How Good Is Lebesgue Measure? Krzysztof Ciesielski*

Total Page:16

File Type:pdf, Size:1020Kb

How Good Is Lebesgue Measure? Krzysztof Ciesielski* How Good Is Lebesgue Measure? Krzysztof Ciesielski* The problem of determining the distance between two For a given subset of R", what do we mean by the points, the area of a region, and the volume of a solid statement that some number is its area (for n = 2), are some of the oldest and most important problems in volume (for n = 3) or, more generally, its n-dimen- mathematics. Their roots are in the ancient world. For sional measure? Such a number must describe the size example, the formula for the area of a circle was al- of the set. So the function that associates with some ready known to the Babylonians of 2000 to 1600 B.C., subsets of R" their measure must have some "good" although they used as "rr either 3 or 31/K The Egyptians properties. How can we construct such a function and of 1650 B.C. used "rr = (4/3)4 = 3.1604 .... The first what reasonable properties should it have? crisis in mathematics arose from a measurement This question, in connection with the theory of inte- problem. The discovery of incommensurable magni- gration, has been considered since the beginning of tudes by the Pythagoreans (before 340 B.C.) created the nineteenth century. It was examined by such well- such a great "logical scandal" that efforts were made known mathematicians as Augustin Cauchy, Lejeune for a while to keep the matter secret (see [Ev], pages Dirichlet, Bernhard Riemann, Camille Jordan, Emile 25, 31, 85, 56). Borel, Henri Lebesgue, and Giuseppe Vitali (see [Haw]). Lebesgue's solution of this problem, dating from the turn of the century, is now considered to be the best answer to the question, which is not com- pletely settled even today. Lebesgue Measure In his solution Lebesgue constructed a family Y of subsets of Euclidean space R" (where n = 1, 2 .... ) and a function m: ~ --* [0,oo] that satisfies the following properties: (a) ~ is a (r-algebra, i.e., ~ is closed under countable unions (if A k E ~ for every natural number k then U {Ak: k E N} E ~) and under complementation (A E ~ implies R"\A E ~e); (b) [0,1]" ~ 5~ and m([0,1]") = 1; * I wish to thank my colleagues at Bowling Green State University for their hospitality in 1986/87, while writing this article. I am most grateful to V. Frederick Rickey for his kind help. THE MATHEMATICALINTELLIGENCER VOL. tl, NO. 2 91989 Springer-VerlagNew York (c) m is countably additive, i.e., for every family which contradicts property (b) of Lebesgue measure. {Ak: k E IV} of pairwise disjoint sets from S~, Thus V is not in ~. (For the general case, modify the above proof using V x [0,1]"-1.) Notice that if ~: ~ --~ [0,~] satisfies conditions m A k = m(Ak); (a)-(d) (we will call such a function an invariant mea- sure) then the above proof shows that V ~ ~. Thus, V is not measureable for any invariant measure. In (d) m is isometrically invariant, i.e., for every iso- particular, there is no invariant measure ~: ~ --* [0,oo] metry i of R" which is universal, i.e., for which ~ equals ~(R"). (1) A E ~f if and only if i(A) E ~; Another remark we wish to make is that in Vitali's (2) re(A) = m(i(A)) for every A in 5~. proof we used the Axiom of Choice (hereafter abbre- Recall that a function i: R" --~ R" is an isometry pro- viated AC). At the beginning of the twentieth century vided it preserves distance, in other words, i is com- the Axiom of Choice was not commonly accepted (see posed of translations and rotations. [Mo]) and Lebesgue had his reservations about Vitali's The properties (a)-(d) seem to capture perfectly our construction (see [Le] or [Haw], p. 123). Today we ac- intuitive notion of area and volume. Lebesgue mea- cept the Axiom of Choice, so we cannot support sure is not sensitive to moving sets around without Lebesgue's complaints. But was Lebesgue completely distorting them. To find the measure of a set it suffices wrong? to split it up into a finite or countable family of disjoint If we do not accept the Axiom of Choice then Vitali's sets and then to add up their measures (provided, of proof will not work. In 1964 Robert Solovay (see [So] course, that each piece is measurable). However, we or [Wa], Ch. 13) showed something much stronger: should ask at least one more question: "With how we cannot prove that 5~ # ~(R") without AC. More many sets does Lebesgue measure deal?" or "'How big precisely, he proved that there exists a model ("a is the family ~?" In particular, we should decide mathematical world") in which the usual Zermelo- whether m is universal, i.e., whether ~ is equal to the Frankel set theory (ZF) is true and where all subsets of family ~(R") of all subsets of R". R" are Lebesgue measurable, i.e., ~f = ~(R"). More- Unfortunately the answer to this question is nega- over, although the full power of the Axiom of Choice tive. In 1905 Vitali constructed a subset V of R" such must fail in this "world," the so-called Axiom of De- that V is not in S~ (see [Vi], [Haw], p. 123, or [Ru], pendent Choice (DC) is true in the model. In fact, DC Thm. 2.22, p. 53). His proof is easy, so we shall repeat tells that we can use inductive definitions and there- it here for n = 1. fore all classical theorems of analysis remain true in For x in [0,1] let E x = {y E [0,1]: y - x E Q} and put this "world." % = {E=: x E [0,1]}. Clearly % is a nonempty family of Solovay's theorem has only one disadvantage. Be- non-empty pairwise disjoint sets. Therefore, by the sides the usual axioms of set theory (ZF), Solovay's Axiom of Choice there exists a set V C [0,1] such that proof uses an additional axiom: there exists a weakly V n E has exactly one element for every E E %. We inaccessible cardinal (in abbreviation WIC, see Lie], p. prove that V is not in ~e. 28). The theory ZF + WIC is essentially stronger than First notice that if V + q = {x + q: x E V} for q E Q, ZF. For over 20 years mathematicians wondered then V + q and V + p are disjoint for distinct p, q E whether it is possible to eliminate the hypothesis re- Q. Otherwisex + q = y + pforsomex, yEVsox garding WIC from Solovay's theorem, but in 1980 and y both belong to the same E E %. Then V n E Saharon Shelah showed that it cannot be done, contains more than one element, contradicting the proving that the consistency of the theory ZF + DC + definition of V. "~e = ~(R") '" implies the consistency of the theory ZF Now if V is in ~, then so is V + q for every q E Q, + WIC (see IRa] or [Wa], p. 209). and re(V) = m(V + q). But U {v + q: q E Q N [0,1]} C [0,2] and so Extensions of Lebesgue Measure X m(V + q) = m(U{v + q: q EQ n [0,1]}) q ~Qn[0,1] Let us go back to doing mathematics with the Axiom m([0,2]) = 2. of Choice. We know that Lebesgue measure is not uni- versal, i.e., Y # ~(R"). So let us examine the problem This implies re(V) = m(V + q) = 0 for every q E Q. of how we can improve Lebesgue measure. The prop- On the other hand, [0;1] C R = U {V + q:q E Q} erties (a)-(d) of Lebesgue measure seem to be which implies most desirable. Therefore, we will try to improve m: ~ ---* [0,~] by examining its extensions, the func- m([0,1]) ~ m(U{v + q: q EQ}) =~P m(V + q) = 0, tions p,: ~ ~ [0,oo] such that ~ C ~J~ C ~(R n) and q~Q ~(X) = m(X) for all X E ~. THE MATHEMATICAL INTELLIGENCER VOL. 11, NO. 2, 1989 55 By Vitali's theorem, if it is an invariant measure then 2J~ # ~(R'). In this context the following question it([O,1] n) ~ it(Rn) = it ~ it(Nj) = O. naturally appears: "How far can we extend Lebesgue j=l measure and what properties can such an extension Therefore the invariant measure v as in (ii) is a proper preserve?" This question has been investigated care- extension of it and so Wis not maximal. fully by members of the Polish Mathematical School At this stage of our discussion we are able to give a and all but one of the results presented here were partial answer to the question of our title. If we restrict proved by this group. our search to invariant measures, then Lebesgue mea- Let us first concentrate on the extensions that are sure is not the richest. However, any other invariant invariant measures. The first result in this direction is measure has the same defect. This means that if we due to Edward Szpilrajn (who later changed his name would like to compare invariant measures only by the to Edward Marczewski). In 1936 he proved that Le- size of their domain then the best solution to the mea- besgue measure is not a maximal invariant measure, sure problem simply does not exist. On the other i.e., that there exists an invariant measure that is a hand, if we deal only with the subsets of R" con- proper extension of Lebesgue measure.
Recommended publications
  • Set Theory, Including the Axiom of Choice) Plus the Negation of CH
    ANNALS OF ~,IATltEMATICAL LOGIC - Volume 2, No. 2 (1970) pp. 143--178 INTERNAL COHEN EXTENSIONS D.A.MARTIN and R.M.SOLOVAY ;Tte RockeJ~'ller University and University (.~t CatiJbrnia. Berkeley Received 2 l)ecemt)er 1969 Introduction Cohen [ !, 2] has shown that tile continuum hypothesis (CH) cannot be proved in Zermelo-Fraenkel set theory. Levy and Solovay [9] have subsequently shown that CH cannot be proved even if one assumes the existence of a measurable cardinal. Their argument in tact shows that no large cardinal axiom of the kind present;y being considered by set theorists can yield a proof of CH (or of its negation, of course). Indeed, many set theorists - including the authors - suspect that C1t is false. But if we reject CH we admit Gurselves to be in a state of ignorance about a great many questions which CH resolves. While CH is a power- full assertion, its negation is in many ways quite weak. Sierpinski [ 1 5 ] deduces propcsitions there called C l - C82 from CH. We know of none of these propositions which is decided by the negation of CH and only one of them (C78) which is decided if one assumes in addition that a measurable cardinal exists. Among the many simple questions easily decided by CH and which cannot be decided in ZF (Zerme!o-Fraenkel set theory, including the axiom of choice) plus the negation of CH are tile following: Is every set of real numbers of cardinality less than tha't of the continuum of Lebesgue measure zero'? Is 2 ~0 < 2 ~ 1 ? Is there a non-trivial measure defined on all sets of real numbers? CIhis third question could be decided in ZF + not CH only in the unlikely event t Tile second author received support from a Sloan Foundation fellowship and tile National Science Foundation Grant (GP-8746).
    [Show full text]
  • Geometric Integration Theory Contents
    Steven G. Krantz Harold R. Parks Geometric Integration Theory Contents Preface v 1 Basics 1 1.1 Smooth Functions . 1 1.2Measures.............................. 6 1.2.1 Lebesgue Measure . 11 1.3Integration............................. 14 1.3.1 Measurable Functions . 14 1.3.2 The Integral . 17 1.3.3 Lebesgue Spaces . 23 1.3.4 Product Measures and the Fubini–Tonelli Theorem . 25 1.4 The Exterior Algebra . 27 1.5 The Hausdorff Distance and Steiner Symmetrization . 30 1.6 Borel and Suslin Sets . 41 2 Carath´eodory’s Construction and Lower-Dimensional Mea- sures 53 2.1 The Basic Definition . 53 2.1.1 Hausdorff Measure and Spherical Measure . 55 2.1.2 A Measure Based on Parallelepipeds . 57 2.1.3 Projections and Convexity . 57 2.1.4 Other Geometric Measures . 59 2.1.5 Summary . 61 2.2 The Densities of a Measure . 64 2.3 A One-Dimensional Example . 66 2.4 Carath´eodory’s Construction and Mappings . 67 2.5 The Concept of Hausdorff Dimension . 70 2.6 Some Cantor Set Examples . 73 i ii CONTENTS 2.6.1 Basic Examples . 73 2.6.2 Some Generalized Cantor Sets . 76 2.6.3 Cantor Sets in Higher Dimensions . 78 3 Invariant Measures and the Construction of Haar Measure 81 3.1 The Fundamental Theorem . 82 3.2 Haar Measure for the Orthogonal Group and the Grassmanian 90 3.2.1 Remarks on the Manifold Structure of G(N,M).... 94 4 Covering Theorems and the Differentiation of Integrals 97 4.1 Wiener’s Covering Lemma and its Variants .
    [Show full text]
  • Shape Analysis, Lebesgue Integration and Absolute Continuity Connections
    NISTIR 8217 Shape Analysis, Lebesgue Integration and Absolute Continuity Connections Javier Bernal This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8217 NISTIR 8217 Shape Analysis, Lebesgue Integration and Absolute Continuity Connections Javier Bernal Applied and Computational Mathematics Division Information Technology Laboratory This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8217 July 2018 INCLUDES UPDATES AS OF 07-18-2018; SEE APPENDIX U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology ______________________________________________________________________________________________________ This Shape Analysis, Lebesgue Integration and publication Absolute Continuity Connections Javier Bernal is National Institute of Standards and Technology, available Gaithersburg, MD 20899, USA free of Abstract charge As shape analysis of the form presented in Srivastava and Klassen’s textbook “Functional and Shape Data Analysis” is intricately related to Lebesgue integration and absolute continuity, it is advantageous from: to have a good grasp of the latter two notions. Accordingly, in these notes we review basic concepts and results about Lebesgue integration https://doi.org/10.6028/NIST.IR.8217 and absolute continuity. In particular, we review fundamental results connecting them to each other and to the kind of shape analysis, or more generally, functional data analysis presented in the aforeme- tioned textbook, in the process shedding light on important aspects of all three notions. Many well-known results, especially most results about Lebesgue integration and some results about absolute conti- nuity, are presented without proofs.
    [Show full text]
  • Hausdorff Measure
    Hausdorff Measure Jimmy Briggs and Tim Tyree December 3, 2016 1 1 Introduction In this report, we explore the the measurement of arbitrary subsets of the metric space (X; ρ); a topological space X along with its distance function ρ. We introduce Hausdorff Measure as a natural way of assigning sizes to these sets, especially those of smaller \dimension" than X: After an exploration of the salient properties of Hausdorff Measure, we proceed to a definition of Hausdorff dimension, a separate idea of size that allows us a more robust comparison between rough subsets of X. Many of the theorems in this report will be summarized in a proof sketch or shown by visual example. For a more rigorous treatment of the same material, we redirect the reader to Gerald B. Folland's Real Analysis: Modern techniques and their applications. Chapter 11 of the 1999 edition served as our primary reference. 2 Hausdorff Measure 2.1 Measuring low-dimensional subsets of X The need for Hausdorff Measure arises from the need to know the size of lower-dimensional subsets of a metric space. This idea is not as exotic as it may sound. In a high school Geometry course, we learn formulas for objects of various dimension embedded in R3: In Figure 1 we see the line segment, the circle, and the sphere, each with it's own idea of size. We call these length, area, and volume, respectively. Figure 1: low-dimensional subsets of R3: 2 4 3 2r πr 3 πr Note that while only volume measures something of the same dimension as the host space, R3; length, and area can still be of interest to us, especially 2 in applications.
    [Show full text]
  • The Axiom of Choice and Its Implications
    THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial.
    [Show full text]
  • Simply-Riemann-1588263529. Print
    Simply Riemann Simply Riemann JEREMY GRAY SIMPLY CHARLY NEW YORK Copyright © 2020 by Jeremy Gray Cover Illustration by José Ramos Cover Design by Scarlett Rugers All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below. [email protected] ISBN: 978-1-943657-21-6 Brought to you by http://simplycharly.com Contents Praise for Simply Riemann vii Other Great Lives x Series Editor's Foreword xi Preface xii Introduction 1 1. Riemann's life and times 7 2. Geometry 41 3. Complex functions 64 4. Primes and the zeta function 87 5. Minimal surfaces 97 6. Real functions 108 7. And another thing . 124 8. Riemann's Legacy 126 References 143 Suggested Reading 150 About the Author 152 A Word from the Publisher 153 Praise for Simply Riemann “Jeremy Gray is one of the world’s leading historians of mathematics, and an accomplished author of popular science. In Simply Riemann he combines both talents to give us clear and accessible insights into the astonishing discoveries of Bernhard Riemann—a brilliant but enigmatic mathematician who laid the foundations for several major areas of today’s mathematics, and for Albert Einstein’s General Theory of Relativity.Readable, organized—and simple. Highly recommended.” —Ian Stewart, Emeritus Professor of Mathematics at Warwick University and author of Significant Figures “Very few mathematicians have exercised an influence on the later development of their science comparable to Riemann’s whose work reshaped whole fields and created new ones.
    [Show full text]
  • (Measure Theory for Dummies) UWEE Technical Report Number UWEETR-2006-0008
    A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2006-0008 May 2006 Department of Electrical Engineering University of Washington Box 352500 Seattle, Washington 98195-2500 PHN: (206) 543-2150 FAX: (206) 543-3842 URL: http://www.ee.washington.edu A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 University of Washington, Dept. of EE, UWEETR-2006-0008 May 2006 Abstract This tutorial is an informal introduction to measure theory for people who are interested in reading papers that use measure theory. The tutorial assumes one has had at least a year of college-level calculus, some graduate level exposure to random processes, and familiarity with terms like “closed” and “open.” The focus is on the terms and ideas relevant to applied probability and information theory. There are no proofs and no exercises. Measure theory is a bit like grammar, many people communicate clearly without worrying about all the details, but the details do exist and for good reasons. There are a number of great texts that do measure theory justice. This is not one of them. Rather this is a hack way to get the basic ideas down so you can read through research papers and follow what’s going on. Hopefully, you’ll get curious and excited enough about the details to check out some of the references for a deeper understanding.
    [Show full text]
  • On the Stability Conjecture for Geodesic Flows of Manifolds Without
    Annales Henri Lebesgue 4 (2021) 759-784 LUDOVICRIFFORD RAFAELRUGGIERO ONTHESTABILITY CONJECTUREFORGEODESIC FLOWSOFMANIFOLDSWITHOUT CONJUGATE POINTS SURLACONJECTUREDELASTABILITÉ POURLESFLOTSGÉODÉSIQUESSANS POINTSCONJUGUÉS Abstract. — We study the C2-structural stability conjecture from Mañé’s viewpoint for geodesics flows of compact manifolds without conjugate points. The structural stability conjecture is an open problem in the category of geodesic flows because the C1 closing lemma is not known in this context. Without the C1 closing lemma, we combine the geometry of manifolds without conjugate points and a recent version of Franks’ Lemma from Mañé’s viewpoint to prove the conjecture for compact surfaces, for compact three dimensional manifolds with quasi-convex universal coverings where geodesic rays diverge, and for n-dimensional, generalized rank one manifolds. Keywords: Geodesic flow, structural stability, closing lemma, conjugate points, quasi-convex space, Gromov hyperbolic space. 2020 Mathematics Subject Classification: 37C20, 37D40, 53C22, 20F65. DOI: https://doi.org/10.5802/ahl.87 (*) The research project was partially supported by CNPq, Programa de Estágio Sênior CAPES, CNRS, unité FR2291 FRUMAM. 760 L. RIFFORD & R. RUGGIERO Résumé. — Nous étudions la conjecture de stabilité en topologie C2 du point de vue de Mañé pour le flots géodésiques sans points conjugués sur les variétés compactes. La conjecture de stabilité en topologie C1 pour les flots géodésiques est un problème ouvert car le C1-Closing Lemma n’est pas connu dans ce contexte. Sans Closing Lemma, nous démontrons que la théorie des variétés sans points conjugués et une version récente du Lemme de Franks du point de vue de Mañé permettent d’obtenir une réponse positive à la conjecture dans le cas des variétés compactes sans points conjugués de dimension 2 et 3 ayant un revêtement universel quasi-convexe avec des rayons géodésiques divergents, ainsi que pour les variétés de dimension n de rank un généralisées.
    [Show full text]
  • A Measure Blowup Sam Chow∗∗∗, Gus Schrader∗∗∗∗ and J.J
    A measure blowup Sam Chow∗∗∗, Gus Schrader∗∗∗∗ and J.J. Koliha∗ ∗∗∗∗ Last year Sam Chow and Gus Schrader were third-year students at the Uni- versity of Melbourne enrolled in Linear Analysis, a subject involving — among other topics — Lebesgue measure and integration. This was based on parts of the recently published book Metrics, Norms and Integrals by the lecturer in the subject, Associate Professor Jerry Koliha. In addition to three lectures a week, the subject had a weekly practice class. The lecturer introduced an extra weekly practice class with a voluntary attendance, but most stu- dents chose to attend, showing a keen interest in the subject. The problems tackled in the extra practice class ranged from routine to very challenging. The present article arose in this environment, as Sam and Gus independently attacked one of the challenging problems. Working in the Euclidean space Rd we can characterise Lebesgue measure very simply by relying on the Euclidean volume of the so-called d-cells.Ad-cell C in Rd is the Cartesian product C = I1 ×···×Id of bounded nondegenerate one-dimensional intervals Ik; its Euclidean d-volume is d the product of the lengths of the Ik. Borel sets in R are the members of the least family Bd of subsets of Rd containing the empty set, ∅, and all d-cells which are closed under countable unions and complements in Rd. Since every open set in Rd can be expressed as the countable union of suitable d-cells, the open sets are Borel, as are all sets obtained from them by countable unions and intersections, and complements.
    [Show full text]
  • RANDOMNESS – BEYOND LEBESGUE MEASURE Most
    RANDOMNESS – BEYOND LEBESGUE MEASURE JAN REIMANN ABSTRACT. Much of the recent research on algorithmic randomness has focused on randomness for Lebesgue measure. While, from a com- putability theoretic point of view, the picture remains unchanged if one passes to arbitrary computable measures, interesting phenomena occur if one studies the the set of reals which are random for an arbitrary (contin- uous) probability measure or a generalized Hausdorff measure on Cantor space. This paper tries to give a survey of some of the research that has been done on randomness for non-Lebesgue measures. 1. INTRODUCTION Most studies on algorithmic randomness focus on reals random with respect to the uniform distribution, i.e. the (1/2, 1/2)-Bernoulli measure, which is measure theoretically isomorphic to Lebesgue measure on the unit interval. The theory of uniform randomness, with all its ramifications (e.g. computable or Schnorr randomness) has been well studied over the past decades and has led to an impressive theory. Recently, a lot of attention focused on the interaction of algorithmic ran- domness with recursion theory: What are the computational properties of random reals? In other words, which computational properties hold effec- tively for almost every real? This has led to a number of interesting re- sults, many of which will be covered in a forthcoming book by Downey and Hirschfeldt [12]. While the understanding of “holds effectively” varied in these results (depending on the underlying notion of randomness, such as computable, Schnorr, or weak randomness, or various arithmetic levels of Martin-Lof¨ randomness, to name only a few), the meaning of “for almost every” was usually understood with respect to Lebesgue measure.
    [Show full text]
  • Henri Lebesgue and the Development of the Integral Concept
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Analysis Mathematics via Primary Historical Sources (TRIUMPHS) Summer 2016 Henri Lebesgue and the Development of the Integral Concept Janet Heine Barnett Colorado State University-Pueblo, [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_analysis Part of the Analysis Commons, Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits ou.y Recommended Citation Barnett, Janet Heine, "Henri Lebesgue and the Development of the Integral Concept" (2016). Analysis. 2. https://digitalcommons.ursinus.edu/triumphs_analysis/2 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Analysis by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. Henri Lebesgue and the Development of the Integral Concept Janet Heine Barnett∗ May 5, 2021 In an important text published in 1853, the celebrated German mathematician Bernhard Riemann (1826–1866) presented the approach to integration that is still known by his name today. In fact, Riemann devoted only a small portion (5–6 pages) of his text to the question of how to define the integral. Over two decades later, the French mathematician Gaston Darboux (1842–1917), an admirer of Riemann’s ideas, provided the rigorous reformulation of the Riemann integral which is learned in most undergraduate level analysis courses in his publication Mémoire sur les fonctions discontinues [Darboux, 1875].
    [Show full text]
  • Regularity Properties and Determinacy
    Regularity Properties and Determinacy MSc Thesis (Afstudeerscriptie) written by Yurii Khomskii (born September 5, 1980 in Moscow, Russia) under the supervision of Dr. Benedikt L¨owe, and submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of MSc in Logic at the Universiteit van Amsterdam. Date of the public defense: Members of the Thesis Committee: August 14, 2007 Dr. Benedikt L¨owe Prof. Dr. Jouko V¨a¨an¨anen Prof. Dr. Joel David Hamkins Prof. Dr. Peter van Emde Boas Brian Semmes i Contents 0. Introduction............................ 1 1. Preliminaries ........................... 4 1.1 Notation. ........................... 4 1.2 The Real Numbers. ...................... 5 1.3 Trees. ............................. 6 1.4 The Forcing Notions. ..................... 7 2. ClasswiseConsequencesofDeterminacy . 11 2.1 Regularity Properties. .................... 11 2.2 Infinite Games. ........................ 14 2.3 Classwise Implications. .................... 16 3. The Marczewski-Burstin Algebra and the Baire Property . 20 3.1 MB and BP. ......................... 20 3.2 Fusion Sequences. ...................... 23 3.3 Counter-examples. ...................... 26 4. DeterminacyandtheBaireProperty.. 29 4.1 Generalized MB-algebras. .................. 29 4.2 Determinacy and BP(P). ................... 31 4.3 Determinacy and wBP(P). .................. 34 5. Determinacy andAsymmetric Properties. 39 5.1 The Asymmetric Properties. ................. 39 5.2 The General Definition of Asym(P). ............. 43 5.3 Determinacy and Asym(P). ................. 46 ii iii 0. Introduction One of the most intriguing developments of modern set theory is the investi- gation of two-player infinite games of perfect information. Of course, it is clear that applied game theory, as any other branch of mathematics, can be modeled in set theory. But we are talking about the converse: the use of infinite games as a tool to study fundamental set theoretic questions.
    [Show full text]