Essential Bioinformatics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bioinformatics 1
Bioinformatics 1 Bioinformatics School School of Science, Engineering and Technology (http://www.stmarytx.edu/set/) School Dean Ian P. Martines, Ph.D. ([email protected]) Department Biological Science (https://www.stmarytx.edu/academics/set/undergraduate/biological-sciences/) Bioinformatics is an interdisciplinary and growing field in science for solving biological, biomedical and biochemical problems with the help of computer science, mathematics and information technology. Bioinformaticians are in high demand not only in research, but also in academia because few people have the education and skills to fill available positions. The Bioinformatics program at St. Mary’s University prepares students for graduate school, medical school or entry into the field. Bioinformatics is highly applicable to all branches of life sciences and also to fields like personalized medicine and pharmacogenomics — the study of how genes affect a person’s response to drugs. The Bachelor of Science in Bioinformatics offers three tracks that students can choose. • Bachelor of Science in Bioinformatics with a minor in Biology: 120 credit hours • Bachelor of Science in Bioinformatics with a minor in Computer Science: 120 credit hours • Bachelor of Science in Bioinformatics with a minor in Applied Mathematics: 120 credit hours Students will take 23 credit hours of core Bioinformatics classes, which included three credit hours of internship or research and three credit hours of a Bioinformatics Capstone course. BS Bioinformatics Tracks • Bachelor of Science -
13 Genomics and Bioinformatics
Enderle / Introduction to Biomedical Engineering 2nd ed. Final Proof 5.2.2005 11:58am page 799 13 GENOMICS AND BIOINFORMATICS Spencer Muse, PhD Chapter Contents 13.1 Introduction 13.1.1 The Central Dogma: DNA to RNA to Protein 13.2 Core Laboratory Technologies 13.2.1 Gene Sequencing 13.2.2 Whole Genome Sequencing 13.2.3 Gene Expression 13.2.4 Polymorphisms 13.3 Core Bioinformatics Technologies 13.3.1 Genomics Databases 13.3.2 Sequence Alignment 13.3.3 Database Searching 13.3.4 Hidden Markov Models 13.3.5 Gene Prediction 13.3.6 Functional Annotation 13.3.7 Identifying Differentially Expressed Genes 13.3.8 Clustering Genes with Shared Expression Patterns 13.4 Conclusion Exercises Suggested Reading At the conclusion of this chapter, the reader will be able to: & Discuss the basic principles of molecular biology regarding genome science. & Describe the major types of data involved in genome projects, including technologies for collecting them. 799 Enderle / Introduction to Biomedical Engineering 2nd ed. Final Proof 5.2.2005 11:58am page 800 800 CHAPTER 13 GENOMICS AND BIOINFORMATICS & Describe practical applications and uses of genomic data. & Understand the major topics in the field of bioinformatics and DNA sequence analysis. & Use key bioinformatics databases and web resources. 13.1 INTRODUCTION In April 2003, sequencing of all three billion nucleotides in the human genome was declared complete. This landmark of modern science brought with it high hopes for the understanding and treatment of human genetic disorders. There is plenty of evidence to suggest that the hopes will become reality—1631 human genetic diseases are now associated with known DNA sequences, compared to the less than 100 that were known at the initiation of the Human Genome Project (HGP) in 1990. -
Genome 559 Intro to Statistical and Computational Genomics
Genome 559! Intro to Statistical and Computational Genomics! Lecture 16a: Computational Gene Prediction Larry Ruzzo Today: Finding protein-coding genes coding sequence statistics prokaryotes mammals More on classes More practice Codons & The Genetic Code Ala : Alanine Second Base Arg : Arginine U C A G Asn : Asparagine Phe Ser Tyr Cys U Asp : Aspartic acid Phe Ser Tyr Cys C Cys : Cysteine U Leu Ser Stop Stop A Gln : Glutamine Leu Ser Stop Trp G Glu : Glutamic acid Leu Pro His Arg U Gly : Glycine Leu Pro His Arg C His : Histidine C Leu Pro Gln Arg A Ile : Isoleucine Leu Pro Gln Arg G Leu : Leucine Ile Thr Asn Ser U Lys : Lysine Ile Thr Asn Ser C Met : Methionine First Base A Third Base Ile Thr Lys Arg A Phe : Phenylalanine Met/Start Thr Lys Arg G Pro : Proline Val Ala Asp Gly U Ser : Serine Val Ala Asp Gly C Thr : Threonine G Val Ala Glu Gly A Trp : Tryptophane Val Ala Glu Gly G Tyr : Tyrosine Val : Valine Idea #1: Find Long ORF’s Reading frame: which of the 3 possible sequences of triples does the ribosome read? Open Reading Frame: No stop codons In random DNA average ORF = 64/3 = 21 triplets 300bp ORF once per 36kbp per strand But average protein ~ 1000bp So, coding DNA is not random–stops are rare Scanning for ORFs 1 2 3 U U A A U G U G U C A U U G A U U A A G! A A U U A C A C A G U A A C U A A U A C! 4 5 6 Idea #2: Codon Frequency,… Even between stops, coding DNA is not random In random DNA, Leu : Ala : Tryp = 6 : 4 : 1 But in real protein, ratios ~ 6.9 : 6.5 : 1 Even more: synonym usage is biased (in a species dependant way) Examples known with 90% AT 3rd base Why? E.g. -
Use of Bioinformatics Resources and Tools by Users of Bioinformatics Centers in India Meera Yadav University of Delhi, [email protected]
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Library Philosophy and Practice (e-journal) Libraries at University of Nebraska-Lincoln 2015 Use of Bioinformatics Resources and Tools by Users of Bioinformatics Centers in India meera yadav University of Delhi, [email protected] Manlunching Tawmbing Saha Institute of Nuclear Physisc, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/libphilprac Part of the Library and Information Science Commons yadav, meera and Tawmbing, Manlunching, "Use of Bioinformatics Resources and Tools by Users of Bioinformatics Centers in India" (2015). Library Philosophy and Practice (e-journal). 1254. http://digitalcommons.unl.edu/libphilprac/1254 Use of Bioinformatics Resources and Tools by Users of Bioinformatics Centers in India Dr Meera, Manlunching Department of Library and Information Science, University of Delhi, India [email protected], [email protected] Abstract Information plays a vital role in Bioinformatics to achieve the existing Bioinformatics information technologies. Librarians have to identify the information needs, uses and problems faced to meet the needs and requirements of the Bioinformatics users. The paper analyses the response of 315 Bioinformatics users of 15 Bioinformatics centers in India. The papers analyze the data with respect to use of different Bioinformatics databases and tools used by scholars and scientists, areas of major research in Bioinformatics, Major research project, thrust areas of research and use of different resources by the user. The study identifies the various Bioinformatics services and resources used by the Bioinformatics researchers. Keywords: Informaion services, Users, Inforamtion needs, Bioinformatics resources 1. Introduction ‘Needs’ refer to lack of self-sufficiency and also represent gaps in the present knowledge of the users. -
Challenges in Bioinformatics
Yuri Quintana, PhD, delivered a webinar in AllerGen’s Webinars for Research Success series on February 27, 2018, discussing different approaches to biomedical informatics and innovations in big-data platforms for biomedical research. His main messages and a hyperlinked index to his presentation follow. WHAT IS BIOINFORMATICS? Bioinformatics is an interdisciplinary field that develops analytical methods and software tools for understanding clinical and biological data. It combines elements from many fields, including basic sciences, biology, computer science, mathematics and engineering, among others. WHY DO WE NEED BIOINFORMATICS? Chronic diseases are rapidly expanding all over the world, and associated healthcare costs are increasing at an astronomical rate. We need to develop personalized treatments tailored to the genetics of increasingly diverse patient populations, to clinical and family histories, and to environmental factors. This requires collecting vast amounts of data, integrating it, and making it accessible and usable. CHALLENGES IN BIOINFORMATICS Data collection, coordination and archiving: These technologies have evolved to the point Many sources of biomedical data—hospitals, that we can now analyze not only at the DNA research centres and universities—do not have level, but down to the level of proteins. DNA complete data for any particular disease, due in sequencers, DNA microarrays, and mass part to patient numbers, but also to the difficulties spectrometers are generating tremendous of data collection, inter-operability -
Ijphs Jan Feb 07.Pmd
www.ijpsonline.com Review Article Pharmacogenomics and Computational Genomics: An Appraisal P. K. TRIPATHI*, SHALINI TRIPATHI AND N. K. JAIN1 Rajarshi Rananjay Sinh College of Pharmacy, Amethi-227 405, 1Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar-470 003, India. Pharmacogenomics deals with the interactions of individual genetic constitution with drug therapy. It is very likely that pharmacogenetic tests will make up a significant proportion of total molecular biology testing in future. Therefore, this article emphasizes the applications of pharmacogenomics, and computational genome analysis in drug therapy. Patients sometimes experience adverse drug reactions for both efficacy and safety of a given drug regimen and (ADR) leading to deterioration of their underlying this is the central topic of pharmacogenomics. Drug condition in clinical practice. Physiology of individual development and pretreatment genetic analysis of patients patient can vary, so the response of an individual to drug will be two major practical aspects in pharmacogenomics. therapy may also be highly variable. This is a major Highly specialized drug research laboratories will achieve clinical problem, since this inter-individual variability is the first goal, while the second goal has to be achieved until now only partly predictable. Besides these medical by clinical .com).laboratories 2,3. problems, cost-benefit calculations for a given pharmacological therapy will be affected significantly. Drug development: This is exemplified by a recent US study, which estimates There are two pharmacogenomic approaches. First, for that over 100,000 patients die every year from ADRs1. most therapies a correct diagnosis is mandatory for a satisfactory therapeutic result. This is more relevant There are many factors such as age, sex, nutritional.medknow because many diseases may be caused by different status, kidney and liver function, concomitant diseases and genetic defects or be significantly affected by the genetic medications, and the disease that affects drug responses. -
Comparing Bioinformatics Software Development by Computer Scientists and Biologists: an Exploratory Study
Comparing Bioinformatics Software Development by Computer Scientists and Biologists: An Exploratory Study Parmit K. Chilana Carole L. Palmer Amy J. Ko The Information School Graduate School of Library The Information School DUB Group and Information Science DUB Group University of Washington University of Illinois at University of Washington [email protected] Urbana-Champaign [email protected] [email protected] Abstract Although research in bioinformatics has soared in the last decade, much of the focus has been on high- We present the results of a study designed to better performance computing, such as optimizing algorithms understand information-seeking activities in and large-scale data storage techniques. Only recently bioinformatics software development by computer have studies on end-user programming [5, 8] and scientists and biologists. We collected data through semi- information activities in bioinformatics [1, 6] started to structured interviews with eight participants from four emerge. Despite these efforts, there still is a gap in our different bioinformatics labs in North America. The understanding of problems in bioinformatics software research focus within these labs ranged from development, how domain knowledge among MBB computational biology to applied molecular biology and and CS experts is exchanged, and how the software biochemistry. The findings indicate that colleagues play a development process in this domain can be improved. significant role in information seeking activities, but there In our exploratory study, we used an information is need for better methods of capturing and retaining use perspective to begin understanding issues in information from them during development. Also, in bioinformatics software development. We conducted terms of online information sources, there is need for in-depth interviews with 8 participants working in 4 more centralization, improved access and organization of bioinformatics labs in North America. -
Membrane Integration of an Essential Β-Barrel Protein Prerequires Burial of an Extracellular Loop
Membrane integration of an essential β-barrel protein prerequires burial of an extracellular loop Joseph S. Wzoreka, James Leea,b, David Tomaseka,b, Christine L. Hagana, and Daniel E. Kahnea,b,c,1 aDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138; bDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; and cDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 Edited by Robert T. Sauer, Massachusetts Institute of Technology, Cambridge, MA, and approved February 1, 2017 (received for review October 5, 2016) The Bam complex assembles β-barrel proteins into the outer mem- these studies have emphasized how the machine might alter the brane (OM) of Gram-negative bacteria. These proteins comprise membrane structure or how its components might sequentially cylindrical β-sheets with long extracellular loops and create pores bind and thereby guide substrates into the membrane. However, to allow passage of nutrients and waste products across the mem- much less has been done to understand how structure emerges brane. Despite their functional importance, several questions re- within a substrate during assembly by these machines. Here, we main about how these proteins are assembled into the OM after have taken the approach of characterizing the nascent structure their synthesis in the cytoplasm and secretion across the inner of a substrate as it interacts with the machine to identify the membrane. To understand this process better, we studied the as- features of the substrate required to permit its proper membrane sembly of an essential β-barrel substrate for the Bam complex, integration. -
Database Technology for Bioinformatics from Information Retrieval to Knowledge Systems
Database Technology for Bioinformatics From Information Retrieval to Knowledge Systems Luis M. Rocha Complex Systems Modeling CCS3 - Modeling, Algorithms, and Informatics Los Alamos National Laboratory, MS B256 Los Alamos, NM 87545 [email protected] or [email protected] 1 Molecular Biology Databases 3 Bibliographic databases On-line journals and bibliographic citations – MEDLINE (1971, www.nlm.nih.gov) 3 Factual databases Repositories of Experimental data associated with published articles and that can be used for computerized analysis – Nucleic acid sequences: GenBank (1982, www.ncbi.nlm.nih.gov), EMBL (1982, www.ebi.ac.uk), DDBJ (1984, www.ddbj.nig.ac.jp) – Amino acid sequences: PIR (1968, www-nbrf.georgetown.edu), PRF (1979, www.prf.op.jp), SWISS-PROT (1986, www.expasy.ch) – 3D molecular structure: PDB (1971, www.rcsb.org), CSD (1965, www.ccdc.cam.ac.uk) Lack standardization of data contents 3 Knowledge Bases Intended for automatic inference rather than simple retrieval – Motif libraries: PROSITE (1988, www.expasy.ch/sprot/prosite.html) – Molecular Classifications: SCOP (1994, www.mrc-lmb.cam.ac.uk) – Biochemical Pathways: KEGG (1995, www.genome.ad.jp/kegg) Difference between knowledge and data (semiosis and syntax)?? 2 Growth of sequence and 3D Structure databases Number of Entries 3 Database Technology and Bioinformatics 3 Databases Computerized collection of data for Information Retrieval Shared by many users Stored records are organized with a predefined set of data items (attributes) Managed by a computer program: the database -
Bioinformatics Careers
University of Pittsburgh | School of Arts and Sciences | Department of Biological Sciences BIOINFORMATICS CAREERS General Information • Bioinformatics is an interdisciplinary field that incorporates computer science and biology to research, develop, and apply computational tools and approaches to manage and process large sets of biological data. • The Bioinformatics career focuses on creating software tools to store, manage, interpret, and analyze data at the genome, proteome, transcriptome, and metabalome levels. Primary investigations consist of integrating information from DNA and protein sequences and protein structure and function. • Bioinformatics jobs exist in biomedical, molecular medicine, energy development, biotechnology, environmental restoration, homeland security, forensic investigations, agricultural, and animal science fields. • Most bioinformatics jobs require a Bachelor’s degree. Post-grad programs, University level teaching & research, and administrative positions require a graduate degree. The following list provides a brief sample of responsibilities, employers, jobs, and industries for individuals with a degree in this major. This is by no means an exhaustive listing, but is simply designed to give initial insight into a particular career field that would employ the skills and knowledge gained through this major. Areas Employers Environmental/Government • BLM • Private • Sequence genomes of bacteria useful in energy production, • DOE Contractors environmental cleanup, industrial processing, and toxic waste • EPA • National Parks reduction. • NOAA • State Wildlife • Examination of genomes dependent on carbon sources to address • USDA Agencies climate change concerns. • USFS • Army Corp of • Sequence genomes of plants and animals to produce stronger, • USFWS Engineers resistant crops and healthier livestock. • USGS • Transfer genes into plants to improve nutritional quality. Industrial • DOD • Study the genetic material of microbes and isolate the genes that give • DOE them their unique abilities to survive under extreme conditions. -
Computational Genomics and Genetics of Developmental Disorders
Computational genomics and genetics of developmental disorders Hongjian Qi Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 © 2018 Hongjian Qi All Rights Reserved ABSTRACT Computational genomics and genetics of developmental disorders Hongjian Qi Computational genomics is at the intersection of computational applied physics, math, statistics, computer science and biology. With the advances in sequencing technology, large amounts of comprehensive genomic data are generated every year. However, the nature of genomic data is messy, complex and unstructured; it becomes extremely challenging to explore, analyze and understand the data based on traditional methods. The needs to develop new quantitative methods to analyze large-scale genomics datasets are urgent. By collecting, processing and organizing clean genomics datasets and using these datasets to extract insights and relevant information, we are able to develop novel methods and strategies to address specific genetics questions using the tools of applied mathematics, statistics, and human genetics. This thesis describes genetic and bioinformatics studies focused on utilizing and developing state-of-the-art computational methods and strategies in order to identify and interpret de novo mutations that are likely causing developmental disorders. We performed whole exome sequencing as well as whole genome sequencing on congenital diaphragmatic hernia parents-child trios and identified a new candidate risk gene MYRF. Additionally, we found male and female patients carry a different burden of likely-gene-disrupting mutations, and isolated and complex patients carry different gene expression levels in early development of diaphragm tissues for likely-gene-disrupting mutations. -
Bioinformatics Approach to Probe Protein-Protein Interactions
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2013 Bioinformatics Approach to Probe Protein-Protein Interactions: Understanding the Role of Interfacial Solvent in the Binding Sites of Protein-Protein Complexes;Network Based Predictions and Analysis of Human Proteins that Play Critical Roles in HIV Pathogenesis. Mesay Habtemariam Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Bioinformatics Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2997 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. ©Mesay A. Habtemariam 2013 All Rights Reserved Bioinformatics Approach to Probe Protein-Protein Interactions: Understanding the Role of Interfacial Solvent in the Binding Sites of Protein-Protein Complexes; Network Based Predictions and Analysis of Human Proteins that Play Critical Roles in HIV Pathogenesis. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. By Mesay Habtemariam B.Sc. Arbaminch University, Arbaminch, Ethiopia 2005 Advisors: Glen Eugene Kellogg, Ph.D. Associate Professor, Department of Medicinal Chemistry & Institute For Structural Biology And Drug Discovery Danail Bonchev, Ph.D., D.SC. Professor, Department of Mathematics and Applied Mathematics, Director of Research in Bioinformatics, Networks and Pathways at the School of Life Sciences Center for the Study of Biological Complexity. Virginia Commonwealth University Richmond, Virginia May 2013 ኃይልን በሚሰጠኝ በክርስቶስ ሁሉን እችላለሁ:: ፊልጵስዩስ 4:13 I can do all this through God who gives me strength.