.375 67 0.375 70 0.375 71 0.375 72 0.375 73 0.375 74 0.375 75 0.375 76 0.500 77 0.500 bx6 bx7 bx8 bx9 mx0 mx1 mx2 mx3 mx4 mx5 mx6 mx7 mx8 mx9 ex0 ex1 2 3 4 5 6 7 8 9 100 0.500 101 0.500 102 0.500 103 0.500 104 0.500 105 0.500 106 0.500 107 0.500 110 0.000 111 0.000 112 0.000 113 0.000 114 0.000 115 0.000 116 0.000 117 0.000 ex2 ex3 ex4 ex5 ex6 ex7 ex8 ex9 120 0.000 121 0.000 122 0.000 123 0.000 124 0.000 125 0.000 126 0.000 127 0.000 130 0.000 131 0.000 132 0.000 133 0.000 134 0.000 135 0.000 136 0.000 137 0.000 140 0.000 141 0.000 142 0.000 143 0.000 144 0.000 145 0.000 146 0.000 147 0.000 150 0.000 151 0.000 152 0.000 153 0.000 154 0.000 155 0.000 156 0.000 157 0.000 160 0.000 161 0.000 162 0.000 163 0.000 164 0.000 165 0.000 166 0.000 167 0.000 170 0.000 171 0.000 172 0.000 173 0.000 174 0.000 175 0.000 176 0.000 177 0.000 0123456789012345678901234567890123456789 240 0.000 241 0.000 242 0.000 243 0.000 244 0.000 245 0.000 246 0.000 247 0.000 250 0.000 251 0.000 252 0.000 253 0.000 254 0.000 255 0.000 256 0.000 257 0.000 260 0.000 261 0.000 262 0.000 263 0.000 264 0.000 265 0.000 266 0.000 267 0.000 270 0.000 271 0.000 272 0.000 273 0.000 274 0.000 275 0.000 276 0.000 277 0.000 300 0.000 301 0.000 302 0.000 303 0.000 304 0.000 305 0.000 306 0.000 307 0.000 310 0.000 311 0.000 312 0.000 313 0.000 314 0.000 315 0.000 316 0.000 317 0.000 320 0.000 321 0.000 322 0.000 323 0.000 324 0.000 325 0.000 326 0.000 327 0.000 330 0.000 331 0.000 332 0.000 333 0.000 334 0.000 335 0.000 336 0.000 337 0.000 340 0.000 341 0.000 342 0.000 343 0.000 344 0.000 345 0.000 346 0.000 347 0.000 350 0.000 351 0.000 352 0.000 353 0.000 354 0.000 355 0.000 356 0.000 357 0.000 360 0.000 361 0.000 362 0.000 363 0.000 364 0.000 365 0.000 366 0.000 367 0.000 370 0.000 371 0.000 372 0.000 373 0.000 374 0.000 375 0.000 376 0.000 377 0.000 SQL Reference Manual, Volume 1 Oracle Rdb Release 7.1.4.3 for OpenVMS Alpha Copyright © 1987, 2005 Oracle Corporation. All rights reserved. The Programs (which include both the software and documentation) contain proprietary information of Oracle Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited. The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation. If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065. The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the Programs. Oracle is a registered trademark, and Hot Standby, LogMiner for Rdb, Oracle CDD/Repository, Oracle CODASYL DBMS, Oracle Expert, Oracle Rdb, Oracle RMU, Oracle RMUwin, Oracle SQL/Services, Oracle Trace, and Rdb7 are trademark or registered trademarks of Oracle Corporation. Other names may be trademarks of their respective owners. The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not resonsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party. Contents Send Us Your Comments ........................................... xi Preface ........................................................... xiii Technical Changes and New Features ............................... xvii 1 Introduction to SQL Syntax 1.1 Using SQL ................................................ 1–1 1.1.1 Invoking SQL Images . ................................. 1–2 1.2 Samples Directory . ......................................... 1–3 1.3 How to Read Syntax Diagrams ................................ 1–3 1.4 Executable and Nonexecutable Statements ....................... 1–6 1.5 Summary of SQL Statements . ................................. 1–7 1.6 Keywords and Line Terminators ............................... 1–13 1.6.1 Statement Terminators and Comment Characters ............... 1–13 1.7 Support for Multivendor Integration Architecture . ................ 1–16 2 Language and Syntax Elements 2.1 Supported Character Sets . ................................. 2–1 2.1.1 Automatic Translation . ................................. 2–6 2.1.2 Character Set HEX ...................................... 2–7 2.1.3 Default Character Sets . ................................. 2–8 2.1.4 Display Character Set . ................................. 2–9 2.1.5 Identifier Character Set . ................................. 2–10 2.1.6 Literal Character Sets . ................................. 2–11 2.1.7 National Character Set . ................................. 2–12 2.1.8 Character Set ISOLATIN9 ................................. 2–13 2.1.9 Oracle NLS Character Set Names . ......................... 2–14 2.1.10 Character Set UNSPECIFIED .............................. 2–15 2.1.11 Logical Names for Character Sets . ......................... 2–16 iii 2.2 User-Supplied Names . ...................................... 2–16 2.2.1 Aliases . .............................................. 2–25 2.2.2 Authorization Identifiers .................................. 2–26 2.2.2.1 Authorization Identifiers and Stored Modules . ............. 2–27 2.2.2.2 Authorization Identifiers and Nonstored Modules ............ 2–31 2.2.3 Catalog Names .......................................... 2–31 2.2.4 Column Names . ...................................... 2–32 2.2.4.1 Correlation Names .................................... 2–34 2.2.4.2 Outer References ..................................... 2–36 2.2.5 Connection Names . ...................................... 2–37 2.2.6 Constraint Names . ...................................... 2–38 2.2.7 Cursor Names .......................................... 2–38 2.2.8 Database Names . ...................................... 2–38 2.2.8.1 Oracle Rdb Attach Specifications . ...................... 2–39 2.2.8.2 Repository Path Names . .............................. 2–42 2.2.9 DomainNames ......................................... 2–43 2.2.10 Index Names ........................................... 2–44 2.2.11 Names in Multischema Databases ........................... 2–44 2.2.12 Nonstored Module, Procedure, and Parameter Names (Module Language Only) . ...................................... 2–46 2.2.13 Parameters, Routine Parameters, and SQL Variables ............ 2–47 2.2.13.1 Data Parameters and Indicator Parameters .
Recommended publications
  • Documents and Attachments 57 Chapter 7: Dbamp Stored Procedure Reference
    CData Software, Inc. DBAmp SQL Server Integration with Salesforce.com Version 5.1.6 Copyright © 2021 CData Software, Inc. All rights reserved. Table of Contents Acknowledgments ........................................................................... 7 Chapter 1: Installation/Upgrading ................................................. 8 Upgrading an existing installation ......................................................... 8 Prerequistes ....................................................................................... 9 Running the DBAmp installation file...................................................... 9 Configure the DBAmp provider options ................................................. 9 Connecting DBAmp to SQL Server ...................................................... 10 Verifying the linked server ................................................................. 11 Install the DBAmp Stored Procedures ................................................. 11 Running the DBAmp Configuration Program........................................ 11 Setting up the DBAmp Work Directory ................................................ 12 Enabling xp_cmdshell for DBAmp ....................................................... 13 Pointing DBAmp to your Salesforce Sandbox Instance ......................... 13 Chapter 2: Using DBAMP as a Linked Server ................................ 14 Four Part Object Names .................................................................... 14 SQL versus SOQL .............................................................................
    [Show full text]
  • Having Clause in Sql Server with Example
    Having Clause In Sql Server With Example Solved and hand-knit Andreas countermining, but Sheppard goddamned systemises her ritter. Holier Samuel soliloquise very efficaciously while Pieter remains earwiggy and biaxial. Brachydactylic Rickey hoots some tom-toms after unsustainable Casey japed wrong. Because where total number that sql having clause in with example below to column that is the Having example defines the examples we have to search condition for you can be omitted find the group! Each sales today, thanks for beginners, is rest of equivalent function in sql group by clause and having sql having. The sql server controls to have the program is used in where clause filters records or might speed it operates only return to discuss the. Depends on clause with having clauses in conjunction with example, server having requires that means it cannot specify conditions? Where cannot specify this example for restricting or perhaps you improve as with. It in sql example? Usually triggers in sql server controls to have two results from the examples of equivalent function example, we have installed it? In having example uses a room full correctness of. The sql server keeps growing every unique values for the cost of. Having clause filtered then the having vs where applies to master sql? What are things technology, the aggregate function have to. Applicable to do it is executed logically, if you find the same values for a total sales is an aggregate functions complement each column references to sql having clause in with example to return. Please read this article will execute this article, and other statements with a particular search condition with sql clause only.
    [Show full text]
  • Database Concepts 7Th Edition
    Database Concepts 7th Edition David M. Kroenke • David J. Auer Online Appendix E SQL Views, SQL/PSM and Importing Data Database Concepts SQL Views, SQL/PSM and Importing Data Appendix E All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Appendix E — 10 9 8 7 6 5 4 3 2 1 E-2 Database Concepts SQL Views, SQL/PSM and Importing Data Appendix E Appendix Objectives • To understand the reasons for using SQL views • To use SQL statements to create and query SQL views • To understand SQL/Persistent Stored Modules (SQL/PSM) • To create and use SQL user-defined functions • To import Microsoft Excel worksheet data into a database What is the Purpose of this Appendix? In Chapter 3, we discussed SQL in depth. We discussed two basic categories of SQL statements: data definition language (DDL) statements, which are used for creating tables, relationships, and other structures, and data manipulation language (DML) statements, which are used for querying and modifying data. In this appendix, which should be studied immediately after Chapter 3, we: • Describe and illustrate SQL views, which extend the DML capabilities of SQL. • Describe and illustrate SQL Persistent Stored Modules (SQL/PSM), and create user-defined functions. • Describe and use DBMS data import techniques to import Microsoft Excel worksheet data into a database. E-3 Database Concepts SQL Views, SQL/PSM and Importing Data Appendix E Creating SQL Views An SQL view is a virtual table that is constructed from other tables or views.
    [Show full text]
  • Database Application Development Overview SQL in Application Code SQL in Application Code (Contd.) Embedded SQL Embedded SQL: Va
    Overview Concepts covered in this lecture: Database Application Development SQL in application code Embedded SQL Cursors Chapter 6 Dynamic SQL JDBC SQLJ Stored procedures Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2 SQL in Application Code SQL in Application Code (Contd.) SQL commands can be called from within a host language (e.g., C++ or Java) program. Impedance mismatch: SQL statements can refer to host variables SQL relations are (multi-) sets of records, with (including special variables used to return status). no a priori bound on the number of records. Must include a statement to connect to the right No such data structure exist traditionally in database. procedural programming languages such as Two main integration approaches: C++. (Though now: STL) Embed SQL in the host language (Embedded SQL, SQL supports a mechanism called a cursor to SQLJ) handle this. Create special API to call SQL commands (JDBC) Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4 Embedded SQL Embedded SQL: Variables Approach: Embed SQL in the host language. A preprocessor converts the SQL statements into special API calls. EXEC SQL BEGIN DECLARE SECTION Then a regular compiler is used to compile the char c_sname[20]; code. long c_sid; short c_rating; float c_age; Language constructs: EXEC SQL END DECLARE SECTION Connecting to a database: EXEC SQL CONNECT Declaring variables: Two special “error” variables: EXEC SQL BEGIN (END) DECLARE SECTION SQLCODE (long, is negative if an error has occurred) Statements: SQLSTATE (char[6], predefined codes for common errors) EXEC SQL Statement; Database Management Systems 3ed, R.
    [Show full text]
  • Insert - Sql Insert - Sql
    INSERT - SQL INSERT - SQL INSERT - SQL Common Set Syntax: INSERT INTO table-name (*) [VALUES-clause] [(column-list)] VALUE-LIST Extended Set Syntax: INSERT INTO table-name (*) [OVERRIDING USER VALUE] [VALUES-clause] [(column-list)] [OVERRIDING USER VALUE] VALUE-LIST This chaptercovers the following topics: Function Syntax Description Example For an explanation of the symbols used in the syntax diagram, see Syntax Symbols. Belongs to Function Group: Database Access and Update Function The SQL INSERT statement is used to add one or more new rows to a table. Syntax Description Syntax Element Description INTO table-name INTO Clause: In the INTO clause, the table is specified into which the new rows are to be inserted. See further information on table-name. 1 INSERT - SQL Syntax Description Syntax Element Description column-list Column List: Syntax: column-name... In the column-list, one or more column-names can be specified, which are to be supplied with values in the row currently inserted. If a column-list is specified, the sequence of the columns must match with the sequence of the values either specified in the insert-item-list or contained in the specified view (see below). If the column-list is omitted, the values in the insert-item-list or in the specified view are inserted according to an implicit list of all the columns in the order they exist in the table. VALUES-clause Values Clause: With the VALUES clause, you insert a single row into the table. See VALUES Clause below. insert-item-list INSERT Single Row: In the insert-item-list, you can specify one or more values to be assigned to the columns specified in the column-list.
    [Show full text]
  • Oracle Rdb Extension for OEM 9I Release V7.1.0.0
    Rdb-OEM Agent Installation Guide 7/16/03 2:02 PM Oracle Rdb Extension for OEM 9i Release V7.1.0.0 Oracle Rdb Extension for OEM 9i Rdb-OEM Installation Guide for Oracle Intelligent Agent Release 7.1.0.0 for Oracle Enterprise Managers on Windows NT, Windows 2000, Sun Solaris OS (SPARC) for Oracle Intelligent Agents on OpenVMS for Alpha June 2003 This readme provides information on how to install the Oracle Rdb Extension for the Oracle Intelligent Agent on OpenVMS for Alpha systems using the Oracle Rdb Server CD media. The Oracle Enterprise Manager 9i is a 3-tier management framework consisting of Oracle Enterprise Manager Console Oracle Management Server Oracle Intelligent Agent Together, they can be used to Administer the complete Oracle environment, including databases, iAS servers, applications, and services. Diagnose, modify, and tune multiple Oracle databases. Schedule tasks on multiple systems at varying time intervals. Monitor Oracle database conditions throughout the network. Administer multiple network nodes and services from many locations. Share tasks with other administrators. Group related services together to facilitate administration tasks. Launch integrated Oracle and third-party tools. In order to facilitate the management of Oracle Rdb databases through the management framework, an additional installation is required at each tier. Each of these additional installations are described in this readme. The top tier consists of the Oracle Enterprise Manager Console. The Console is a GUI that allows you to interface into the management framework. Via the Console, you may interact with the Oracle Management Server and the Oracle Intelligent Agent to perform all the functions listed above.
    [Show full text]
  • Connx 14.0 Release Notes October 7, 2019
    ConnX 14.0 Release Notes October 7, 2019 Software AG Table of Contents ConnX 14.0 Release Notes ................................................................................................ 3 Overview .......................................................................................................................... 3 ConnX Architecture on Windows .................................................................................... 4 ConnX Architecture on UNIX ........................................................................................... 5 ConnX Architecture (ODBC/JDBC/OLEDB/.NET Provider) ............................................... 6 ConnX Client Engine for Windows ................................................................................... 6 ConnX Client Engine for UNIX .......................................................................................... 6 ConnX Data Dictionary ..................................................................................................... 6 ConnX Server ................................................................................................................... 6 ConnX JDBC Thin Client ................................................................................................... 6 ConnX JDBC Server .......................................................................................................... 6 ConnX JDBC Router .......................................................................................................... 7 ConnX DataSync ..............................................................................................................
    [Show full text]
  • Support Aggregate Analytic Window Function Over Large Data by Spilling
    Support Aggregate Analytic Window Function over Large Data by Spilling Xing Shi and Chao Wang Guangdong University of Technology, Guangzhou, Guangdong 510006, China North China University of Technology, Beijing 100144, China Abstract. ​Analytic function, also called window function, is to query the aggregation of data over a sliding window. For example, a simple query over the online stock platform is to return the average price of a stock of the last three days. These functions are commonly used features in SQL databases. They are supported in most of the commercial databases. With the increasing usage of cloud data infra and machine learning technology, the frequency of queries with analytic window functions rises. Some analytic functions only require const space in memory to store the state, such as SUM, AVG, while others require linear space, such as MIN, MAX. When the window is extremely large, the memory space to store the state may be too large. In this case, we need to spill the state to disk, which is a heavy operation. In this paper, we proposed an algorithm to manipulate the state data in the disk to reduce the disk I/O to make spill available and efficiency. We analyze the complexity of the algorithm with different data distribution. 1. Introducion In this paper, we develop novel spill techniques for analytic window function in SQL databases. And discuss different various types of aggregate queries, e.g., COUNT, AVG, SUM, MAX, MIN, etc., over a relational table. Aggregate ​analytic function, also called aggregate window function, is to query the aggregation of data over a sliding window.
    [Show full text]
  • SQL Standards Update 1
    2017-10-20 SQL Standards Update 1 SQL STANDARDS UPDATE Keith W. Hare SC32 WG3 Convenor JCC Consulting, Inc. October 20, 2017 2017-10-20 SQL Standards Update 2 Introduction • What is SQL? • Who Develops the SQL Standards • A brief history • SQL 2016 Published • SQL Technical Reports • What's next? • SQL/MDA • Streaming SQL • Property Graphs • Summary 2017-10-20 SQL Standards Update 3 Who am I? • Senior Consultant with JCC Consulting, Inc. since 1985 • High performance database systems • Replicating data between database systems • SQL Standards committees since 1988 • Convenor, ISO/IEC JTC1 SC32 WG3 since 2005 • Vice Chair, ANSI INCITS DM32.2 since 2003 • Vice Chair, INCITS Big Data Technical Committee since 2015 • Education • Muskingum College, 1980, BS in Biology and Computer Science • Ohio State, 1985, Masters in Computer & Information Science 2017-10-20 SQL Standards Update 4 What is SQL? • SQL is a language for defining databases and manipulating the data in those databases • SQL Standard uses SQL as a name, not an acronym • Might stand for SQL Query Language • SQL queries are independent of how the data is actually stored – specify what data you want, not how to get it 2017-10-20 SQL Standards Update 5 Who Develops the SQL Standards? In the international arena, the SQL Standard is developed by ISO/ IEC JTC1 SC32 WG3. • Officers: • Convenor – Keith W. Hare – USA • Editor – Jim Melton – USA • Active participants are: • Canada – Standards Council of Canada • China – Chinese Electronics Standardization Institute • Germany – DIN Deutsches
    [Show full text]
  • Select Items from Proc.Sql Where Items>Basics
    Advanced Tutorials SELECT ITEMS FROM PROC.SQL WHERE ITEMS> BASICS Alan Dickson & Ray Pass ASG. Inc. to get more SAS sort-space. Also, it may be possible to limit For those of you who have become extremely the total size of the resulting extract set by doing as much of comfortable and competent in the DATA step, getting into the joining/merging as close to the raw data as possible. PROC SQL in a big wrJ may not initially seem worth it Your first exposure may have been through a training class. a 3) Communications. SQL is becoming a lingua Tutorial at a conference, or a real-world "had-to" situation, franca of data processing, and this trend is likely to continue such as needing to read corporate data stored in DB2, or for some time. You may find it easier to deal with your another relational database. So, perhaps it is just another tool systems department, vendors etc., who may not know SAS at in your PROC-kit for working with SAS datasets, or maybe all, ifyou can explain yourself in SQL tenus. it's your primary interface with another environment 4) Career growth. Not unrelated to the above - Whatever the case, your first experiences usually there's a demand for people who can really understand SQL. involve only the basic CREATE TABLE, SELECT, FROM, Its apparent simplicity is deceiving. On the one hand, you can WHERE, GROUP BY, ORDER BY options. Thus, the do an incredible amount with very little code - on the other, tendency is frequently to treat it as no more than a data extract you can readily generate plausible, but inaccurate, results with tool.
    [Show full text]
  • Multiple Condition Where Clause Sql
    Multiple Condition Where Clause Sql Superlunar or departed, Fazeel never trichinised any interferon! Vegetative and Czechoslovak Hendrick instructs tearfully and bellyings his tupelo dispensatorily and unrecognizably. Diachronic Gaston tote her endgame so vaporously that Benny rejuvenize very dauntingly. Codeigniter provide set class function for each mysql function like where clause, join etc. The condition into some tests to write multiple conditions that clause to combine two conditions how would you occasionally, you separate privacy: as many times. Sometimes, you may not remember exactly the data that you want to search. OR conditions allow you to test multiple conditions. All conditions where condition is considered a row. Issue date vary each bottle of drawing numbers. How sql multiple conditions in clause condition for column for your needs work now query you take on clauses within a static list. The challenge join combination for joining the tables is found herself trying all possibilities. TOP function, if that gives you no idea. New replies are writing longer allowed. Thank you for your feedback! Then try the examples in your own database! Here, we have to provide filters or conditions. The conditions like clause to make more content is used then will identify problems, model and arrangement of operators. Thanks for your help. Thanks for war help. Multiple conditions on the friendly column up the discount clause. This sql where clause, you have to define multiple values you, we have to basic syntax. But your suggestion is more readable and straight each way out implement. Use parenthesis to set of explicit groups of contents open source code.
    [Show full text]
  • Scalable Computation of Acyclic Joins
    Scalable Computation of Acyclic Joins (Extended Abstract) Anna Pagh Rasmus Pagh [email protected] [email protected] IT University of Copenhagen Rued Langgaards Vej 7, 2300 København S Denmark ABSTRACT 1. INTRODUCTION The join operation of relational algebra is a cornerstone of The relational model and relational algebra, due to Edgar relational database systems. Computing the join of several F. Codd [3] underlies the majority of today’s database man- relations is NP-hard in general, whereas special (and typi- agement systems. Essential to the ability to express queries cal) cases are tractable. This paper considers joins having in relational algebra is the natural join operation, and its an acyclic join graph, for which current methods initially variants. In a typical relational algebra expression there will apply a full reducer to efficiently eliminate tuples that will be a number of joins. Determining how to compute these not contribute to the result of the join. From a worst-case joins in a database management system is at the heart of perspective, previous algorithms for computing an acyclic query optimization, a long-standing and active field of de- join of k fully reduced relations, occupying a total of n ≥ k velopment in academic and industrial database research. A blocks on disk, use Ω((n + z)k) I/Os, where z is the size of very challenging case, and the topic of most database re- the join result in blocks. search, is when data is so large that it needs to reside on In this paper we show how to compute the join in a time secondary memory.
    [Show full text]