<<

Sahelian land-cover degradation and its effects on the silting-up of the middle Okechukwu Amogu

To cite this version:

Okechukwu Amogu. Sahelian land-cover degradation and its effects on the silting-up of the middle . Hydrology. Université Joseph-Fourier - Grenoble I, 2009. English. ￿tel-00385629v2￿

HAL Id: tel-00385629 https://tel.archives-ouvertes.fr/tel-00385629v2 Submitted on 19 May 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UniversitéJosephFourierGrenoble1

THESE

présentéeetsoutenuepubliquementpar

OkechukwuAMOGU

pourobtenirlegradede

DOCTEURDEL’UNIVERSITEJOSEPHFOURIERGRENOBLE1

Spécialité:Océan,Atmosphère,Hydrologie

préparéeauLaboratoired’étudedesTransfertsenHydrologieetEnvironnement

(LTHE,UMR5564,CNRSINPGIRDUJF)

danslecadredel’EcoleDoctorale: Terre, Univers, Environnement Ladégradationdesespacessahéliensetsesconséquences surl'alluvionnementdufleuveNigermoyen

Datedesoutenance:4Mai2009

Compositiondujury:

MrGilMahé DirecteurdeRecherche,IRDMontpellier Rapporteur

MrAlainLaraque ChargédeRecherche,IRDFortdeFrance Rapporteur

MrIssakaAmadou DocteuresSciences,ABN Examinateur

MrPatrickSauvaget Docteur,SOGREAHGrenoble Examinateur

MmeEmmanuelleGautier Professeur,UniversitéParis8 (LGP) Examinateur

MrPhilippeSchoeneich Professeur,UJF(IGAPACTE) Examinateur

MrPhilippeBelleudy Professeur,UJFGrenoble(LTHE) Examinateur MrLucDescroix ChargédeRecherche,IRD Directeurdethèse Remerciements

Jeremercietoutd’abordceuxquisontàl’originedeceprojetderecherche:LucDescroix,mon directeurdethèse,quiasouhaitéétudiercesujetimportant;ChristopheBrachetquiétaitalorsà l’ABN;SeyniSeydoudel’ABN;MartinParentduMinistèredesAffairesEtrangèresdeFrance. Ensemble,ilsontconstruitleprojetderechercheettrouvélesfinancementspourmeneràbien cettethèse.Sansleurenthousiasme,cetravailn’auraitjamaisétéréalisé. Je veux aussi remercier Robert Dessouasi et PierrickFravaldel’ABNpourl’intérêtqu’ilsont portéàmontravail. Jetiensàremercierceuxquiontgérélefinancementdemaboursedethèse:VincentLarrouzé quiétaitalorsàl’ambassadedeFranceauetMarieAngePenaduCROUSdeGrenoble. Ilsontmontréuntrèshautniveaudecompétenceetdeprofessionnalisme. Je remercie Philippe Belleudy pour son soutien scientifique tout au long de ce travail, particulièrementpoursonapprochecritiqueetsadisponibilitépourréfléchiravecmoisurles nombreuxquestionnementstechniquesquej’airencontréspendantcetravail. Jeremercieaussilesautresmembresdujury.Enpremier,lesrapporteursdecetravail,GilMahé etAlainLaraquequiontluminutieusementlapremièreversiondemonmanuscritavecunregard extérieuretquiontpermisd’améliorermontravailgrâceàleurssuggestionsconstructives..Je remerciePhilippeSchoeneichpoursagentillessed’avoiracceptédeprésiderlejurydemathèse. JeremercieaussiEmmanuelleGautier,PatrickSauvagetetIssakaAmadoud’avoiraccepté d’examinermontravail. J’aieuleprivilègedebénéficierdel’appuiedeplusieursinstitutionsauNiger. Jeremercielespersonnesdel’IRDNigerpourleuraccueil:GillesBezançon,JeanLouisRajotet Fati Maiga pour les aspects administratifs; Nicolas Boulain, Pierre Sire, Mamadou Sow, MaimounaIbrahimetDavidRamierpourleursaidesdiverses.AbdoulkadirDoumidel’ABN, AbdoulayeKoné,Issoufou,HamzaetAbdoulayeIssoufoudel’IRDNiameym’ontconduitsurle terrainetontétédetrèsbonscompagnonsdeterrain.Jetiensàremercierlesobservateursdes stationsdemesurepourlesprélèvements,carsanseuxiln’yauraitpaseudedonnéesjournalières

i de MES: Ibrahim Mohammed Albachir, Abdoulaye Toldi, Hama Haoji, Oumarou Hassane, Boulama,Zakou,AbdouHama,AbdoulayeMossi,AdamuUmorouMossietAyoubaAbdou. Al’UniversitéAbdouMoumouni(UAM)duNiger,j’aiétéaccueilliparIbrahimBouzouMoussa qui m’a permis d’utiliser les locaux du département de Géographie. J’ai aussi bénéficié de discussions intéressantes avec Yahaya Nazoumou et j’ai pu utiliser les équipements du départementdeGéologiedel’UAM.JeremercieIbrahimMamadou,GadoAbdourahamaneet KadidiaYeroquim’ontaidéàtraitermesnombreuxéchantillonsdesédiments. Jeremercieaussil’Agrhymetquim’aouvertsesportespourmontravailetpourl’assistanceque j’ai reçue de la part d’André Nonguierma, d’Issifou Alfari, d’Issa Garba et de Hubert Ndjafa Ouaga. J’aieuleplaisirdepouvoirprofiterdel’aideauLaboratoiredeGéographiePhysiqueàParisde EmmanuelleGautier,DanielBrunsteinetCoralGarcia. J’ai trouvé au LTHE des supports techniques et administratifs formidables: Isabella Zin et NadineDessaym’ontinitiéàlatélédétectionetsesonttoujourssouciéesdemesprogrès;Hervé Denis m’a aidé dans les mesures granulométriques, Véronique Chaffard pour les données pluviométriquesAMMA;jeremercieJeanFrançoisDaïanquiaeulagentillessedemedonner sonavissurmapremièrerépétitiondesoutenance;WajdiNechbaetPatrickJuenquiontassuré le bon fonctionnement informatique; je remercie Odette Nave pour tous les aspects administratifsetpoursagentillesse. Les années passées au LTHE ont été agrémentées par l’amitiédes jeunes du labo: Olivier, Laurent,Vincent,Céline,Pierre,Soumaila,Renaud,Cédric,Matthieu,AdrienetMoussa.Jetiens aussi à remercier les amis qui ont rendu mon séjour à Grenoble et en France si agréable: Fabiola,MorganeetSteeve,EmilieetAurélien,Marie,Benjamin,LaurenceetCyril. Thedifficulttimesduringthisdoctoralstudyweresurmountedwithsupportfrommyparentsbut also from Chidi and Osita, Ifeoma and Ike, Nnamdi, Amarachi, and my nieces and nephew: Chidera,Chimdalu,andChinua. Finally,IthankAnneLaure,whosupportedmefromtheverybeginning.

ii Résumé

Leprincipalobjectifdecetravailestdecomprendrel’impactduchangementdecouverturedes solssurlaproductionetletransportdesédimentsdanslebassindufleuveNigermoyen.Cecia nécessitédesapprochescomprenantl’étudededonnéeshydrologiques(1929–2008),de couverturesdessols(1965–2000)etdesdonnéessédimentairesmesurées(2005–2008).L’étude estcentréesurdeuxsousbassinssahéliens(leGorouoletlaSirba)comparésavecunsousbassin soudanien(laMékrou).L’augmentationdessurfacesdesolnu,mesuréepartélédétection,accroît letransfertdesédimentsaufleuveparsesaffluentsjaugéscommeparceux,éphémèresetnon jaugés,connussouslenomde«koris»,dontlenombreetlatailles’estbeaucoupaccrudepuisles années70.Lescaractéristiquesdessédiments,surtoutcellesdesmatièresensuspension(MES) ontétémesuréesàdixstationssurlefleuveetcertainsdesesaffluentsafindequantifierlefluxde sédimentetd’identifierlessourcesprincipalesdesédiment.L’analysehydrologiquedémontre l’impactdeladiminutiondesprécipitationssurlesdébits,larécentepériodesècheayantmodifié lerégimedufleuveàNiameyavecunimpactsurlaformeduchenal.L'analyseduflux sédimentairelelonglefleuveindiquequ'ilyad'autressourcesimportantesdesédimentsoutreles affluentsprincipaux.Unesimulationdelacapacitédetransportfluvialparclassegranulométrique aétéeffectuéeenutilisantdesparamètreshydrodynamiquesobtenusàpartird’unmodèle1Ddu fleuve.LacomparaisondecettecapacitéaveclesvaleursdeMESmesuréespermetdelocaliserles zonesenéquilibreetleszonesdedépôtdesédiments.

Mots clés : Transfert sédimentaire, Fleuve Niger, , Matières en suspension (MES)

iii Abstract

Inordertoachievetheoverallobjectiveofthisresearchwhichwastogainanunderstandinginto theimpactoflandcoverchangeonsedimentproductionandtransportinthemiddleNigerRiver basin,theapplicationofvariousapproacheswasnecessary.Theseapproachesincludedthestudy of hydrological data (1929 – 2008) and land cover data (1965 – 2000), in addition to the measurement of sediment characteristics (20052008).ThestudyfocusedontwoSaheliansub basins(theGorouolandtheSirbabasins)incomparisontoaSudanianbasin(theMékroubasin). Anevaluationoftheevolutionoflandcoverbyremotesensingtechniquesshowedanincreasein disturbedbaresoilsurfacesfavouringanincreaseofsedimenttransfertothemiddleNigervia conventionalaswellasungaugedephemeralstreamsthathaveincreasedinnumber andsizesincethe1970s.Fieldmeasurementsofsedimentcharacteristicswherecarriedoutatten locations along the middle Niger River and some of its tributaries in order to quantify the sediment flux and sources in the study area. Hydrological analyses showed the impact of the reductionofprecipitationonriverdischarge,withthe most recent dry period, resulting in the alterationoftheNigerRiver’sregimeatNiameyandaffectingriverplanform.Thesedimentflux analysisforthemiddleNigerRiverpointstotheexistenceofothersignificantsedimentsources apartfromthemaintributaries.Asimulationofthesedimenttransportingcapacity,bygrainsize class,usingdatafroma1Dmodeloftheriverenabledthelocalizationofareasof sediment equilibriumanddeposition,whencomparedtomeasuredsedimentconcentrationvalues. Keywords: Sediment transfer, River Niger, Sahel, Suspended sediment concentration (SSC)

iv Tableofcontents

Remerciements ...... i Résumé...... iii Abstract...... iv Tableofcontents...... v Listoffigures ...... ix ListofTables ...... xiii Listoffiguresandtablesinappendices ...... xiv Listofsymbolsandabbreviations ...... xviii Introduction:SiltingupofthemiddleNiger,mythorreality?...... 1 1. Problemstatement ...... 2 2. Justificationofthestudy ...... 2 3. Aimofthestudy...... 3 4. Researchapproach ...... 3 5. Fundingandcollaboration...... 4 PartI–Studyareaandenvironmentalcontext...... 5 1. TheNigerRiver...... 7 1.1. TheNigerRiverbasin ...... 8 1.2. ThemiddleNigerRiverbasin ...... 10 1.3. Locationofthestudyarea ...... 10 1.4. TheSahel...... 12 1.4.1. CharacteristicsoftheSahel ...... 12 1.4.2. ThepresentstateoftheSahel...... 12 2. Climateandenvironmentofthestudyarea ...... 15 2.1. Precipitation...... 15 2.2. Topographyandrunoff...... 18 2.3. Geologyandsoils...... 19 2.3.1. Geologicalsettingofthe ...... 19 2.3.1.1 GeologicalhistoryoftheNigerRiverbasin ...... 19 2.3.1.2 ThegeologyofthemiddleNigerRiverbasin ...... 22 2.3.2. Soilproperties ...... 24 2.3.2.1 SoilsinthemiddleNigerRiverbasin ...... 24 2.3.2.2 Vulnerabilityofsoilstoerosion...... 28 2.4. Vegetation ...... 29 2.5. Thehumaninfluenceonlandcoverinthestudyarea...... 30 3. StudyingthetransportofsedimentintheRiverNiger ...... 34 3.1. Thetransportofsediment ...... 34 3.2. Previousregionalsedimentmeasurementefforts ...... 35 4. Conclusion...... 37 PartIIRiverformandbedevolutionoftheMiddleNigerRiver ...... 38 1. Riverplanformchange...... 40 1.1. Data...... 40 1.2. Methods...... 46 1.3. Channelvariables ...... 48 1.4. Resultsanddiscussion...... 48 1.4.1. Rivercentrelineevolution ...... 49 1.4.2. Changeinchannelform ...... 50 1.4.2.1. Reach1...... 50 1.4.2.2. Reach2...... 52 1.4.2.3. Reach3...... 54

v 1.4.2.4. Summary ...... 56 1.4.3. Factorsresponsibleforchannelformchange...... 57 1.4.3.1. MiddleNigerRiverchannelresponsetoriverdischarge...... 58 1.4.3.2. Otherpossiblereasonsforchanneladjustment...... 62 2. Lateralsedimentsources:Increasingalluvialdepositsfrom“koris”...... 63 2.1. Data...... 63 2.2. Methods...... 63 2.3. Results...... 63 2.4. Summary...... 67 3. Evolutionofriverbedlevel...... 68 3.1. Data...... 68 3.2. Methods...... 68 3.3. Results...... 68 3.4. Summary...... 72 4. Generalconclusions...... 73 PartIII–LandcoverchangeintheMiddleNigerbasin ...... 74 1. Monitoringlandcoverchange...... 76 1.1. Methodsandtoolsforlanduseandlandcovermonitoring...... 76 1.1.1. Tools...... 77 LandsatandCoronaimagery,twomajortypesofdatathathavebeenusedtomonitorland coverchangewillbebrieflypresented...... 77 1.1.1.1. LANDSATimagery ...... 77 1.1.1.2. CORONAImagery...... 78 1.1.2. Processing...... 79 1.1.2.1. Preprocessing:...... 79 1.1.2.2. Imageanalyses...... 80 1.1.2.3. Accuracyassessment: ...... 81 1.2. Dataandmethodsappliedinthisstudy...... 81 1.2.1. Coronaimagery...... 83 1.2.2. Landsatimagery ...... 85 2. Studysubbasins...... 92 2.1. TheGorouolBasin ...... 92 2.2. TheSirbabasin...... 95 2.3. TheMékroubasin ...... 98 3. Resultsanddiscussion ...... 102 3.1. Accuracyassessment...... 102 3.2. Landcoverchangeforthethreebasins...... 103 3.2.1. ChangeintheGorouolbasinbetween1979and1999(Area:4757km²)...... 103 3.2.2. ChangeintheSirbabasinbetween1975and1999(Area:1105km²) ...... 110 3.2.3. ChangeintheMékroubasinbetween1973and2000(Area:7690km²) ...... 117 3.2.4. Summary ...... 122 4. Conclusions...... 124 PartIVElementsofhydrologyanddischargemeasurements ...... 125 1. IstheNigerRiverunderthreat?...... 126 1.1. Floodregimes: ...... 127 1.1.1. MajorAfrican ...... 127 1.1.2. TheNigerRiverfromitssourceto...... 131 1.2. PhysicalcharacteristicsofthemiddleNigerRiverbasin...... 137 1.2.1. DefinitionandmaincharacteristicsofthemiddleNigerbasin ...... 137 1.2.2. TheimportanceofthetributariesoftheMiddleNigerRiver...... 137 1.3. VariabilityofriverdischargeinthemiddleNigerRiverbasin ...... 142 1.3.1. Riverdischargedependenceonprecipitation...... 142 1.3.2. InterannualvariabilityinriverdischargeofthemiddleNigerRiver ...... 144

vi 1.3.3. DefinitionofdroughtandhighflowperiodsforthemiddleNigerRiver...... 146 1.3.4. ChangeinMiddleNigerRiverinput:theSirbaexample...... 150 1.3.5. WaterbalanceforaregionofthemiddleNigerRiverbasin:Interannualevolution ofthewaterbalance:...... 152 2. Focusonthestudyperiod:Riverdischarge(measurement,estimationandhydrological context) ...... 156 2.1. Measurementandestimationofriverdischarge...... 156 2.1.1. Atstationmeasurements...... 156 2.1.2. 1Dmodellingfortheestimationofriverdischarge...... 158 2.1.3. Evaluationofthehydraulicmodellingofriverdischarge...... 159 2.2. Hydrologicalcontextofthestudyperiod...... 160 3. Conclusions...... 163 PartV SedimenttransportinthemiddleNigerRiverbasin...... 164 1. Methodology...... 166 1.1. Suspendedsedimentmeasurementmethods ...... 166 1.2. Methodappliedinthisstudy ...... 167 2. Measuringstationsanddata...... 168 2.1. PreviousworkinthemiddleNigerbasin ...... 168 2.2. Choiceofmeasuringstationsforthepresentstudy...... 169 3. Suspendedsedimentanalysis...... 172 3.1. Laboratorydeterminationofthesuspendedsedimentconcentrationofariverwater sample172 3.2. Derivingsuspendedsedimentconcentrationvaluesforacrosssection ...... 173 3.3. Determinationofsedimentgrainsize...... 174 3.3.1. Pebblecount...... 175 3.3.2. SieveAnalysis...... 175 3.3.3. Particlesizingbylaserdiffraction...... 176 4. Anoverviewofpreviousstudies...... 177 4.1. TheGorouolRiver...... 177 4.2. TheNigerRiver...... 179 4.3. Discussionofthemethodsandresultsofthepreviousstudy...... 181 5. Resultsfromthepresentstudy...... 183 5.1. ResultsfortheGorouolRiver...... 183 5.1.1. Riverbedsediments ...... 183 5.1.2. Suspendedsedimentconcentrationsandgrainsize...... 183 5.1.3. Changesinsedimentparticlesizedistribution ...... 188 5.2. ResultsfortheSirbaRiver...... 191 5.2.1. Riverbedsediments ...... 191 5.2.2. Suspendedsedimentconcentrations...... 191 5.2.3. Changesinsedimentparticlesizedistribution ...... 198 5.3. DiscussionofthesedimentcharacteristicsintheSahelianbasins...... 200 5.4. ResultsforthemiddleNigerRiver...... 201 5.4.1. Riverbedsediments ...... 201 5.4.2. Suspendedsedimentconcentrations...... 202 5.4.3. ChangesinmeanSSCalongthemiddleNigerRiverbysizeclass...... 210 5.4.4. SeasonaleffectsontheriverdischargeSSCrelationship ...... 215 5.4.5. DiscussionofresultsfromthemiddleNigerRiver...... 220 6. SedimentfluxinthemiddleNigerRiverbasin...... 221 6.1. Determinationofthesedimentflux...... 221 6.2. SedimentfluxalongthemiddleNigerRiver...... 222 6.3. Sedimentfluxinthetributaries...... 224 6.4. Changeinsedimentfluxinthecourseofawateryear...... 225 6.5. Discussion ...... 226

vii 7. ComparisonofsimulatedsedimenttransportcapacitywithmeasuredSSC ...... 228 7.1. Presentationofresults...... 230 7.2. Seasonalsedimenttransferdynamics...... 240 8. Conclusions...... 247 ConclusionsandPerspectives ...... 249 1. GeneralSummary...... 250 2. Perspectivesforfurtherwork...... 252 3. Conclusions...... 253 Bibliography ...... 254 APPENDICES...... 269 APPENDIXA ...... 270 APPENDIXB...... 273 APPENDIXC...... 368 APPENDIXD...... 394 ExtendedRésumé(enfrançais)...... 399 Introduction:L'ensablementdufleuveNiger,mytheouréalité?...... 400 1. Contexte...... 401 2. Intérêtdel'étude...... 401 3. Objectifsdel'étude ...... 402 4. Approchederecherche ...... 402 5. Financementsetcollaborations...... 403 ChapitreI–Zoned’étudeetcontexteenvironnemental ...... 404 ChapitreII–FormeetévolutiondulitdufleuveNigermoyen...... 407 ChapitreIII–ChangementdecouverturedessolsdanslebassindufleuveNigerMoyen ...... 410 ChapitreIVElémentsdel’hydrologieetmesuresdedébits...... 413 ChapitreVTransportdesédimentsdanslebassindufleuveNigermoyen ...... 416 ConclusionsetPerspectives...... 420 1.RésuméGénéral ...... 421 2.Perspectivesdetravail ...... 424 3.Conclusions...... 424

viii Listoffigures

FigureI1:TheNigerRiverBasinincomparisonto’amajorrivers...... 7 FigureI2:TheNigerRiverBasin ...... 9 FigureI3:TheStudyArea ...... 11 FigureI4:GeneralizedvegetationmapoftheNigerRiverbasin(afterWhite,1983)...... 14 FigureI5:Averagerainfalloverthestudyarea19502006( Data from Badoplu and EPSAT-Niger) ...... 17 FigureI6:LongitudinalprofileoftheNigerRiver(afterNEDECO,1959) ...... 18 FigureI7:CaptureoftheUpperNigerbytheTilemsi(afterNEDECO1959) ...... 21 FigureI8:GeologyoftheMiddleNigerbasinadaptedfromSchlüter(2006)...... 23 FigureI9:Generalizedsoilmapofthestudyarea ...... 27 FigureI10:Runoffcoefficientsofsomesoils(adaptedfromDiallo(2000)...... 28 FigureI11:Estimatedrateoferosionofsomesoils(adaptedfromDiallo(2000) ...... 29 FigureI12:Populationestimates/projectionsforthemiddleNigerbasincountries(19502010) ...... 31 FigureI13:EvolutionofcultivatedlandinmiddleNigerbasincountries(1961to2007)...... 33 FigureI14:LocationofprevioussedimentmeasurementsintheNigerRiverBasin...... 36 FigureII1:ThemiddleNigerRiverandthestudyreaches ...... 41 FigureII2:Reach1...... 43 FigureII3:Reach2andtheCorona1965extent...... 44 FigureII4:Reach3...... 45 FigureII5:Exampleofa742falsecolourcomposite ...... 47 FigureII6:Exampleoftheresultsofunsupervisedclassification...... 47 FigureII7:Channelareachangeinreach1...... 51 FigureII8:Channelwidthchangeinaportionofreach1 ...... 51 FigureII9:Channelareachangeinreach2...... 52 FigureII10:Channelwidthchangeinreach2 ...... 53 FigureII11:Channelareachangeinaportionofreach2 ...... 53 FigureII12:Channelwidthchangeinaportionofreach2 ...... 54 FigureII13:Channelareachangeinreach3 ...... 54 FigureII14:Channelwidthchangeinreach3...... 55 FigureII15:CumulativevolumedischargeoftheNigerRiveratNiamey(19601999) ...... 58 FigureII16:LateralsedimentsourcesofthemiddleNigerRiver ...... 64 FigureII17:Alluvialdeposits1975 ...... 65 FigureII18:Alluvialdeposits1984 ...... 65 FigureII19:Alluvialdeposits1989 ...... 66 FigureII20:Alluvialdeposits1999 ...... 66 FigureII21:Bedlevelsurveyareaofreach2...... 69 FigureII22:Bedlevelchangeinasectionofreach2showninFigureII21...... 70 FigureII23:Bedlevelsurveyareaofreach3...... 71 FigureII24:Bedlevelchangeinasectionofreach3showninFigureII23...... 72 FigureIII1:SelectionofgroundcontrolpointsontheCoronamosaic...... 84 FigureIII2:WarpedCoronamosaic...... 85 FigureIII3:Unsupervisedclassificationprocedure...... 86 FigureIII4:Baresoil ...... 87 FigureIII5:Sandybaresoil ...... 88 FigureIII6:Paved/rockybaresoil...... 89

ix FigureIII7:Treeswithhighmoisturecontent...... 89 FigureIII8:Treeswithlowmoisturecontent ...... 90 FigureIII9:Shrubsandgrass...... 90 FigureIII10:Shallowsedimentladenwater...... 91 FigureIII11:Clearwater...... 91 FigureIII12:The1999Gorouolbasinmosaic...... 93 FigureIII13:PercentagecompositionoftheGorouol1999mosaic...... 94 FigureIII14:PercentagelandcovercompositionfortheGorouolbasinin1999...... 95 FigureIII15:The1999Sirbabasinmosaic...... 96 FigureIII16:PercentageimagecompositionfortheSirba1999mosaic ...... 97 FigureIII17:PercentagelandcovercompositionfortheSirbabasinin1999...... 98 FigureIII18:The2000Mékroubasinmosaic...... 99 FigureIII19:PercentageimagecompositionfortheMékroubasin2000mosaic...... 100 FigureIII20:PercentagelandcovercompositionfortheMékroubasinin2000...... 101 FigureIII21:Gorouolbasinlandcover.29/11/1979(4757km²)...... 104 FigureIII22:Gorouolbasinlandcover.05/11/1984(4757km²)...... 105 FigureIII23:Gorouolbasinlandcover.18/10/1992(4757km²) ...... 106 FigureIII24:Gorouolbasinlandcover.22/10/1999(4757km²) ...... 107 FigureIII25:BareandvegetatedsurfacedynamicsintheGorouolBasin(1979to1999)...... 108 FigureIII26:WatersurfaceareaintheGorouolbasin(19791999)...... 109 FigureIII27:Sirbabasinlandcover.22/11/1975(1105km²)...... 111 FigureIII28:Sirbabasinlandcover.14/11/1984(1105km²)...... 112 FigureIII29:Sirbabasinlandcover.20/11/1989(1105km²)...... 113 FigureIII30:Sirbabasinlandcover.31/10/1999(1105km²)...... 114 FigureIII31:BareandvegetatedsurfacedynamicsintheSirbaBasin(1975to1999)...... 115 FigureIII32:WatersurfaceareaintheSirbabasin(19751999) ...... 116 FigureIII33:Mékroubasinlandcover.17&18/10/1973(7690km²)...... 118 FigureIII34:Mékroubasinlandcover.26/10/2000(7690km²)...... 119 FigureIII35:BareandvegetatedsurfacedynamicsintheMékrouBasin(1973to2000) ...... 120 FigureIII36:WatersurfaceareaintheMékroubasin(19732000) ...... 121 FigureIV1:WestandcentralAfricanclimatesafterL'Hôteetal.[1996] ...... 128 FigureIV2:CharacteristichydrographoftheRiveratAswanafterMohamedetal[2005] ...... 129 FigureIV3:CharacteristichydrographoftheCongoRiveratBrazzavilleafterBricquet[1993] ...... 130 FigureIV4:TheNigerRiverfromitssourcetoMalanville ...... 133 FigureIV5:CharacteristichydrographsoftheNigerRiverfromtoMalanville ...... 136 FigureIV6:TheGorouolBasin...... 139 FigureIV7:TheSirbabasin ...... 140 FigureIV8:TheMékroubasin ...... 141 FigureIV9:Percentagedeparturefrommeanvaluesof(a)precipitationovertheUpperand MiddleNigerbasins,(b)cumulativeannualdischargeoftheNigerRiveratNiamey.1929 2006...... 143 FigureIV10:Relationshipbetweenprecipitationandriverdischargeindices...... 144

FigureIV11:Annualminimum(Q MIN )andmaximum(Q MAX )dailymeandischargeofthe NigerRiveratNiamey(1929/30–2007/08) ...... 145 FigureIV12:DroughtcharacterisationofriverdischargeoftheNigeratNiamey (1929/30to2007/08)basedonannualvolumedischarged...... 147 FigureIV13:RelativeseverityofhighandlowflowperiodsfortheNigerRiverat Niamey(19292007)...... 148 FigureIV14:AveragehydrographsoftheNigerRiveratNiamey...... 149 FigureIV15:AveragehydrographsoftheNigerRiveratNiamey...... 150

x FigureIV16:PercentagedeparturefrommeanannualcumulativedischargefortheSirbaRiver ...... 150 FigureIV17:PercentagecontributionoftheSirbaRivertothemiddleNiger ...... 151 FigureIV18:RiverNiger’sdischargebetweenKandadjiandNiamey ...... 152 FigureIV19:WaterbalancebetweenKandadjiandNiamey1975to2008 ...... 153 FigureIV20:WaterbalanceforRiverNigerbetweenKandadjiandNiamey ...... 154 FigureIV21:ComparisonoftheaveragehydrographsfortheNigeratKandadjiandNiamey.155 FigureIV22:Dischargemeasurementsinthestudyarea ...... 157 FigureIV23:MeasuredandsimulatedriverdischargeNigeratNiamey(June2007toMay2008) ...... 159 FigureIV24:Measuredvs.simulatedriverdischargeNigeratNiamey(June2007toMay2008) ...... 160

FigureV1:Locationsofprevioussuspendedsedimentmeasurements...... 169 FigureV2:Samplingstationsforsuspendedsediment ...... 171 FigureV3:RelationshipbetweensampledcrosssectionalSSC(n=16)andsinglesampleSSCfor themiddleNigerRiver2007...... 173 FigureV4:TheGorouolbasin...... 178 FigureV5:DischargeandSSCfortheRiverGorouolatDolbel1976–1982[Source:Gallaire (1986)] ...... 178 FigureV6:MeasuringstationsalongtheNigerRiver ...... 180 FigureV7:DischargeandSSCfortheRiverNigeratKandadji(19761982)[source: Gallaire (1986) ] ...... 181 FigureV8:RiverdischargeandSSCrelationshipfortheRiverGorouolatAlcongui(2006and 2007)...... 184 FigureV9:RainfallandSSCrelationshipfortheRiverGorouolatAlcongui(2006and2007) 184 FigureV10:RiverdischargeandSSCrelationshipfortheRiverGorouol(accordingtosize class)atAlcongui(2006and2007) ...... 186 FigureV11:MeansuspendedsedimentsizedistributionbypercenttransportedbytheRiver GorouolatAlcongui(n=101samples) ...... 187 FigureV12:SSCandparticlesizedatafortheRiverGorouolatAlcongui...... 188 FigureV13:SSCandparticlesizerelationshipfortheRiverGorouolatAlcongui ...... 189 FigureV14:RiverdischargeandparticlesizerelationshipfortheRiverGorouolatAlcongui.190 FigureV15:TheSirbabasin...... 192 FigureV16:RiverdischargeandSSCrelationshipfortheRiverSirbaatTiambiandGarbe Kourou(2006and2007)...... 193 FigureV17:RainfallandSSCrelationshipfortheRiverSirbaatTiambiandGarbéKourou (2006and2007)...... 194 FigureV18:RiverdischargeandSSCrelationshipfortheRiverSirba(accordingtosizeclass)at TiambiandGKourou(2006and2007)...... 196 FigureV19:MeansuspendedsedimentsizedistributionbypercenttransportedbytheRiver SirbaatTiambi(n=123samples)andGKourou(n=168samples)...... 197 FigureV20:SSCandparticlesizedatafortheRiverSirbaatTiambi...... 198 FigureV21:RiverdischargeandparticlesizerelationshipfortheRiverSirbaatTiambi ...... 199 FigureV22:MeanbedmaterialsizealongthemiddleNigerRiver...... 201 FigureV23:RiverdischargeandSSCrelationshipforthemiddleNigerRiver...... 204 FigureV24:RiverdischargeandSSCrelationship(accordingtosizeclass)forthemiddleNiger River...... 207 FigureV25:Meansuspendedsedimentsizedistributionbypercenttransportedbythemiddle NigerRiver...... 209 FigureV26:MeanSSCvaluestransportedalongthemiddleNigerRiver(0630m)...... 210 FigureV27:MeanSSCvaluestransportedalongthemiddleNigerRiver(6311600m) ...... 211 FigureV28:SSCandparticlesizedataforthemiddleNigerRiver ...... 214

xi FigureV29:CharacteristichydrographofthemiddleNigerRiver ...... 215 FigureV30:RiverdischargeandparticlesizerelationshipfortheRiverNigeratKandadji...... 217 FigureV31:SedimentfluxalongthemiddleNigerRiver2007/08 ...... 225 FigureV32:Depositiontrendofsuspendedsediment(4170m)forthemiddleNigerRiver232 FigureV33:Depositiontrendofsuspendedsediment(71125m)forthemiddleNigerRiver ...... 235 FigureV34:Depositiontrendofsuspendedsediment(126630m)forthemiddleNigerRiver ...... 237 FigureV35:Depositiontrendofsuspendedsediment(6311600m)forthemiddleNigerRiver ...... 239 FigureV36:Suspendedsedimentdynamicsofthe4170msizeclass...... 242 FigureV37:Suspendedsedimentdynamicsofthe71125msizeclass...... 243 FigureV38:Suspendedsedimentdynamicsofthe126630msizeclass...... 244 FigureV39:Suspendedsedimentdynamicsofthe6311600msizeclass...... 245

xii ListofTables

TableI1:Rainfallrecordforthestudyarea(Badopludata) ...... 16 TableI2:Rainfallrecordforthestudyarea(EPSATNigerdata)...... 16 TableII1:Satelliteimageryanddischargedataforthestudyreaches...... 42 TableII2:Migrationratesforthethreestudyreaches...... 49 TableII3:Timeaveragedmigrationratesforthethreestudyreaches...... 50 TableII4:ChannelareacharacteristicsofthreereachesofthemiddleNigerRiver...... 56 TableII5:ChangeintheaveragewidthofthemiddleNigerRiver...... 57 TableII6:MagnitudeoffloodsonthemiddleNigerRiveratNiamey(19602000)...... 59 TableII7:Satellitedatausedtomonitorthechangeinalluvialdepositarea...... 63 TableII8:RiverbedlevelforthemiddleNigerRiver1978...... 68 TableIII1:Summaryofsatellitedatausedinthestudy...... 82 TableIII2:LandsatscenesusedtoderivetheGorouolBasinMosaicfor1999...... 92 TableIII3:LandsatscenesusedtoderivetheSirbaBasinMosaicfor1999...... 95 TableIII4:LandsatscenesusedtoderivetheMékrouBasinMosaicfor1999...... 98 TableIII5:Accuracyassessmentfortheclassificationresults...... 103 TableIII6:EstimatedLandcoveroftheGorouolbasin19791999Area(4757km²)...... 109 TableIII7:EstimatedLandcoveroftheSirbabasin19751999Area(1105km²) ...... 116 TableIII8:EstimatedLandcoveroftheMékroubasin19732000(7690km²)...... 121

TableIV1:MeteorologicalclassificationofTropicalAfricaandcorrespondinghydrological regimes...... 127 TableIV2:FlowcharacteristicsofthemajorAfricanrivers ...... 130 TableIV3:TheNigerRiverfromKouroussatoMalanville ...... 132 TableIV4:Characteristics(MiddleNigerRiver)...... 138 TableIV5:FlowdurationcharacteristicsoftheNigeratNiamey ...... 146 TableIV6:Relativeseverityofdroughtperiodsbetween1929and2007...... 148 TableIV7:WaterBalancebetweenKandadjiandNiamey1975/76–2007/08...... 153 TableIV8:RiverdischargecharacteristicsoftheNigeratKandadjiandNiamey...... 161 TableV1:SummaryofavailablehistoricsedimentdataforthemiddleNigerbasin...... 168 TableV2:Sedimentsizeclassification...... 175 TableV3:SedimentfluxoftheGorouolRiveratDolbel ...... 179 TableV4:SedimentfluxofthemiddleNigerRiveratKandadjiandNiamey...... 181 TableV5:RiverdischargeandsuspendedsedimentsizerelationshipfortheGorouolandSirba rivers...... 200 TableV6:SedimentfluxofthemiddleNigerRiver...... 222 TableV7:SpecificsedimentfluxalongthemiddleNigerRiver...... 223 TableV8:SedimentfluxoftheGorouolandSirbaRivers...... 224 TableV9:SpecificsedimentfluxesoftheGorouolandSirbaRivers...... 224

xiii Listoffiguresandtablesin appendices

FigureB1:Reach1...... 273 FigureB2A:ChannelchangeinReach1(19791999)...... 274 FigureB3A:ChannelchangeinReach1(19841999)...... 275 FigureB4A:ChannelchangeinReach1(19921999)...... 276 FigureB5B:ChannelchangeinReach1(19791999)...... 277 FigureB6B:ChannelchangeinReach1(19841999)...... 278 FigureB7B:ChannelchangeinReach1(19921999)...... 279 FigureB8C:ChannelchangeinReach1(19791999)...... 280 FigureB9C:ChannelchangeinReach1(19841999)...... 281 FigureB10C:ChannelchangeinReach1(19921999)...... 282 FigureB11:Reach1 ...... 283 FigureB12A:Rivercentrelinechangeinreach1(1979–1999) ...... 284 FigureB13A:Rivercentrelinechangeinreach1(1984–1999) ...... 285 FigureB14A:Rivercentrelinechangeinreach1(1992–1999) ...... 286 FigureB15B:Rivercentrelinechangeinreach1(1979–1999)...... 287 FigureB16B:Rivercentrelinechangeinreach1(1984–1999)...... 288 FigureB17B:Rivercentrelinechangeinreach1(1992–1999)...... 289 FigureB18C:Rivercentrelinechangeinreach1(1979–1999)...... 290 FigureB19C:Rivercentrelinechangeinreach1(1984–1999)...... 291 FigureB20C:Rivercentrelinechangeinreach1(1992–1999)...... 292 FigureB21A:Reach1channelbankandislandextentsin1979 ...... 293 FigureB22A:Reach1channelbankandislandextentsin1984 ...... 294 FigureB23A:Reach1channelbankandislandextentsin1992 ...... 295 FigureB24A:Reach1channelbankandislandextentsin1999 ...... 296 FigureB25B:Reach1channelbankandislandextentsin1979 ...... 297 FigureB26B:Reach1channelbankandislandextentsin1984 ...... 298 FigureB27B:Reach1channelbankandislandextentsin1992 ...... 299 FigureB28B:Reach1channelbankandislandextentsin1999 ...... 300 FigureB29C:Reach1channelbankandislandextentsin1979 ...... 301 FigureB30C:Reach1channelbankandislandextentsin1984 ...... 302 FigureB31C:Reach1channelbankandislandextentsin1992 ...... 303 FigureB32C:Reach1channelbankandislandextentsin1999 ...... 304 FigureB33:Reach2 ...... 305 FigureB34A:ChannelchangeinReach2(19751999) ...... 306 FigureB35A:ChannelchangeinReach2(19841999) ...... 307 FigureB36A:ChannelchangeinReach2(19891999) ...... 308 FigureB37B:ChannelchangeinReach2(19751999)...... 309 FigureB38B:ChannelchangeinReach2(19841999)...... 310 FigureB39B:ChannelchangeinReach2(19891999)...... 311 FigureB40C:ChannelchangeinReach2(19751999)...... 312 FigureB41C:ChannelchangeinReach2(19841999)...... 313 FigureB42C:ChannelchangeinReach2(19891999)...... 314 FigureB43:Reach2 ...... 315 FigureB44A:Rivercentrelinechangeinreach2(1975–1999) ...... 316 FigureB45A:Rivercentrelinechangeinreach2(1984–1999) ...... 317

xiv FigureB46A:Rivercentrelinechangeinreach2(1989–1999) ...... 318 FigureB47B:Rivercentrelinechangeinreach2(1975–1999)...... 319 FigureB48B:Rivercentrelinechangeinreach2(1984–1999)...... 320 FigureB49B:Rivercentrelinechangeinreach2(1989–1999)...... 321 FigureB50C:Rivercentrelinechangeinreach2(1975–1999)...... 322 FigureB51C:Rivercentrelinechangeinreach2(1984–1999)...... 323 FigureB52C:Rivercentrelinechangeinreach2(1989–1999)...... 324 FigureB53A:Reach2channelbankandislandextentsin1975 ...... 325 FigureB54A:Reach2channelbankandislandextentsin1984 ...... 326 FigureB55A:Reach2channelbankandislandextentsin1989 ...... 327 FigureB56A:Reach2channelbankandislandextentsin1999 ...... 328 FigureB57B:Reach2channelbankandislandextentsin1975 ...... 329 FigureB58B:Reach2channelbankandislandextentsin1984 ...... 330 FigureB59B:Reach2channelbankandislandextentsin1989 ...... 331 FigureB60B:Reach2channelbankandislandextentsin1999 ...... 332 FigureB61C:Reach2channelbankandislandextentsin1975 ...... 333 FigureB62C:Reach2channelbankandislandextentsin1984 ...... 334 FigureB63C:Reach2channelbankandislandextentsin1989 ...... 335 FigureB64C:Reach2channelbankandislandextentsin1999 ...... 336 FigureB65:Positionofthe1965Coronaimageryinreach2...... 337 FigureB66:ChannelchangeinastretchofReach2(19651975)...... 338 FigureB67:ChannelchangeinastretchofReach2(19651999)...... 339 FigureB68:Rivercentrelinechangeinreach2(1965–1975)...... 340 FigureB69:Rivercentrelinechangeinreach2(1965–1999)...... 341 FigureB70:Reach2channelbankandislandextentsin1965 ...... 342 FigureB71:Reach2channelbankandislandextentsin1975 ...... 343 FigureB72:Reach2channelbankandislandextentsin1999 ...... 344 FigureB73:Reach3...... 345 FigureB74A:ChannelchangeinReach3(19731999) ...... 346 FigureB75A:ChannelchangeinReach3(19841999) ...... 347 FigureB76B:ChannelchangeinReach3(19731999)...... 348 FigureB77B:ChannelchangeinReach3(19841999)...... 349 FigureB78A:Rivercentrelinechangeinreach3(1973–1999) ...... 350 FigureB79A:Rivercentrelinechangeinreach3(1984–1999) ...... 351 FigureB80B:Rivercentrelinechangeinreach3(1973–1999)...... 352 FigureB81B:Rivercentrelinechangeinreach3(1984–1999)...... 353 FigureB82A:Reach3channelbankandislandextentsin1973 ...... 354 FigureB83A:Reach3channelbankandislandextentsin1984 ...... 355 FigureB84A:Reach3channelbankandislandextentsin1999 ...... 356 FigureB85B:Reach3channelbankandislandextentsin1973 ...... 357 FigureB86B:Reach3channelbankandislandextentsin1984 ...... 358 FigureB87B:Reach3channelbankandislandextentsin1999 ...... 359 FigureB88:Extentofadditionalimagedata(1984and1999)overlaidbydatausedforreach3 ...... 360 FigureB89:Channelchange(19841999) ...... 361 FigureB90:Rivercentrelinechange(1984–1999)...... 362 FigureB91:Channelbankandislandextentsin1984 ...... 363 FigureB92:Channelbankandislandextentsin1999 ...... 364 FigureB93:AnnualmaximumflowsfortheNigerRiveratNiamey19292006...... 367 FigureC1:SampleimageofareassembledCoronafilmstrip...... 370 FigureC2:PercentagelandcoverGorouol19791999...... 378 FigureC3:Water/sedimentladenwatersurfaceareaintheGorouolbasin(19791999) ...... 379

xv FigureC4:Gorouolbasinlandcoverin1984(14888km²)...... 380 FigureC5:Gorouolbasinlandcoverin1992(14888km²)...... 381 FigureC6:Gorouolbasinlandcoverin1999(14888km²)...... 382 FigureC7:PercentagelandcoverGorouol19841999...... 383 FigureC8:Water/sedimentladenwatersurfaceareaintheGorouolbasin(19841999) ...... 383 FigureC9:PercentagelandcoverSirba19751999 ...... 384 FigureC10Water/sedimentladenwatersurfaceareaintheSirbabasin(19751999) ...... 385 FigureC11:Sirbabasinlandcoverin1984(5104km²)...... 386 FigureC12:Sirbabasinlandcoverin1989(5104km²)...... 387 FigureC13:Sirbabasinlandcoverin1999(5104km²)...... 388 FigureC14:PercentagelandcoverSirba19841999...... 389 FigureC15:Water/sedimentladenwatersurfaceareaintheSirbabasin(19841999) ...... 390 FigureC16:PercentagelandcoverMekrou19731999(7690km²)...... 390 FigureC17:Water/sedimentladenwatersurfaceareaintheMékroubasin(19732000)(7690 km²) ...... 391 FigureC18:ThemiddleNigerbasinshowing1965Coronaimagemosaic(2840km²)...... 391 FigureC19:PercentagelandcoveroftheareacoveredbytheCoronamosaic19651999(2840 km²) ...... 392 FigureC20WatersurfaceareaintheCoronamosaicarea19651999(2840km²)...... 392 FigureD1:Flowdurationcurve,NigeratNiamey(19292006)...... 394 FigureD2:Flowdurationcurve,NigeratNiamey(Wetspell)...... 394 FigureD3:Flowdurationcurve,NigeratNiamey(Wettestyear) ...... 395 FigureD4:Flowdurationcurve,NigeratNiamey(Maximumdailydischarge) ...... 395 FigureD5:Flowdurationcurve,NigeratNiamey(Dryspell) ...... 396 FigureD6:Flowdurationcurve,NigeratNiamey(Driestyear)...... 396 FigureD7:Flowdurationcurve,NigeratNiamey(Minimumdailydischarge)...... 397 TableA1:Estimatedandprojectedagriculturalpopulationlongtermseries(decennial)for Bénin,BurkinaFaso,andNiger(19502010)fromtheFAOSTATdatabase...... 270 TableA2:MilletcultivationdataforNiger(19612007)fromtheFAOSTATdatabase...... 271 TableA3:EstimatedagriculturalareaforBénin,BurkinaFaso,MaliandNiger(19502005) fromtheFAOSTATdatabase...... 272 TableB1:Reach1...... 365 TableB2:Reach2...... 365 TableB3:Reach3...... 366 TableB4:Maximumdischargeanalysis,RiverNigeratNiamey19292006...... 367 TableC1:Landsatinstrumentdata ...... 368 TableC2:LandsatMSSresolution...... 368 TableC3:LandsatTMresolution...... 369 TableC4:LandsatETMresolution...... 369 TableC5:TechnicalcharacteristicsoftheCORONAKH4Acamerasystem[source:[ USGS , 1996]]...... 369 TableC6:ConfusionmatrixfortheGorouolbasin1999usingfieldobservedgroundtruth ...371 TableC7:ConfusionmatrixfortheGorouolbasin1992usingfieldobservedgroundtruth ...372 TableC8:ConfusionmatrixfortheGorouolbasin1984usingfieldobservedgroundtruth ...373 TableC9:ConfusionmatrixfortheGorouolbasin1979using1959mapgroundtruth...... 374 TableC10:ConfusionmatrixfortheSirbabasin1999usingfieldobservedgroundtruth...... 375

xvi TableC11:ConfusionmatrixfortheSirbabasin1989usingfieldobservedgroundtruth...... 376 TableC12:ConfusionmatrixfortheSirbabasin1984using1980mapgroundtruth ...... 377 TableC13:ConfusionmatrixfortheSirbabasin1975using1980mapgroundtruth ...... 377 TableC14:ConfusionmatrixfortheMékroubasin2000using1959mapgroundtruth ...... 377 TableC15:ConfusionmatrixfortheMékroubasin1973using1959mapgroundtruth ...... 378 TableC16:Gorouolbetween1984and1999Area(14888km²)...... 384 TableC17:Sirbapercentagelandcover19841999Area(5104km²) ...... 389 TableC18:Percentagelandcoverchangeofthe1965Coronamosaicarea(2840km²)...... 393 TableD1:MonthlyPanEvaporation(mm)fromFAOwebLocClimestimator...... 398

xvii Listofsymbolsand abbreviations

Symbol Units

D* Particleparameter

D10 ,D 16 D 84 ,D 90 m,mm,m Characteristicparticlediametersofsediment

D50 m,mm,m Medianparticlediameterofsediment

Ds Representativesizeofsuspendedsediment g m/s² Accelerationduetogravity h m Flowdepth k vonKarman'sconstant=0.4 ks m Effectivebedroughness Q m3/s Riverdischarge ρ kg/m 3 Density s Specificdensity T Bedshearstressparameter u* m/s Bedshearvelocity w m/s Particlefallvelocity υ m2/s Kinematicviscositycoefficient ABN/NBA AutoritéduBassinduNiger/NigerBasinAuthority ASTM AmericanSocietyforTestingandMaterials FAO FoodandAgriculturalOrganisation GLCF GlobalLandCoverFacility IGN InstitutGéographiqueNational IRD InstitutdeRecherchepourleDévelopement LGP LaboratoiredeGéographiePhysique LTHE Laboratoired'étudedesTransfertsenHydrologieetEnvironnement ORSTOM OfficedelaRechercheScientifiqueetTechniqued'OutreMer mg/l,kg/m 3 SSC Suspendedsedimentconcentration

xviii IInnttrroodduuccttiioonn::SSiillttiinngguupp oofftthheemmiiddddlleeNNiiggeerr,, mmyytthhoorrrreeaalliittyy??

1 1. Problemstatement

In recent times, the naturally sparse vegetation of the semiarid West African Sahel has been adversely affected by a 25 to 30 percent reduction in precipitation as well as an increasing livestockandhumaninfluenceduetoovergrazingandanincreasingdemandforfuelwood[M-F Courel ,1985; L Descroix ,2003].IntheSahel,thereductioninprecipitationhasbeenobservedto haveanamplifiedeffectintheflowsoftheNigerRiver.

Inthesameperiod,duetomoredenudedsoils,sediment is more easily transported into the NigerRiverfromitsbasin.Inaddition,theNigerRiver’sreducedflowhasresultedinwhathas beencalledasiltingupoftheNiger’smiddlebasin.

2. Justificationofthestudy

Theconsequencesofthecombinationofanincreasedsedimentsupplyandreducedflowsinthe NigerRivermaybenumerousandvaried,rangingfrommoreextremelowflows,variablehigh flow patterns, to the potential siltingup of proposed hydraulic works along the river. The potential negative impacts of increased sediment input on aquatic life, river navigability, and watertreatmentarenotnegligibleandhascauseddebateandspeculationamongstscientistsand basinmanagersastothecausesandseverityoftheobservedphenomenatherebygeneratingthe following questions: Sediment deposits or just an exposed river bed?, less water or more sediment?

Thefactshavebeendifficulttoseparatefromperceptionduetolimitedornonexistentdirect measurementsofthesedimentdynamicsinthestudyarea.

Thepresentstudyisthereforenecessaryasacontributiontotheunderstandingofthebasin’s evolutionintermsofsedimentproduction,transfer,andmaincontrollingfactorsduringaperiod ofrapidlandusechange.Itmayalsobeusefultobasinmanagersindevisingsedimentcontrol measuresaswellinplanninghydraulicworksinthebasinthatmaybeaffectedbysedimentation.

2 3. Aimofthestudy

Thepresentworkaimstostudylandcoverchangeanditsrelationshipwithsedimentproduction, transport,anddepositioninthemiddleNigerRiverbasin.

Furtherobjectiveswillbeto:

• Quantifychangesinlandcoverbetween1965–2000;

• AnalysethesedimenttransportwithinthemiddleNigerRiverbasin(tounderstandthe majortransportmechanisms,constraintsetc.);

• Evaluatetheinfluenceoflandcoverchangeon: - ThesedimenttransportofthemiddleNigerRiver, - Theincreasedsedimentationwithintheriver; • Determinethe: - Predominantmodeofsedimenttransport, - Sedimentsources, - Factorscontrollingsedimentdeposition, - Areasofsedimentdeposition. 4. Researchapproach

The aim of the study being to understand the relationship between land cover change and sedimentproductionaswellastostudythetransportofsedimentinthemiddleNigerbasin,the researchwascarriedoutinthefollowingmanner.

• Firstly,itwasnecessarytoapplyremotesensingtechniquesinordertogainasynoptic understandingandestimationofthelandcoverchangethathasoccurredinthestudy areaoverthepastfewdecades.

• Secondly, climatic factors, particularly precipitation and its impact on river discharge wereanalysedforthestudyarea.

• Thirdly, measurements of sediment and riverbed characteristics, such as suspended sedimentconcentrationandsedimentparticlesize,wherecarriedoutatseverallocations along the middle Niger River and its tributaries with particular attention to the ofthreetributaries(twoSahelianriversandoneSudanianriver)withthe NigerRiver.Thiswaswithaviewtoquantifyingtributarycontributiontothemiddle NigerRiver’ssedimentload.Inaddition,themeasurementswerecarriedoutinorderto

3 understand and quantify the movement of sediment along the middle Niger River, distinguishingerosionzonesfromdepositionzones. The information derived from the above methods were used to evaluate the relationship of sedimentproductioninthemiddleNigerRiverbasintolandcoverchangeanditsassociated effectslikeincreasedlocalrunoff.

Themajorresultsaregroupedaccordingtoresearchcomponentsasriverformandbedevolution (part II), land cover change analysis (part III), hydrology (part IV) and sediment transport analysis(partV). 5. Fundingandcollaboration

In order to improve the management of the Niger River basin’s resources, the Niger Basin Authority(NBA)expressedtheneedofgainingabetterunderstandingofthesedimenttransfer dynamicsespeciallyinviewofthecontinuingenvironmentalchanges.

ThestudywasjointlyfundedbytheembassyofFranceinAbuja,Nigeria,througha“Boursier deGouvernementFrancais”scholarship,theNigerRiverBasinAuthority(NBA),theInstitutde RecherchepourleDéveloppement(IRD),andtheLaboratoire de Transfert en Hydrologie et Environnement(LTHE)wheremostoftheworkwascarriedout.

This study involved fieldwork, laboratory analyses, as well as data analyses, which was made possiblebythecollaborationofvariousinstitutions.

Inadditiontoprovidingtheriverdischargedatausedinthisstudy,the NBA alsocomplemented the logistics provided by IRD for the fieldwork. The centre regional Agrhymet provided assistancetothisstudyintheformofsatelliteimageryandcomputingfacilities.Workingspace forthelaboratoryanalysisofthewater/sedimentsampleswasprovidedbythedepartmentsof Geography and Geology ofthe AbdouMoumouniUniversity ,Niameyaswellasthegenetics laboratoryof IRD Niamey.

The Laboratoire de Géographie Physique (LGP), Paris, provided Geographic Information Systems support. The laboratory analysis of suspended sediment size characteristics, data analyses, and bibliographic research were carried out at LTHE Grenoble where a suitable environmentforscientificcollaborationwasprovided.

4

PPaarrttII––SSttuuddyyaarreeaaaanndd eennvviirroonnmmeennttaallccoonntteexxtt

5 Inordertoplacetheresultsobtainedinthesubsequentpartsofthisworkintopropercontext,it isnecessarytodescribetheenvironmentalfactorsthataffectthestudyarea.Thestudyareais viewed in the larger context of the Niger River basin, one of the world’s major rivers. The environmental setting of the study area is described by a discussion of factors such as precipitation,riverdischarge,geology,soil,vegetationcover,andpopulation.

Recent and continuing climatic perturbations in addition to demographic pressure make it necessary to explore some of the direct and indirect factors that affect sediment production, transport,anddepositioninthestudyarea.

Thisintroductorypartofthestudyaimsto:

• DescribethestudystretchoftheNigerRiver;

• Describethegeneralclimaticcontextofthestudyareaaswellasitspresentstate;

• Makeasynthesisofhowtheinterplayofenvironmentalfactorslikegeology,soiltype and variable factors like vegetation cover and demographics may affect sediment productionandtransport;

• ReviewprevioussedimentmonitoringprogrammescarriedoutontheNigerRiver.

6 1. TheNigerRiver

TheRiverNigerisAfrica’sthirdlargestriveraftertheNileandtheCongoandisWestAfrica’s principal river. Rising at an altitude of about 800 metres in the Fouta Djallon Mountains in ,itsactivebasinlieswithinnineWestandcentralAfricancountries,BurkinaFaso, ,,Coted’Ivoire,Guinea,Mali,NigerandNigeria.

FigureI1locatestheNigerRiverbasinwithintheAfricanwithrespecttothebasins oftheNileandCongorivers.

FigureI1:TheNigerRiverBasinincomparisontoAfrica’amajorrivers

7 1.1. TheNigerRiverbasin

TheNigerhasalwaysfascinatedhistoriansandscientists,fromancienttimeswhenitwasthought tobeatributaryoftheRiverNile,tothenineteenthcentury,whenitwasthoughttoemptyinto theRiverCongo.FromaEuropeanpointofview,MungoParkfirstprovedconclusivelythatthe riverflowedeastwardsandRichardandJohnLanderwerethefirsttomaptheNiger’scourseand toprovethatitrunsintotheAtlanticattheBightofBenin.

ThehistoryoftheandmappingoftheRiverNiger’scourseisdetailedinPark[1815] andNEDECO[1959].

ThefullextentoftheNiger’sbasinhasbeenasubjectofdebate,becausethereisnoinputtothe NigerRiversystemfromitsleftbankasitrunsthroughtheRepublicofNiger[I Andersen et al. , 2005].Itstotalbasinarea(activeandinactive)isabout2.2millionkm²[A S Goudie ,2005]while its hydrological or active basin area is estimated to be about 1.5millionkm²[I Andersen et al. , 2005].

TheNigerRiverbasin,presentedinFigureI2,isusuallydividedinto fourmajorunitswith differentcharacteristics:

• TheUpperNigerfromitssourcetoSégou;

• TheInnerDeltafromSégoutoTossaye;

• TheMiddleNigerbetweenTossayeandMalanville;

• ThelowerNigerfromMalanvilletotheriver’smouthinthegulfofGuinea.

ThisstudyfocusesontheMiddleNigerpresentedinmoredetailinthefollowingsection.

8 Upper Niger Inner Delta Middle Niger Lower Niger

FigureI2:TheNigerRiverBasin

9 1.2. ThemiddleNigerRiverbasin

ThemiddleNigerRiveristhestretchoftheriverjustaftertheNiger’sinnerdeltaanduptothe Niger/BeninborderwithNigeria.TheNiger’sinnerdeltalocatedinMaliisavastareaoflakes andbraidedstreamsinwhichlargeevaporationandinfiltrationlossesoccur.BetweenTossayein MaliandtheRepublicofNiger,theNigerRiverdoesnotreceiveanytributariesanditsdischarge continues to decrease up to its with its right bank tributaries beginning with the Gorouol(seeFigureI3).

ThemiddleNigerRiverreceivessixtributariesthatoriginateinBurkina–Faso(Gorouol,, Sirba,Goroubi,Diamangou,andTapoa)andthreethatoriginateinBenin(Mékrou,Alibori,and Sota).ApeculiarityofthemiddleNigerRiveristhatallitspresentdaytributariesareonitsright bank,itsleftbankhavingnosignificanttributaries.ThemiddlesectionoftheNigerflowsina southeasterlydirectionthroughthesemiaridSahelregiontowardsthemorehumidsavannah, withabasinarealocatedinasemiaridtotropicalclimate(2001000mmannualrainfall).

The middle Nigeris described in detail by ORSTOM [1970], BrunetMoret et al.[1986], and Andersenetal.[2005].

1.3. Locationofthestudyarea

WithinthevastmiddleNigerRiverbasin,threesubbasinswereselectedascasestudiestomeet theobjectivesofthisstudy.EventhoughthemiddleNigerRiverhaseighttributaries,threeof themwerethefocusofthisstudyandwerechosentorepresentthetwomajorclimaticof thebasin,theSahelandthe.

TwoSahelianbasinsforwhichriverdischargedatawaslargelyavailablewerethereforeselected (theGorouolandtheSirbarivers)inordertoevaluate the sediment contribution of Sahelian tributaries to the middle Niger River. The Gorouol basin was of particular interest because sediment sampling had been carried out on theGorouolatDolbelbyORSTOM[R Gallaire , 1986]andbecauseit’sconfluencewiththeNigerRiverislocatedjustupstreamofKandadji,the siteofaproposeddamontheNigerRiver.

TheMékroubasinwaschoseninordertocomparetheSahelianbasinwiththemajorSudanian basinofthemiddleNigerRiver.

ThemagnitudeofthesedimentcontributionsoftheintermediatetributariesshowninFigureI3 shouldbeobservablefromthesedimentfluxmeasuredalongthemiddleNigerRiverinpartVof thiswork. 10 FigureI3:TheStudyArea

11 1.4. TheSahel

TheSahelistheclimaticzonebetweenthedesertandthesavannahlandstothesouth.It ischaracterizedbythestrongclimaticseasonalitywithashortrainyseasonandalongintensely dryseason.Itsexactlimitshavebeenapointofdebate[Y L'Hôte et al. ,2003; P Ozer et al. ,2003].

1.4.1. CharacteristicsoftheSahel

TheSahelcanbedefinedbasedonprecipitation,asreceiving100to200mmofannualrainfallat itsnorthernlimitand500to600mmofannualrainfallatitssouthernlimit.[A Anyamba and C J Tucker ,2005; A T Grove ,1978; H N Le Houerou ,1980; S E Nicholson ,1995].

ItincludesmuchofthecountriesofMauritania,Senegal,Mali,Niger,Chad,theSudanandthe northernfringesofNigeriaandBurkinaFaso.Extendingfromapproximately12°Nto18°N,the Sahelisanecologicalzoneofclimateandvegetationwhichrepresentsatransitionbetweenthe desertinthenorthandthemorehumidSavannahto thesouth[H N Le Houerou , 1980; S E Nicholson , 1995]. The Sahel is essentially a zone of grassland and scrubland and is sometimes definedbythelengthoftherainyseasonwhichrangesfromabout2monthsinthenorthto about3monthsinthesouth[S E Nicholson ,1995].

AgeneralizedvegetationmapoftheNigerRiverbasinispresentedin

FigureI4.

1.4.2. ThepresentstateoftheSahel

Precipitation in the Sahel is characterized by a large multidecadal variability; these large variations in rainfall have had a profound impact on vegetation dynamics in the region. The prevailingsituationintheSahelhasbeendescribedbyresearchersandpolicymakersasdrought [C T Agnew and A Chappell ,1999; P A Jacobberger ,1988; Y L'Hôte et al. ,2003; Y L'Hôte et al. ,2002; E Roose , 1996];desiccation [M Hulme et al. , 2001; A Tarhule ,2005] oreven [C J Tucker et al. ,1991].

AgnewandWarren[1996]makeanimportantdistinctionindefiningdroughtsasshortperiods (12 years) of below average moisture supply; desiccation as a process of aridisation lasting decades;andlanddegradationasapersistentdecreaseintheproductivityofvegetationandsoils, while desertification is a land degradation process of plant and soil resources under human impact[H E Dregne ,1986].

12 Thisvariabilityinrainfallhasledtoarecentperiodofdesiccationthatbeganinthelate1960sand from which the region not yet fully recovered.While most scientists agree that the region is experiencingongoingdesiccation[Y L'Hôte et al. ,2002],otherssuggestthattherainsmighthave recovered [A Anyamba and C J Tucker , 2005; P Ozer et al. , 2003], and yet others posit that abnormalityforaregionwithsuchvariabilityastheSahelisamisnomer[M Hulme ,2001].

BelowaveragewatersupplyaccordingtoDracupetal.[1980]canbedescribedintermsofstream flowandreservoirstorageforhydrologists,intermsofprecipitationformeteorologists,interms ofsoilmoistureforagriculturists,orevenintermsofasociety’sproductivityandconsumption foreconomists.

Available data for the Sahel (from 1905) shows a marked departure from average rainfall conditionsfromaround1968topresent,somepartsoftheregioncanbesaidtobeexperiencing aperiodofdesiccationcausedmainlybyareductioninprecipitationasinputandreducedstream flowandsoilmoistureastheeffectsoroutputs.

13 FigureI4:GeneralizedvegetationmapoftheNigerRiverbasin(afterWhite,1983) 14 2. Climateandenvironmentofthestudy area

2.1. Precipitation

Averagerainfallwithinthestudyareavariesfrom300mminthenorthtoabout1000mminthe southastheNigerRiverflowsfromthesemiaridSahelianzonetowardsthewettersavannah. Datafromthe Badoplu (Basededonnéespluviométriques)and EPSATNiger (Estimationof precipitationbysatelliteNiger)networkswereusedtocalculateaveragerainfallvaluesoverthe studyarea.AmapshowingtheaverageprecipitationoverthestudyispresentedinFigureI5.

Rainfalldatafortheperiod(1950to2006)from32raingaugestationsinthestudyareawere obtainedandusedtodeterminetheaveragerainfallisohyets.Wherepossible,onlystationswith continuousrecordswereusedtodeterminetheaverageprecipitationoverthestudyarea.The periodofoperationforeachofthestationsisdetailedinTableI1forthe Badoplu dataand

TableI2forthe EPSATNiger data.

15

TableI1:Rainfallrecordforthestudyarea(Badopludata)

%ofcomplete %ofcomplete Station Startdate Enddate Station Startdate Enddate data data 1950 1976 89 Hombori 1950 1990 100 Aribinda 1950 1990 100 Kandi 1950 1997 100 Ayorou 1950 1990 100 Kantchari 1950 1980 100 Bani 1950 1990 100 Kolo 1950 1978 97 Banikoara 1954 1997 100 Malanville 1950 1992 98 Bilanga 1968 1990 100 Markoye 1950 1990 100 Bogande 1950 1990 100 Niameyaero 1950 1990 100 Bouroum 1965 1990 100 Niameyville 1950 1980 100 Dakiri 1962 1990 100 1950 1990 100 Diapaga 1950 1990 100 Ouatagouna 1950 1988 100 Dolbel 1959 1980 100 Say 1950 1990 100 Dori 1950 1990 100 Sebba 1956 1979 100 Gaya 1950 1990 100 Tera 1950 1980 87 Gorgadji 1950 1990 100 Tillabery 1950 1980 100 Gorom 1950 1990 100 1950 1990 100 gorom Gotheye 1950 1990 100

TableI2:Rainfallrecordforthestudyarea(EPSATNigerdata)

Station Startdate Enddate %ofcompletedata Kolo 1990 2006 100 Niameyaero 1991 2006 100 Niameyville 1990 2006 100 Torodi 1991 2006 100

16 FigureI5:Averagerainfalloverthestudyarea19502006( DatafromBadopluandEPSATNiger)

17 2.2. Topographyandrunoff

AlthoughthelongitudinalprofileoftheNigerRiverbecomessteeperasitleavestheinner delta, (see Figure I 6) the basin of the middle Niger basin has a relatively smooth topography. FigureI6:LongitudinalprofileoftheNigerRiver(afterNEDECO,1959)

Duetothesmalldifferencesintopography,concentrationofflowhardlyoccursandoverland flowgenerallytakestheformofsheetflow[S M Visser et al. ,2005].

TheNigerRiveristheonlyperennialwatercourseinthestudyareaasitstributariesaremore dependentontheveryshortlocalrainyseason.

At Niamey, the maximum flows are usually twofold: a first peak flow during the local rainy seasonandasecondpeakthatoccursinthedryseasonandthatisduetothedelayedfloodfrom theinlanddeltaupstream[I Andersen et al. ,2005].

Desconnetsetal.[1997]studiedtheleftbankofthemiddleNigerRiver,andfoundthatmostof therunofffromprecipitationendsupinpoolswhichlaterinfiltrateorevaporatewithonlyabout 12%ofannualprecipitationreachingtheriverNiger.Theydescribedtheareaofthemiddle Niger’sleftbankasbeingcomposedofhundredsofsmallhydrologiccomponentsthatarerarely connectedtoeachother,aphenomenonknownas“endorheism”asopposedto“exorheism”on themiddleNigerriver’srightbankwherethereareseveralsignificantseasonaltributaries.

18 2.3. Geologyandsoils

Rock lithology and soil type are important factors that affect soil erosion. Weaver [1991] indicatedtheexistenceofastrongrelationshipbetweengeologyandsoilcharacteristicsandnoted their significance with respect to the spatial variation of soil erosion. The geological and soil characteristicsofthestudyareaaredescribedinthefollowingsections.

2.3.1. Geologicalsettingoftheregion

TheWestAfricancraton,whichistheinteriorportionofWestAfricathathasbeenstablefor about2000Ma[R Black ,1985a],coversalargepartofWestAfricawheretheNigerRiver’sbasin is located. It is bounded to the east by a Neoproterozoic (1000 to 570Ma) transSaharan orogenicsegmentwhichispartofanover3,000kmlonglinearPanAfricanmobilebeltthatisof asedimentaryandvolcanicnature[R Caby ,2003; H Porada ,1989].Thismobilebeltincludesthe TuaregshieldtothenorthandtheNigerianshieldtothesouth[R Black ,1985a; N Ennih and J-P Liégeois ,2008; C Moreau et al. ,1994]

2.3.1.1 GeologicalhistoryoftheNigerRiverbasin

NEDECO[1959]attemptedtoshowthatbeforetheearlyPleistocene(1.6Ma)thepresentday NigerRiverwasnotonebuttwoseparateriversystemsuntilthe“upperNiger”(upstreamofthe Niger’s inner delta) was captured by the lower or Nigerian Niger at Tossaye in the late Pleistocene(~10,000yearsago).Thismayexplaintheformofthelongitudinalprofileofthe Niger River in Figure I 6. NEDECO (1959) supported this assertion by pointing out the relatively high variation in elevation at higher altitudes of the upper Niger’s basin above comparedtothelowerNigerbasinandthereverseatloweraltitudes.

OnehypothesisofhowthiscaptureoccurredproposedbyUrvoyandcitedinNEDECO(1959) is that at the end of the tertiary period and because of the tilting of large areas caused by subsidence and upheaval, the upper Niger drained towards the gulf of Senegal through the SenegalRiver.Duringasecondphaseofupheaval,either because of the formation of a sand barrierorbecauseofcrustalwarpingoftheSégoubasinarea,theconnectionbetweenthe upperNigerandtheSenegalwasseveredwiththeupperNigerbecomingpartofthe basin,abasinofinternaldrainage.TheTilemsibasinwasdividedintotwoseparatebasins,with thenorthernbasindrainingoffintotheTanezruftbasinandthesouthernbranchestowardsthe lowerNiger.Duringamorehumidperiod,probablyca.75,000yearsB.P,theupperNigerfilled theSégou,,andAraouanelakesuntilitoverflowedtheTossayesill,byerodingagapin

19 theunderlyingCambrianrocksjoiningtheTilemsi(anowfossilizedtributaryofthelowerNiger that joins the Niger above Ansongo). This hypothesis is illustrated in Figure I 7 where the presentdayNigerbasinisdepictedaswellastheactivebasinhighlightedindarkerblue.The shapefile for Niger river’s active basin was obtained from HydroSciences Montpellier:: http://www.hydrosciences.fr/sierem/produits/index.asp?frame=datasig.

20 FigureI7:CaptureoftheUpperNigerbytheTilemsi(afterNEDECO1959)

21 Quensièreetal.[1994]questionedthepossibilityoftheupperNiger’scapturebytheTilemsiat theproposedgeologicaltimelineparticularlybecauseofthesizeofthegapintheTossayesill. CitingBeaudetetal.[1977]theypositedthatthemagnitudeoferosionpresentattheTossayesill wouldhaverequiredamuchlongerperiodthanthatbetweenthelatePleistoceneandthepresent (10,000years)tooccur.

Anindepthgeologicalchronologyofthestudyareaisoutsidethescopeofthepresentstudybut iswelldescribedbyBessoles[1977],Black[1985a,b]andBellion[1987].

ThegeologicalformationsintheNigerRiverbasinrangefromArcheantomorerecentalluvial deposits.

At its source in Guinea, the Niger flows over mostly Precambrian eruptive granites. Ancient schistsoverlainbyNeogenePalaeogenealluvialdepositsmarkthebasin’sdepositionhistoryasit traversesGuinea.Fortherestofitsuppercourse,theNigerRiverflowsacrosssedimentsand lowgradesedimentsofthecarboniferousNeoproterozoicperiodaswellasandlateritesof theRecentNeogeneperiod.

2.3.1.2 ThegeologyofthemiddleNigerRiverbasin

Asitbendsandflowsinasoutheasterlydirection,theNigerRiverinitsmiddlesectiontraverses thefollowinggeologicformationsdescribedbelowandpresentedinFigureI8:

1. RecentNeogene:Asitexitstheinlanddeltaandupto,theNigertraversesdunes andlateritesoftherecentNeogene. 2. Carboniferous Neoproterozoic: Between Ansongo and Labezanga, the Niger River crossesabandofsedimentsandlowgrademetasediments of the Neoproterozoic era andCarboniferousperiod. 3. Paleoproterozoic:BetweenLabezangaandGotheyeupstreamoftheSirba’sconfluence with the Niger, the Niger River traverses granites, gneisses, schists, migmatites and amphibolitesofthePaleoproterozoicera. 4. NeogenePaleogene: Lacustrine and marine sediments of the Neogene to Palaeogene period are dominant as the Niger flows betweenFariéHaoussa and . As the Niger passes through the “double V”, sediments and lowgrade sediments (CarboniferousNeoproterozoic) interrupt this formation. Between Boumba and Malanville the Niger river is bounded by lacustrine and marine sediments of the NeogenePalaeogene on its left bank and alluvial sediments of the recent Neogene periodonitsrightbank.

22 FigureI8:GeologyoftheMiddleNigerbasinadaptedfromSchlüter(2006) 23 Figure I 8 shows the geological formations of the middle Niger River basin adapted from Schlüter[2006].AlargepartofthemiddleNigerbasinisundifferentiatedArcheanbasement.The most recent formations are lacustrine sediments from the NeogenePalaeogene period found neartheSirba’sconfluencewiththeRiverNigeraswellasclasticsedimentsintheGorouolbasin. AlluvialsedimentsfromtherecentneogenearelocatedneartheMékrou’sconfluencewiththe NigerRiver.

TheGorouolbasiniscomposedmainlyoftheArcheanbasementandcarboniferoussediments and metasediments, metamorphic rock formations as well as more recent dune and laterite formations.

AlargeproportionoftheSirbabasin,especiallyitsupperbasin,isofundifferentiatedArchean basement;whilemorerecentsedimentaryformationsarefoundinitslowerbasin.

TheMékrou’sbasiniscomposedmainlyofgranites,gneisses,andschistsinitsupperbasinand sedimentsandmetasedimentsinitslowerbasin.

2.3.2. Soilproperties

Soil properties are dependent upon climate, vegetation cover, topography, as well as parent material and weathering.The dominant soils of the study area are described using the FAO UNESCOsoilclassificationsystem.Anunderstandingofthecharacteristicsofthesoilsinthe studyareaisnecessaryinordertoevaluatetheirvulnerabilitytoerosion.

2.3.2.1 SoilsinthemiddleNigerRiverbasin

Periods of drought exacerbated by wind and water erosion, as well as agricultural overuse (overgrazing,deforestationetc.)inthesemiaridSahelisofmajorconcernintermsofagriculture andlandconservation.Knowledgeofthepropertiesandcharacteristicsofsoilisimportantin gaininganunderstandingofthestudyarea’svulnerabilitytoerosion.

AccordingtotheFAO[2003]soilmap,themajorsoilsofthemiddleNigerRiverbasininclude thefollowingasdescribedbyDriessenetal.[2001]

• Arenosols,whicharecorrelatedtotheFrenchclassificationsystemas“classedessols minérauxbruts”and“classedessolspeuévolués”are siliceousand calcareous sands thatoccurinaridtohumidclimatesandinsandyplainsundermostlysparseand/or grassy vegetation. In semiarid areas like the Sahel, they are associated with areas of shiftingsanddunes.Theytendtobeweaklystructuredandtheirtopsoilsareliableto waterandwinderosion.

24 - Cambic Arenosols have a genetically young subsurface horizon showing evidence of alteration relative to underlying horizons, such as modified colourorremovalofcarbonates. - LuvicArenosolshaveasubsurfacehorizonhavingdistinctlymoreclaythan theoverlyinghorizonbecauseofilluvialtransferofclayand/ordestruction orselectiveerosionofclayinthesurfacesoil. • Luvisols(solslessivés)arecharacterizedbyclaymobilizationintheirtopsoilsandare susceptibletostructuraldegradation.Theyareasourceofparticulateclaytransferto surfacewaters.

- FerricLuvisolshaveasubsurfacehorizoninwhichsegregationofironhas occurredtotheextentthatlargemottlesorconcretionshaveformedina matrixthatislargelydepletedofiron. - GleyicLuvisolsarethosethatshowvisibleevidence of prolonged water loggingbyshallowgroundwater. - PlinthicLuvisolspossessasubsurfacehorizonconsistingofanironrich, humuspoor mixture of kaolinitic clay with quartz, which changes irreversiblytoahardpanortoirregularaggregatesonexposuretorepeated wettinganddrying. • Regosols, known in the French classification as “Sols peu évolués régosoliques d’érosion” or “Sols minéraux bruts d’apport éolien ou volcanique”, are common in eroding lands and particularly in arid or semiarid areas or mountain regions. Many Regosolsformahardsurfacecrustearlyinthedryseasonandhindertheemergenceof seedlingsandinfiltrationofraininthewetseason.

- EutricRegosolsareRegosolswith50%ormorebasesaturation. - DystricRegosolsarelowbasesoils. • Planosols,fromthelatin planus orflat,aresoilswithadegradedeluvialsurfacehorizon abruptlyoverdensesubsoilthataresubjecttowatersaturationinwetperiodsbecause ofstagnationofrainorfloodwater.

- SolodicPlanosolsaresoilsformedinaridorsemiaridareaswheremore soilsareinputatthesoilssurfacethancanberemovedbyleaching.They haveanacidicsubsurfacehorizonoverahardcompactunderlyinghorizon. • Lithosols,alsoknownasLeptosols,aregeneticallyyoungsoilswithnoclearlyexpressed soil morphology and consisting of freshly and imperfectly weathered rock or rock fragments.Theyaregenerallyfreedrainingsoilsthatmayhavegroundwateratshallow depth.

25 • Vertisolsareheavyclaysoilswithahighproportionofswelling.ThenameVertisols fromtheLatin vertere, toturn,referstotheconstantinternalturnoverofsoilmaterials. Theyoccurindepressionsandleveltoundulatingareaswithanalternationofdistinct dryandwetseasons.

- ChromicVertisolsareVertisolswithareddishcolour. • Cambisols, also known as “sols bruns” in the French classification, that show a beginningofhorizondifferentiationevidentfromchangesincolour,andinsemiarid regionsarefoundinyoungdepositionareasaswellasinerosionareasaftermaturesoils havebeeneroded.

- EutricCambisolsaresoilswith50%ormorebasesaturation. - Vertic Cambisols are Cambisols with a subsurface horizon rich in expandingclays.

AgeneralizedsoilmapofthestudyareaispresentedinFigureI9.

LuvicArenosolsarethemajorsoilgroupalongthemiddleNigerRiverwithabandofEutric CambisolsaroundtheareaoftheGorouolNigerconfluence.

EutricRegosolsdescribedabove,arethedominantsoilintheGorouolandSirbabasins.The othermajorsoilsoftheGorouolbasinareLuvicArenosolsandCambicArenosols.Thesouthern part of the Gorouol basin has areas of Solodic Planosols. Cambisols, Gleyic Luvisols and ChromicVertisols.

The other major soils of the Sirba basin include Luvisols, Arenosols, and some areas of Planosols.

ThesoilsintheMékroubasinaremainlyFerricLuvisols,withsomeareasofRegosolsandother Luvisols.

26 FigureI9:Generalizedsoilmapofthestudyarea

27 2.3.2.2 Vulnerabilityofsoilstoerosion

Erosion is a natural process of soil loss that involves the detachment and removal of rock particles by water and wind action. Geologic or normal erosion is the erosion of the earth’s surfaceundernaturalorundisturbedconditionsandisdescribedbyRoose[1996]astheslow shapingofhillsides(0.1to1t/ha/yr),whileacceleratederosionduetohumanactivityis100or 1000timesfasterthannormalerosion,usuallybetween10to700t/ha/yr.

Diallo [2000] studied the erosion characteristics of soils on 100 m² experimental plots in the Djitikobasin,Mali(asubbasinoftheUpperNigerRiver).Diallo[2000]foundthe sols ferrugineux (Lixisols 1)and sol brun (Cambisols)tobethemostaffectedbychangesinsoilcover(fromafallow statetoabaresoilstate)intermsofrunoffasdepictedinFigureI10.Intermsoferosion,the sametwosoilswerethemostsusceptibletowatererosionwhenchangedfromfallowtobaresoil asshowninFigureI11.

50 Fallow 45 Bare soil 40 35 30 25 20 15

Runoff coefficient(%) Runoff 10 5 0 Arenosols Cambisols Lixisols Regosols FigureI10:Runoffcoefficientsofsomesoils(adaptedfromDiallo[2000]

1 Lixisols are known to be particularly prone to erosion when exposed to the direct impact of raindrops (Driessen et al. 2001). 28 50 Fallow 45 Bare soil 40 35 30 25 20 15 Erosion(t/ha/year) 10 5 0 Arenosols Cambisols Lixisols Regosols FigureI11:Estimatedrateoferosionofsomesoils(adaptedfromDiallo[2000]

Casenave and Valentin [1989] suggested that in addition to soil type and perhaps more importantly,theinfiltrationandrunoffcharacteristicsofsoilsaredependentupon“soilsurface features”. They defined the soil surface features in terms of soil porosity, faunal activity (the presenceoftermitesandearthworms)andthepercentageoflargesoilparticles(>2mm)inthe 020cmhorizon.

Using rainfall simulation experiments Casenave and Valentin [1989] studied the behaviour of different types of cultivated and non cultivated soils and reached the conclusion that surface crustingwas the major factor controlling infiltrationandrunoffonSaheliansoils.Theyfound uncultivatedsoils,withcrustedsurfaceswithlessthan20%earthwormactivitytohavethelowest ratesofinfiltrationandthehighestrunoffcoefficients.Althoughtheirexperimentsdidnottest soiltypessuchasArenosolsandVertisols,theyestimatedthatthesesoilswouldhaveverylow infiltrationratesandrelativelyhighrunoffcoefficients.

2.4. Vegetation

Vegetativecoverinfluencessoilerosiondynamicsbyprotectingthesoilsurfacefromraindrop impact, maintaining or enhancing soil infiltration capacity, holding soil particles in place and reducingrunoffvelocity[B J Fu et al. ,2005].Vegetationclearanceontheotherhandhasbeen known to increase erosion or sediment production byanorderofmagnitudeormore[D E Walling ,1999].

TheSahelianlandscapesupportsmainlywoodedvegetation(typicallybetween1.5and4metres tall)andgrassland.

29 The chief woody species are acacias such as Acacia tortilis as well as A. laeta, Commiphora Africana,Balanitesaegypticiaca.Thedensityofthelargerwoodyplantsisvariableandlargely dependentuponwatersupplyandtheamountofhumaninterference[F White ,1983]andforma patternofalternatingvegetatedstripesandbareareasalsoknownas“tigerbush”[S Galle et al. , 1999]

Thegrassismoreorlesscontinuousandisusuallynotmorethan60cmtallconsistingofmostly of annual species like Cenchrus biflorus, Schoenefeldia gracilis, Aristida stipoides and Tragus racemosus,. Grasses are replaced by annual weed such as Boerhavia coccinea and Tribulus terrestrisinheavilygrazedandtrampledareas[F White ,1983].

ThenorthernlimitofCenchrusbiflorusanannualgrassisoftenregardedasthesouthernborder oftheSahara,whilealbida,Adansoniadigitata(Baobab)andVittelariaparadoxa(Shea tree) are found in the Southern part of the Sahel and the Sudan savannah. The density of vegetationcoveristhemajordifferencebetweentheSahelandtheSudanregions[M Loireau , 1998].

SahelianfloraaredescribedanddiscussedindetailinWhite[1983]andCourel[1985]

2.5. Thehumaninfluenceonlandcoverinthe studyarea

Humanactivitiessuchasurbanization,landuseforagriculture,andlivestockgrazingincreasethe potential for soil erosion because they alter the natural soil surface properties. According to WilkinsonandMcElroy[2007]humanactivityhasoutstrippedgeologicprocessessuchasrock uplift and denudation of orogenic belts as the most important continental surface changing factor.

Inthestudyarea,populationgrowthisthedrivingforcebehindlandusechange.Theaverage annualrateofpopulationchangeforthefourcountriesinwhichthemiddlebasinoftheNiger Riverislocated(i.e.Benin,BurkinaFaso,MaliandNiger),rangedfrom2.98%to3.52%forthe periodbetween2000and2005.TheUnitedNationspopulationdivisionforecaststhatbetween 2005and2010,NigerfollowedbyMaliwillhavethehighestrateofnaturalpopulationincrease [United Nations ,2007].

Acomparativeplotofpopulationgrowthforthefourcountriesshowingtherapidpopulation growth of the Niger Republic is presented in Figure I 12 with data from United Nations PopulationDivision’spopulationdatabase[United Nations Population Division ,2006].

30 18

16

14 Benin 12 B.Faso Mali 10 Niger

8

6 Population(millions)

4

2

0 1940 1950 1960 1970 1980 1990 2000 2010 2020 Year FigureI12:Populationestimates/projectionsforthemiddleNigerbasincountries (19502010)

Dolmanetal.[1997]inferredthatsuchlocalinfluencesalongwithexternalforceslikeregional climatic conditions may be responsible for the reduction in vegetation and rainfall leading to sometimespermanentdegradationofthelandsurfaceintheSahel.

Thedemographicpressureontheregionisaccentuated by the fact thataround 90 % 2 of the Sahelian population of the study area is dependent on agriculture for their livelihoods [FAO , 2008a] and firewood iswidely used for cooking. In the Sahelian areas of the study area, the naturalvegetationcoverhassteadilygivenwaytomilletfields.AccordingtotheStatisticsdivision oftheFoodandAgriculturalOrganization[FAO ,2008a]theareaoflandharvestedforthetotal ofcereals,rootsandtubersandvegetablesinNiger,forinstance,hasmorethantripled 3since 1961(seeFigureI13a).

FigureI13ashowstheevolutionofcultivatedlandforthecountriesofthemiddleNigerbasin, whileFigureI13bpresentscultivatedlandasapercentageofeachcountry’stotalagricultural area.

FigureI13aandFigureI13bshowthatthereisonlyaslightincreaseintheevolutionofthe area of cultivated land in the other three countries compared to Niger. A slight decrease in cultivatedareaasapercentageofthetotalcultivableareawasobservedforBenin.

2 See Table A1 in appendix A for data 3 See Table A2 in appendix A for data 31 AccordingtoFoleyetal.[1997]reportsupto1989hadestimatedfuelwoodconsumptiontobe between 0.6 and 0.8 kilogram/head/day with an estimated average potential woodland productivityofabout315kilograms/hectare/year.

The widespread used of firewood for cooking is another reason for the clearing of natural vegetation.Foleyetal.[1997]citingtwostudiescarriedoutin1984and1990indicatedthatthe fuel wood consumption in Niamey was 110,000and 133,000 tonnes per annum respectively, highlightingtheincreasingwoodconsumption.

32 a) b)

10 60 Benin 9 B.Faso 50 8 Mali Benin Niger 7 B.Faso 40 6 Mali Niger 5 30

4 20 3 % of total land area cultivated area land total of % Millions of hectarescultivated of Millions 2 10 1

0 0 1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010 Year Year FigureI13:EvolutionofcultivatedlandinmiddleNigerbasincountries(1961to2007)

33 3. Studyingthetransportofsedimentinthe RiverNiger

Syvitski et al. [2005] estimated that global seasonal sediment fluxes have increased by 2.3±0.6billiontons/yearthroughsoilerosionunderhumaninfluence.

Several studies have sought to understand or quantify the impact of land use or land cover change on basinscale fluvial sediment dynamics in various circumstances and using various methods.Itiswidelyacceptedthatvegetationcoveraffectsriversedimenttransportbecauseit affectsrunoffaswellastherateoferosionwith the amount of vegetation cover and runoff productionbeinginverselyrelated.

3.1. Thetransportofsediment

Sedimentanditstransportinstreamsandriversarestudiedinordertodrawinformationnotjust onsedimenttransferbutalsoontheerosionanddeposition processes under given hydraulic conditionsaswellasthepossibleeffectsoftheseprocessesontheenvironment.

Variations in stream and sediment transport characteristics such as the mode of transport, sediment supply or availability, river discharge, and turbulence make the measurement of sedimentloadextremelycomplex.

Sedimentloadinriverscanbesubdividedbysourceaswashloadandbedmaterialloadorby mode of transport as suspended sediment and bedload. By source, washload is sediment transportedfromuplandsources,whilebedmaterialloadissedimentderivedfromdenudationof theriverbed.Bymodeoftransport,thesuspendedsedimentisthatportionthatisdispersedand carriedinsuspensionbyflowturbulenceandisusuallycomprisedoftheclay,silt,andfinesand fractionsofsediment.Mostofthewashloadandthefinerfractionsofthebedmaterialloadare transportedinsuspension.Thebedloadisthatfractionofthetotalloadthatisalmostcontinually incontactwiththeriverbedandistransportedbysliding,rolling,orsaltationbytheshearstress ofthewaterflowactingontheriverbed.

Thevariationsthatcanexistfromonepointtoanotherwithinariversystemmakeitimpractical to expect to be able to continuously measure sediment load everywhere within the system. AccordingtoHicksandGomez[2003],itisthereforethesamplingofthesevariationsinariver system that provide an insight to the sediment load being transported within the system. TechniquesforthemeasurementofsedimenttransportarediscussedfurtherinpartsIIIandV.

34 3.2. Previous regional sediment measurement efforts Grove[1972]citingGallaisreportedthatsemimonthlysuspendedsedimentmeasurementsonthe UpperNigerRiverwerecarriedoutatKoulikoroasfarbackas1923withconcentrationvalues thatrangedfrom107mg/linJuly,50mg/latpeakdischargeandlessthan40mg/linthedry season.Picouet[1999]reportedthataweeklymeasurementprogramonastretchoftheUpper NigerRiveruptotheNiger’sinlanddeltabetween1991and1997producedsimilarconcentration valuesthatrangedfrom0.1to82mg/latBanankoro,from0.8to88mg/latKoulikoroand from1.5to213mg/latKéMacina.FigureI14indicateswherethesemeasurementsweremade aswellasmeasurementlocationsonthemiddleandlowerpartsoftheNigerbasin.

The earliest sediment concentration measurements for the middle Niger basin were probably thoseconductedbetween1976and1982by“OfficedelaRechercheScientifiqueetTechnique d'OutreMer” ORSTOM for the feasibility study of a proposed dam on the Niger River at Kandadji. The study involved the measurement of suspended sediment concentration at KandadjiandNiameyontheNigerRiverandatDolbelonGorouolRiver.Measurementswere madeatthreedayintervals.Theobservedvaluesforsuspendedsedimentconcentrationranged from2mg/lto1600mg/latKandadjiontheNigerRiverandbetween94mg/land5940mg/l atDolbelontheGorouolRiver.

InthelowerNiger,at14stationsbetweenJebbaand Aboh in Nigeria, the NEDECO study [NEDECO,1959]obtainedsuspendedsedimentconcentrationsbetween50and510mg/lina datasampleof72infrequentmeasurementsbetween1956and1958.Itisworthnotingthatthe majority of observations were carried out in the dry season, while the observed maximum concentrationof510mg/latKelebeoccurringinAugust (rainy season) compared to 80mg/l observed at the same station in November, indicating that higher concentrations may have occurredduringtherainyseasonattheotherstations.Theseresultsillustratetheimportanceof samplingfrequencyinthequantificationofsedimenttransport.

Althoughthesedimentconcentrationvaluesweremeasuredatdifferentperiods,itcanbenoted fromtheforegoingthatthesedimentconcentrationmeasuredontheNigerRiverincreasesina downstream direction with the largest observed variationoccurringatKandadjiintheNiger’s middlebasin.TheobservedsedimentloadcarriedbythisstretchoftheNigerRivercombined withreducingriverdischargemakesitimportanttostudythesedimenttransferdynamicsofthe middleNigerRiverbasin.Thesediment measurement and transfer dynamics are discussed in moredetailinpartVofthiswork.

35 FigureI14:LocationofprevioussedimentmeasurementsintheNigerRiverBasin.

36 4. Conclusion

The study area and its climatic and environmental context have been described in the introductorypartofthisstudy.

• Thesoilsinthestudyareaareessentiallyaproductoftheregion’sgeologicalhistory.A reviewofthesoilsintheareashowsthat:

- Thesoilsofthestudyareaaresusceptibletowindandwatererosion.In addition, soils that represent young deposits are found along the middle NigerRiver. - ThemajorsoiltypeintheGorouolandSirbabasinsisonethatistypicalof erodinglands,andinwhichsurfacecrustingoccurs,hinderinginfiltration andpossiblyincreasingrunoffwhenthesoilsarebare. Other major soil typesareweaklystructuredandareliabletowindandwatererosion. - IntheMékroubasin,themajorsoiltypeisonethatfavoursclayparticle transferfromthesurfacehorizontowatercourses. • Thestudyareaisunderstrongdemographicpressurewitharapidlyincreasingpopulation that is dependent on agriculture as a means of livelihood, and firewood as an energy source.

• PrevioussedimentmeasurementprogramsontheNigerRivershowatrendofincreasing sedimentconcentrationastheNigerflowsfromitssourcetowardsthestudyarea.

37

PPaarrttIIIIRRiivveerrffoorrmmaanndd bbeeddeevvoolluuttiioonnoofftthhee MMiiddddlleeNNiiggeerrRRiivveerr

38 Mostalluvialriversaredynamicandarecontinuallyselfadjustingtonaturallyoccurringclimatic or humaninduced changes. These selfadjustment processes are primarily vertical or lateral in nature [S A Schumm ]. Channel form changes include scour or deposition, as well as channel migration,channelwideningorcontractionandaccordingtoMontgomeryandBuffington[1997] mainly reflect changes in river discharge and sediment input. Extreme river channel changes frequentlyhavenegativeconsequencesfornavigation,theaquaticecosystemandincreasetherisk offlooding.

Thispartofthestudyaimsto:

• Examinethenatureofmediumterm(20–35years)channelplanformchangeforthree reachesofthemiddleNigerRiverusingaseriesofmultitemporalsatelliteimagery.

• Exploretherelationshipbetweenobservedchannelchangestoriverdischarge,human influences,andotherfactors.

• MeasurepossiblesedimentsourcesanderosionpatternsinthemiddleNigerRiverbasin

• Determine the longterm change in erosion and accretion patterns by comparing riverbedleveldatafromaprevioussurveytorecentlymeasuredriverbedlevelsforsome portionsofthestudyarea.

39 1. Riverplanformchange

Alluvialchannelpatternscanbelargelyexplainedonthebasisofinchannelflowresistanceand sedimenttransportdynamicscombinedwiththeexternalfactorsimposedonthereachbythe river’sphysicalenvironmentsuchasvalleyslopeandwidthaswellasboundaryconditionslike bankstrength[H Q Huang and G C Nanson ,2007].

Alluvialriverchannelpatternsaretheresultofcontinualprocessesofselfadjustmentandinclude straight,meandering,braidingandanabranchingtypes.

1.1. Data

Landsatimagesfrom1973to1999ofthethreestudyreacheswereacquiredfrom Agrhymet and theGlobalLandCoverFacility,GLCF.Theimageswere chosen to cover four periodswhere possible, the 19731979 period (the earliest available Landsat images), 1984, the 19891992 period, and 1999. The three reaches of the middle Niger River were chosen with particular attention to the three tributaries under consideration for this study (The Gorouol, Sirba and Mékrourivers)inordertocontrastpatternsofchangethatmayberelatedtothesetributaries

The three reaches considered in this analysis have distinct characteristics; they are described belowandrepresentedinFigureII1.

• Reach1 isabout115kmlongandcomprisestheGorouolNigerconfluence.Landsat images from 1979, 1984, 1992, and 1999 were analysed for this reach. The major distinguishingfeatureoftheNigerRiverinreach1isitscomplexanabranchingform particularlyneartheGorouolNigerconfluence.

• Reach2 isa150kmlongstretchthatincludestheSirbaNigerconfluence,startingafter theDargolNigerconfluence,andextendsuptothetownofSay.Landsatimagesfrom 1975,1984,1989,and1999wereanalysed.ACorona 4imagemosaiccoveringasmaller portionofreach2wasalsoanalysedandcomparedtothe1975and1999images.Reach 2 can be described as amainly braided stretch of the Niger with a lesser degree of anabranchingoccurringaroundtheSirbaNigerconfluenceandnearNiamey.

• Reach3 isa100kmstretchthatincludestheMékrouNigerconfluencestartingabove KirtachiandendingafewkilometresbeyondBoumbaandtheDallolBosso.Thisreach alsoincludestheTapoaNigerconfluence.Landsatimagesfrom1973,1984,and1999

4 The image processing for the Corona imagery is discussed in part III 40 wereavailableforcomparison.Theareacommontoallthreeimagesiscomparedbutin addition,acomparisonbetweenthe1984and1999imagescoveringalargerriverlength ispresented. Reach3includesthe“doubleV”sectionoftheNigerRiver,hasafewanabranches,and isrelativelystraightafterBoumba.

FigureII1:ThemiddleNigerRiverandthestudyreaches

41 AseriesofnearanniversaryLandsatimagesandaCoronaimagemosaicwereusedtocompare thechangesinriverplanformbetweenthe1965and 1999for3reachesofthemiddleNiger River.Asummaryofthesatelliteimagesusedintheanalysisaswellasdischargedataatsome representativedischargemeasurementstationsontheimagedatesarepresentedinTableII1.

TableII1:Satelliteimageryanddischargedataforthestudyreaches

Pixel Discharge(m3/s)atgaugingstation Reach Imagedate Path/row size(m) Ansongo Kandadji Niamey Malanville 29/11/1979 208/050 57 1840 1840 1800 05/11/1984 194/050 28.5 1060 N/A 1030 1 18/10/1992 194/050 28.5 1270 1180 1000 22/10/1999 194/050 28.5 N/A 1430 1300 13/10/1965* N/A N/A 1460 1740 22/11/1975 207/051 57 1650 1570 2 14/11/1984 193/051 28.5 1050 N/A 20/11/1989 193/051 28.5 1220 1140 31/10/1999 193/051 28.5 1370 1490 29/09/1973 206/051 57 1030 1230 3 07/11/1984 192/051 28.5 1040 N/A 09/11/1999 192/051 28.5 1460 1420 *CORONAsatelliteimageDS10252122DF(049to052)

OutlinesofthethreestudyreachesarepresentedinFigureII2toFigureII4.

42

. FigureII2:Reach1

43 FigureII3:Reach2andtheCorona1965extent

44 FigureII4:Reach3

45 1.2. Methods

 Dataprocessing

Foreachstudyreach,theolderimageswerecoregisteredtothemostrecentimage(the1999 image)usingfeaturescommontobothfeaturessuchasroadintersectionsandinfrastructuresuch astheNiameyairport.Between6and10pointsperimagewereusedastiepointsandtheimages werewarpedusingafirstorderpolynomialandnearest neighbour resampling. An example is foundinpartIIIofthiswork.

Image registration errors ranged from between 0.35 to 1.76 metres, which were acceptable consideringthe1999imagepixelsizeof30metres.

 Dataanalysis

Inordertostudytheplanformchangeofthethreereaches,itwasnecessarytocharacterisesuch channelformcharacteristicsasthechannelwidth,channelareaaswellasthevegetatedisland area.Toachieveamoreconsistentdiscriminationof the water/land/vegetation boundary, the resultsofanunsupervisedclassificationwereusedasthebasisforderivingtheriverbanklines.A comparison of a simple false colour combination (742) and the results of the unsupervised classification is presented in Figure II 5 and Figure II 6 to highlight the usefulness of this procedure for the delineation of the watervegetation boundary. In Figure II 6, water is representedinshadesofblue;vegetationisrepresentedinshadesofgreenwhilebaresoiliswhite andbrown.TheproceduresfortheunsupervisedclassificationwillbediscussedinpartIIIofthis work.

.

46 FigureII5:Exampleofa742falsecolourcomposite

FigureII6:Exampleoftheresultsofunsupervisedclassification

47 1.3. Channelvariables

Ageographicinformationsystem(GIS)wasusedtogeneratechannelmeasurementsnecessary forthemultitemporalcomparisonofchannelplanform.

Richard et al. [2005] defined the active channel as the nonvegetated portion of the channel excludingmiddlechannelbarsandislandsandthetotalchannelasincludingmiddlechannelbars andislands.Forthepurposesofthisstudy,floodedvegetationwasnotconsideredaspartofthe activechannel.

The totalriverchannelarea wasderivedbycalculatingtheareaofthepolygonencompassing thelimitsofbothbanksoftheriverincludingtheislands.

Theactiveriverchannelarea wasderivedbysubtractingtheislandareafromthetotalchannel area.

Rivercentrelines, whichrepresenttheriver’smeanpositionforagivenperiod,werederived foreachstudyreachasalinejoiningthechannelmidpointscalculatedatamaximumof500 metreintervals.

The averagechannelwidth wasestimatedastheratioofthechannelareatothelengthofthe centreline.

Asummaryoftheresultsofthisanalysisispresentedinparagraph1.4.Theresultsarepresented graphicallyinappendixBforthethreereaches.

1.4. Resultsanddiscussion

Alluvialriverssometimesmeanderandmigrateastheyerodeanddepositsedimentalongtheir banks.Rivermigrationratesareofinterest torivermanagersbecauseofthethreatposedby highlymobileriverstoengineeringstructuresaswellastohumansettlements.

In temperate regions, river migration rates are reported to range from 0.1m/yr to more than 7.2m/yr[A Alvarez ,2005].AnexampleofamorerapidlymigratingriveristheBrahmaputra JamunaRiverinsouthernwithamigrationrateofupto50m/yrbetween1830and1992[N I Khan and A Islam ,2003].InSouthAmerica,Mertesetal[1996]reporteda migration rate of 140m/yr(or3%ofitschannelwidth)fortheAmazonRiverinBrazil,andcitingKalliolaetal., Mertesetal[1996]reportedmigrationratesofupto400m/yr(or37%ofitschannelwidth)for theAmazonRiverinPeru.IntropicalAfrica,Gilvearetal.[2000]reportedamigrationrateofup to33m/yrfortheLuangwaRiverinZambia.

48 Intermsofrivermigration,themiddleNigerRiverdoesnotexhibitanexcessivemigrationand itscentrelinehasremainedrelativelystablebetweenthe1970sand1999althoughthethreestudy reacheshavewidenedorcontractedinthesameperiod.Thederivedpolygonsdelineatingthe riverbanklines,islands,aswellasthederivedrivercentrelinesarepresentedinappendixB,anda summaryoftheresultsarepresentedinthefollowingsection.

Forallthreereaches,theresultsshowtheriver’sresponsetoriverdischargeandsedimentsupply by theadjustment of its plan form suchas theexcision of ridges from the floodplain, bank erosion,anddevelopmentofanabranchesaswellastheabandonmentofanabranches.

1.4.1. Rivercentrelineevolution

The movement of the derived centrelines for a given period was determined with respect to anotherperiodforthesamereach.ThemeanchannelmigrationwasdeterminedinArcGISandis presentedinappendixB(FigureB12toFigureB20forreach1,FigureB44toFigureB52 forreach2,andFigureB78toFigureB79forreach3).Themeanmigrationdistancesandrates foreachreacharesummarizedinTableII2.Themigrationrateasafunctionoftheriver’smean widthisalsopresentedinthemigrationcolumn.

TableII2:Migrationratesforthethreestudyreaches

Meanwidth Mean Migration Reach Period t(years) overthe centreline Rateperwidth Rate(m/yr) period(m) movement(m) (m/w/yr) 19791984 5 1530 197.2 41.7 0.027 1 19841992 8 1620 119.1 14.9 0.009 19921999 7 1570 84.4 12.1 0.007 19751984 9 710 103.2 11.5 0.016 2 19841989 5 735 51.5 10.3 0.014 19891999 10 740 48.7 4.9 0.007 19731984 11 420 71.1 6.5 0.015 3 19841999 15 420 27.9 1.9 0.005

For all three reaches, the period between the 1970s and 1984 witnessed the largest centreline movement.Thetimeaveragedmigrationratesforthethreereachesarecalculatedandpresentedin TableII3.

49

TableII3:Timeaveragedmigrationratesforthethreestudyreaches

Reach Migrationrate(m/yr) Migrationrateperwidth(m/w/yr)

1 20.6 0.013 2 8.5 0.012 3 3.8 0.009 Overall 10.9 0.011

The overall centreline migration rate of the three reaches is 10.9m/year and 0.011m/width/year.

WhentheNigerRiver’swidthandthefluctuationinriverdischargearetakenintoaccount,the observed centreline migration rates are not elevated for the middle Niger River. The other observed changes in channel form are presented in paragraph 1.4.2 and are discussed in paragraph1.4.3.

1.4.2. Changeinchannelform

1.4.2.1. Reach1

Ananalysisoftheimagesindicatedthatforreach1(seeFigureII7),thefollowingobservations weremadefortheperiodbetween1979and1999.

• 19791984:Asignificantincreaseinchannelareaalongwithislandareawasobserved between1979and1984.

• 19841992:Channelareadecreasedbetween1984and1992,butislandareaincreased duringthesameperiod.

• 1992 – 1999: The total channel area remained near the 1992 level but island area increasedslightly,causingareductionintheactivechannelarea.

50 Reach 1 Total channel area Active channel area 200 Island area 180 160 140 ) 2 120 100 80 Area (km Area 60 40 20 0 1979 1984 1992 1999 FigureII7:Channelareachangeinreach1

Between 1979 and 1999, the middle Niger’s channel in reach 1 expanded (19791984) and contracted(19841999)inresponsetoavarietyofchanges(seeFigureII8).

Themostsignificantchangeinaveragechannelwidthoccurredaround1984,withasignificant expansion in channelwidth between 1979and 1984while a continuous reduction of average channelwidthwasobservedfrom1984upto1999.

Reach 1 Active channel width

900 800 700 600 500 400 300

Average width (m) Averagewidth 200 100 0 1979 1984 1992 1999 FigureII8:Channelwidthchangeinaportionofreach1 51 1.4.2.2. Reach2

Thechangeinchannelareainreach2issummarizedinFigureII9.

• 19751984: As in reach 1, between 1975 and 1984 total channel area increased significantly.Themeasuredislandsareaalsoincreasedbetween1975and1984butthe activechannelareaalsoincreased.

• 19841989: Channel area reduced in reach 2 between 1984 and 1989. Island area continuedtoincreasecausingareductionintheactivechannelarea.

• 19891999: Channel area had increased to 1984 levels by 1999. The channel area increasedwithaslightdecreaseintotalislandarea.

Reach 2 Total channel area 140 Active channel area Island area 120

100 ) 2 80

60 Area (km Area 40

20

0 1975 1984 1989 1999 FigureII9:Channelareachangeinreach2

Between1975and1999theactivechannelwidthofreach2,contractedthenexpanded.Asin reach1,themostsignificantchangesinaveragechannelwidthoccurredaround1984.Channel widthincreasedbetween1975and1984,whilechannelcontractionoccurredbetween1984and 1989.Thechannelwidthofreach2widenedandattainedthe1984level(seeFigureII10).

• 19751984:Theactivechannelwidthincreasedsignificantlybetween1975and1984.

• 19841989:Theactivechannelwidthnarrowedbetween1984and1989

• 19891999:Between1989and1999,thechannelareaandchannelwidthincreasedwith aslightdecreaseintotalislandarea.

52 Reach 2 Active channel width

600

500

400

300

200 Average width (m) Averagewidth 100

0 1975 1984 1989 1999 FigureII10:Channelwidthchangeinreach2

Acomparisonofthechannelplanformbetween1965and1999wasalsomadefora~70km stretchofreach2usingaCoronaimagemosaicforOctober1965(seeFigureII11andFigure II12).The1975and1999statesarecomparedwiththe1965imagery.

Total channel area 60 Active channel area Island area 50

40 ) 2

30

Area(km 20

10

0 1965 1975 1999 FigureII11:Channelareachangeinaportionofreach2

Theresultsinferthatreach2wasalreadyinanarrowingphaseby1975asitnarrowedslightly between1965and1975overasmallerarea.

53 Active channel width

600

500

400

300

200 Average width (m) Averagewidth 100

0 1965 1975 1999 FigureII12:Channelwidthchangeinaportionofreach2

1.4.2.3. Reach3

Incomparisontoreach1andreach2,reach3wasrelativelyunchangedbetween1973and1999 (seeFigureII13andFigureII14).

• 1973 – 1984: Total island areaincreased slightly in reach3 between1973and 1984, causingaslightdecreaseinchannelareainthesameperiod.

• 1984 – 1999: Total island area increased more significantly than the period between 1973 and 1984, causing a decrease in the active channel area even though the total channelareaincreasedslightly.

Reach 3 Total channel area 45 Active channel area 40 Island area 35 30 ) 2 25 20

Area(km 15 10 5 0 1973 1984 1999 FigureII13:Channelareachangeinreach3 54 Contrary to the observations in reaches 1 and 2, between 1973 and 1984, reach 3 narrowed slightlyandthistrendcontinuedbetween1984and1999(seeFigureII14).Itisnoteworthythat alargestretchofthisreachofthemiddleNigerRiverisconfinedbythenatureofitsbanksand thereforelateralchannelmovementislimited. • 1973–1984:Thereductionintotalaveragewidthwasbecauseofanincreaseintotal islandareaincreasedslightlyinreach3between1973and1984.

• 1984–1999:Duetothecontinuousincreaseinislandarea,theactivechannelwidthof reach3decreasedfurtherbetween1984and1999.

Reach 3 Active channel width

400 350 300 250 200 150

Average width (m) Averagewidth 100 50 0 1973 1984 1999 FigureII14:Channelwidthchangeinreach3

55 1.4.2.4. Summary

ThechannelcharacteristicsofthethreestudyreachesaresummarizedinTableII4(channel area)andTableII5(channelwidth).

TableII4:ChannelareacharacteristicsofthreereachesofthemiddleNigerRiver.

Totalchannel Totalisland Activechannel Island/channel Reach Year area(km²) area(km²) area(km²) ratio 1979 164.17 80.20 83.97 0.489 1984 193.10 93.90 99.20 0.486 1 1992 182.31 98.29 84.02 0.540 1999 182.73 99.92 82.81 0.547 1975 99.69 25.87 73.82 0.259 1984 115.41 29.82 85.60 0.258 2 1989 106.59 31.30 75.29 0.294 1999 116.30 30.49 85.81 0.262 1973 41.71 6.85 34.85 0.164 3 1984 41.47 6.87 34.59 0.166 1999 41.97 7.87 34.10 0.187 • In reach 1, total channel area increased sharply between 1979 and 1984, reduced between1984and1992,andremainedrelativelystable between 1992and1999. The island area to channel area ratio has steadily increased since 1979 due mainly to anabranchinginreach1.

• Inreach2,twophasesoftotalchannelareaincreasewereobserved.Thefirstphaseof channel area increase occurred between 1975 and 1984, and a subsequent phase of channelareaincreaseoccurredbetween1989and1999.Islandareaincreasedinreach2 from1975upto1989,andthenslightlydecreasedbetween1989and1999.

• Relativetoreaches1and2,reach3haschangedonlyslightly.Aslightdecreaseinthe totalchannelareawasobservedbetween1973and1984,whilebetween1984and1999 thetotalchannelareaslightlyincreased.Theactivechannelareainreach3hassteadily decreasedsince1973duetotheincreaseinislandarea.

The effects of the changing channelcharacteristics are reflected on the river’s average width, whicharecomparedinTableII5forthethreereaches.

56 TableII5:ChangeintheaveragewidthofthemiddleNigerRiver

Reach Year AverageTotal Averageactive channelwidth(km) channelwidth(km) 1979 1.39 0.71 1984 1.67 0.86 1 1992 1.57 0.72 1999 1.57 0.71 1975 0.66 0.49 1984 0.76 0.57 2 1989 0.71 0.50 1999 0.77 0.57 1973 0.42 0.35 3 1984 0.42 0.35 1999 0.42 0.34 • The width of the active channel in reach 1 increased between 1979 and 1984, and decreasedbetween1984and1992.Theaverageactivechannelwidthmeasuredfor1999 wasthesameasthatfor1979.

• As with the channel area changes, the channel width measurements for reach 2 fluctuated between 1975 and 1999, increasing between 1975 and 1984, decreasing between1984and1989andincreasingagainbetween1989and1999.

• The slight fluctuations in the total channel area of reach 3 did not affect the total channelwidthtothenearest100metres;however,theactivechannelwidthdecreased slightlybetween1984and1999.

1.4.3. Factorsresponsibleforchannelformchange Riverchannelsareknowntoadjusttoavarietyoffactorsandtheidentificationoftheprincipal causesofriverchanneladjustmentcanbecomplex.Oneofthecommoncausesofriverchannel adjustment is climatic perturbations such as fluctuationsinthevolumeofannualprecipitation and flood frequency about a steady longterm average. In this case, river channels may be expectedtowidenflowingaperiodofrelativelyhighflowsandtocontractduringbelowaverage flowperiods.

Channelwideningcanoccurduetobankerosionwithoutincisionoftheriverbed,butitcanalso occurduetotheinstabilityofsteepbanksfollowingriverbedincision.

Channel narrowing has been reported to take place due to the encroachment of vegetation. Channelnarrowinginsinuouschannelscanoccurwhentherateofalternatepointbarexceeds the retreat rate of the opposite cut bank. In anabranching systems, narrowing occurs when

57 marginalanabranchesareabandonedeitherasaresultofdecreasingdischargeorasaresultof sedimentdeposition[The ASCE Task Committee on Hydraulics Bank Mechanics and Modeling of River Width Adjustment ,1998].

1.4.3.1. MiddleNigerRiverchannelresponsetoriverdischarge Montgomery and Buffington [1997] as well as Lane [2004] noted that many channels are insensitivetoallbutcatastrophicpeakdischarges. The ASCE Task Committee on Hydraulics Bank Mechanics and Modeling of River Width Adjustment [1998], citing Wolman noted that significantbankerosionoccurredduringrelativelysmallbutfrequentflowevents.Ontheother hand,ithasbeenreportedthatsignificantbankerosionwascausedbylargefloodeventswith recurrenceintervalsofdecadesorcenturies[A Gupta and H Fox ,1974].

For this study, the cumulative annual discharge was applied as a useful simplification for qualitativelyevaluatingtheeffectofriverdischargeonchannelsize,asitintegratestheeffectsof arangeofflowsoverthelongterm.

ThecumulativevolumeofwaterdischargedbytheNigerRiveratNiameycouldbeconsideredas representativeofthemiddleNiger’sdischargeforthethreereachesunderconsideration.Itwas alsonecessarytousedatafromtheNiameystationintheevaluationofchannelresponsetoriver dischargebecauseithasthemostcompletedatasetforthemiddleNigerRiver.Thecumulative dischargevolumeseriesbetween1960and2000(coveringtheperiodofavailablesatelliteimage data)ispresentedinFigureII15witha5yearmobileaveragetodemonstratetheseriestrend.

45 ) 3 40 (m 9 35

30

25

20

15

10

5 Cumulative volume dischargedvolume Cumulative 10 0 1960/1961 1962/1963 1964/1965 1966/1967 1968/1969 1970/1971 1972/1973 1974/1975 1976/1977 1978/1979 1980/1981 1982/1983 1984/1985 1986/1987 1988/1989 1990/1991 1992/1993 1994/1995 1996/1997 1998/1999 Water Year FigureII15:CumulativevolumedischargeoftheNigerRiveratNiamey(19601999) 58 Theapproximateannualcumulativedischargevolumeforthefourperiodstobecomparedfor the three reaches are 19731979 (~25 billion m3), 1984 (~16 billion m 3), 19891992 (~18billionm3)and1999(~27billionm 3).

Inadditiontothecumulativedischargevolumeseries,thecharacteristicsofflooddischargesover athresholdof1700m3/s(correspondingtoafloodwitha2yearreturnperiod)arepresentedin TableII6.

TableII6:MagnitudeoffloodsonthemiddleNigerRiveratNiamey(19602000)

Dateofflow Durationabovethe Peakdischarge Recurrenceintervalof threshold(days) peakdischarge(years) 1960/61 75 1870 25 1961/62 40 1760 25 1962/63 86 2060 510 1963/64 63 1850 25 1964/65 100 2080 510 1965/66 91 1950 510 1966/67 81 1970 510 1967/68 121 2340 3040 1968/69 71 1920 25 1969/70 116 2360 3040 1970/71 43 1820 25 1971/72 55 1820 25 1974/75 66 1980 510 1975/76 79 2030 510 1976/77 60 1930 510 1978/79 34 1930 510 1980/81 84 1820 25 1981/82 23 1730 25 1988/89 17 1870 25 1994/95 32 1750 25 1995/96 1 1700 25 1998/99 11 1990 510 1999/2000 64 1830 25 Recurrence interval values were derived from discharge analyses (see Figure B- 93 and Table B- 4in the appendices)

59 Reach1

• 19791984: Although the river discharge in 1984 was much lower than in 1979, the relatively high magnitude cumulative discharges experienced between 1974/75 and 1978/79(seealsoTableII1andTableII6)mayhavecausedbankerosionandthus channel widening in the period between the 1979 and 1984 images. The time lag betweenbankerosion(~1979)andchanneladjustment(after1984)givesanindication ofthetimerequiredfortheNigerRivertoadjusttosuchfloodinducedperturbations.

• 19841992: Channel width decreased between 1984 and 1992 even though river dischargevolumehadincreasedslightly(seeFigureII15).Theperiodofbelowaverage riverdischargecausedthepersistenceofchannelnarrowingthatwasnotreversedbythe slightincreaseinriverdischargebetween1984and1992.

• 19921999:Thetotalchannelareaincreasedmainly due to anabranching as the total islandareaalsoincreasedresultinginareductionintheactivechannelareaandwidthin spiteofincreasingdischarge.

• Other observations: Cumulative island area has increased since 1979 due to the stabilizationofmobilebars.Theincreaseinthetotalislandareabetween1979and1999 islargelyduetotheenlargementoftheanabranchingportionofthemiddleNigerRiver betweenAyorouandKandadjibytheexcisionoftheexistingfloodplainandtosome extent,toinchannelaccretion Reach2

• 19751984: Reach 2 was wider in 1984 compared to 1975 despite the discharge at Niameyforthe1984imagebeingonly1050m 3/scomparedto1650m 3/sinthe1975 image.Theactivechannelwidthincreasedverysignificantlybetween1975and1984due mainlytobankerosionthatoccurredbetween1975and1984.Thechannelenlargement observed in the 1984 image can be explained by the period of relatively high river dischargebetween1975and1984(seeTableII6).Theinfluenceofanabranchingon theincreaseinchannelwidthofreach2between1975and1984wasminimal.

• 19841989:Thereductioninchannelareaandwidthbetween1984and1989wasasa resultofthelongtermeffectsofthebelowaveragecumulativedischargeontheNiger rivereventhoughthemeandailydischargeontheimagedateswashigherin1989than in1984.Comparedtofloodsthatoccurredinthepre1984periodthedurationofthe floodsthatoccurredbetween1984and1989wereshorter.Asecondaryreasonforthe

60 reductioninmeanchannelwithforthisperiodwasthecutoffofsomeanabranchesby sedimentcomingfromintermittentstreams.

• 19891999:Withincreasingriverdischarge,(in1998therewasa510yearflood see TableII6),thechannelareaandchannelwidthincreasedwithaslightdecreaseintotal island area highlighting again the time lag between external factors and channel response.

• Otherobservations:Anabranchinginreach2wasthemajorcauseoftheincreaseinarea ofvegetatedislandsandridgesbetween1975and1984.

Reach3

• Thereductioninmeantotalwidthwasbecauseofthereductionindischargebetween 1973and1984.Reach3unlikereach1andreach2maynothaveundergonethechannel wideningthatoccurredbefore1984duetothestrengthoftheNiger’sbanksinreach3.

• Themeantotalchannelwidthincreasedbetween1984and1999topre1984levelsin responsetothesignificantfloodsof1988,1994and1998.Althoughthetotalchannel widthincreasedbetween1984and1999,theactivechannelwidthdecreasedslightlydue toanincreaseinislandarea.

• Other observations: Reach 3 has contracted slightly since 1973 in terms of active channelareaatthesametimeasincreasingdischarge,riverbedincisionmaytherefore beoccurring. Discussion

Changesinflowregimeandsedimentsupplyhavealsobeenreportedtoresultinriverchannel adjustment.The flow regime change of the middle NigerRiver is discussed in PartIV of this work. Reach 1, and to a lesser extent reach 2 are anabranching stretches that according to HuangandNanson [2007] possess individual channels that are clearly separated at bankfull dischargebysubaerialvegetatedislandsandridgesincontrasttobraidedriversinwhichmultiple channels are separated by subaqueous bars as part of a mobile bed within a bankfull cross section.

Applying a bed load formula and basic river flow and geometry relationships, HuangandNanson[2007]relatedbedsedimentdischargeandtoriverwidthtodepthratio.They

61 reachedtheconclusionthatchannelwidthreduction leads to increased sediment transporting capacityuptoanoptimumwidthdepthratio.

Insummary,HuangandNanson[2007]posited thatanabranching occurs in order to reduce channel width and thus increase the section’s sediment transporting capacity. Anabranching systemshaveoneortwodominantchannelsandthustheformingofmultiplechannelsdoesnot reducetheimprovementinsedimenttransportingcapacityachievedbychannelwidthreduction.

Someofthemultiplechannelsformedbyanabranchingcouldserveasanefficientmeansfor sedimentsequestrationforarapidlyaggradingfloodplain.

Itcanbeinferredthattheanabranchingoccurring mainlyinreach1andtoalesserextentin reach2arethechannel’sresponsetoincreasedsedimentsupply.

1.4.3.2. Otherpossiblereasonsforchanneladjustment AccordingtoHagerty[1991a;b],bankerosionleadingtochannelwideningcanalsobeunrelated to the magnitude and intensity of river discharge but to the rise in groundwater levels that generate erosion through sapping or piping processes. Leblancetal.[2008] reported the incidenceofrisinggroundwaterlevelsina500km²studyareaabout60kmfromtheNigerat Niamey,from1963andmorerapidlyfrom~1982duemainlytolandclearance.Sappingand pipingerosionprocesseshavenotbeeninvestigatedforthestudyareabutcouldbecontributing tobankerosionconsideringthereportedrisinggroundwaterlevels.Descroixetal.[2005]linked widening riverbeds to a reduction in vegetation cover and found that the length of response timeswererelatedtovegetationcoverandanthropogenicinfluences.

62 2. Lateralsedimentsources:Increasing alluvialdepositsfrom“koris”

Oneofthemostapparentchangesnotedfromthemultitemporalsatelliteimageryinthestudy area was the enlargement of the alluvial deposits from small ephemeral streams that sustain runoff for only very short periods during the rainy season. These ephemeral streams, locally knownas“koris”flowtowardstheNigerRiver.These“koris”arelocatedoneithersideofthe NigerRiverasdescribedinFigureII16.

2.1. Data

A summary of the data used in characterizing the evolution of the alluvial deposits of these alluvialstreamsispresentedinTableII7.Theimagescomparedareforthesameperiodofthe year for same season comparison. The centre regional Agrhymet provided the 1984 imagery whiletheotherimagerywasobtainedfromthe GLCF .

TableII7:Satellitedatausedtomonitorthechangeinalluvialdepositarea

Imagedate Path/row Pixelsize(m)

22/11/1975 207/051 57 14/11/1984 193/051 28.5 20/11/1989 193/051 28.5 31/10/1999 193/051 28.5

2.2. Methods

An unsupervised classification algorithm was applied to locate these alluvial deposits in the satelliteimageryandtheareasweremeasuredinArcGIS.

2.3. Results

The observed changes between 1975 and 1999 in one of these “kori” deposits located approximatelyatthepositionofthedashedarrowinFigureII16(nearKourtéré)areillustrated inFigureII17toFigureII20,whereislandsarerepresentedindarkbrownandthechannel extentinlightblue.

63 Itcanbeseenthattheareacoveredbythedepositsincreasesfrom0.16km²in1975toabout 1.24km²in1999.SimilarlychangeshadbeennotedbyChinen[1999]forthesamegulliesand depositsbyanalysingaerialphotographybetween1950and1975.Leblancetal.[2008]analysed aerialphotographsbetween1950and1992fora2km²catchmentinWankamaabout60km northeastofNiamey,reportedthatgulliescontinuouslyincreasedinnumberandlengthresulting inadoublingofthedrainagedensity.

FigureII16:LateralsedimentsourcesofthemiddleNigerRiver 64 22/11/1975

.0.16 km ²

0.14 km ²

FigureII17:Alluvialdeposits1975

14/11/1984 0.13km² FigureII18:Alluvialdeposits1984

65

20/11/1989

0.46km² FigureII19:Alluvialdeposits1989

02/12/1999

1.24km² FigureII20:Alluvialdeposits1999

66 2.4. Summary

ThetrendofincreasingalluvialdepositsneartheNigerRivernearNiameyisillustratedinFigure II17toFigureII20.Theseephemeralstreamsappeartohavecontinuedtoincreaseinsizeand inlengthsincethe1950sbecauseoflandclearance.The increasing amounts of sediment they depositmakethemanimportantsourceofsedimenttotheNigerRiver.Furtherworkmightbe necessary to quantify the discharges of these unmeasured ephemeral streams for a better understandingoftheimpacttheyhaveontheNigerRiverintermsofriverdischargeduringthe rainyseasonaswellasintermsofsedimentinput.Thestudyofthese“koris”atthetimeof writingthisthesisisthethesiworkofI.MamadouattheUniversityofParis.

67 3. Evolutionofriverbedlevel

River bed level change was evaluated for two portions of the middle Niger River using longitudinalprofilesestablishedbythe“Institut Géographique National” IGN in 1978 IGN [IGN ,1979]anddatafromfieldworkcarriedoutinAugust2007.Theavailabilityofhistoric maps and field resources contrained the investigation to reaches 2 and 3. The same survey benchmarksasreferencesinordertocomparethetwodata.Themeanchangeinbedlevelwas calculated.

3.1. Data

Informationregardingthe1978dataispresentedinTableII8.

TableII8:RiverbedlevelforthemiddleNigerRiver1978

MapName Surveydate Editiondate Scale Réalisationcartographiquepréliminaireàl’établissementdu 1978 1979 1:50000 modèlemathématiquedufleuveNiger(I.G.N.Paris)

3.2. Methods

Riverbedlevelsweremeasuredbyloweringa25kgweightattachedtoacableintotheriverfrom aboatandreadingoffthedepthfromthecounter(accuratetothenearestcentimetre)attachedto the cable. The river depth measurements were made at between 5 and 10 verticals of cross sectionsabout1kmapart.

ThepositionofeachdepthmeasurementwasnotedfromahandheldGlobalPositioningSystem (GPS).Approximatelyevery4kilometres,theriverwaterlevelwasdeterminedbysurveyingfrom the“NivellementGéographiquedel’Afriquedel’Ouest”(NGAO)benchmarksusedintheIGN 1978surveytothepointofwaterlevelmeasurement.Theriverbedlevelwascalculatedasthe differencebetweenthewaterlevelandthemeasureddepth.

Thelowestverticalofeachcrosssectionforthe2007surveyaswellasthe1978surveywereused toevaluatethechangeinriverbedprofilebetweenthetwodates.

3.3. Results

Theriverbedlevelscomparedforaportionofreach2arepresentedinFigureII21forreach2 andthebedlevelchangebetweenthe1978and2007isplottedinFigureII22. 68 Theportionofreach3comparedbetween1978and2007isshowninFigureII23inrelationto reach3whiletheobservedbedlevelchangeisplottedinFigureII24.

FigureII21:Bedlevelsurveyareaofreach2

69 InFigureII22andFigureII24,positiveyaxisvaluesrepresentaccretionandnegativevalues representincision.

Netaccretionoccurredinthereach2portionbetween1978and2007(seeFigureII22).

4 Bed level change 3 ca. 3km mobile average

2

1

0

-1

-2

-3

-4 River Bed level change( m) between 1978 & 2007 & level1978 m) River Bed change( between 205 210 215 220 225 230 235 240 245 Distance from Kandadji (Km) FigureII22:Bedlevelchangeinasectionofreach2showninFigureII21

Meanverticalaccretionofabout0.74moccurredinreach2ofthemiddleNigerRiverbedjust downstreamofNiamey

70 FigureII23:Bedlevelsurveyareaofreach3

71 Aplotofriverbedlevelchangebetween1978and2007forreach3ispresentedinFigureII24 showingtheareaaroundtheRiverMékrouconfluencewiththeNigerThisstretchoftheNiger rivershowsvariablebedlevelchangewithconsiderableareasofbedincision.Thiscouldbedue tothelimitedupstreamsupplyofsedimentandrelativeconfinementoftheriver’sbankinthis reach.

8 Bed level 6 ca. 3km mobile average

4

2

0

-2

-4

-6

-8 River Bed level change(m) between 1978 2007 & 1978 level Bed River between change(m) 370 375 380 385 390 395 400 405 Distance from Kandadji (Km) FigureII24:Bedlevelchangeinasectionofreach3showninFigureII23

3.4. Summary

Whiletheanalysespresentedhereisnotbyanymeansofhighprecision,itprovidesasynoptic ideaofthechangesthathaveoccurredtotheNigerRiver’splanformbetween1965and1999 andthebedlevelchangesbetween1978and2007.

• Inreach2,downstreamofNiamey,netaccretionwasobserved.

• Inreach3,downstreamoftheMékrouNigerconfluence,incisionwasobserved.

72 4. Generalconclusions

• Thefollowingcommentsabouttheanalysesofriverchannelformcanbemade:

- SignificantchannelmigrationwasnotobservedinthemiddleNigerRiver, whichisinnearnaturalconditionsintermsofriverembankments. - TheusefulnessofGeographicInformationsystems(GIS)fortheaccurate assessment of historic river planform change using multisource satellite imageryhasbeendemonstrated. • Themostimportantriverformchangesinthestudyareabetween1973and1999are summarizedbelow.

- Anabranchingfollowedbybankerosionwerethemajorformsofchannel responsetofloodsinthemiddleNigerRiver.WendeandNanson[1998] positedthatlowrelief,withinchannelvegetation,and a semiarid to arid environment such as the Sahelian reaches 1 and 2, with declining flow dischargesandincreasingsedimentconcentrationsdownstreamnecessitate anabranches. - For all three reaches studied, the period around 1984 corresponding to decreasingdischargewastheperiodofgreatestriverchannelperturbation. Thiswascausedmainlybythesignificantfloodsthatoccurredbefore1984. - RiverchannelchangeoccursslowlyinthemiddleNigerRiver;sometimes exhibitingtimelagsbetweentheoccurrenceofforcingfactorsandchannel response. - Floodsaboveabout1900m3/sorwithareturnperiodgreaterthan5years were observed to play an important role in the shaping of channel planforminthemiddleNigerRiver. • InadditiontotheNiger’stributaries,theephemeralstreamsthatarecharacteristicofthe areaaroundNiameyhavebeenidentifiedasanimportantsourceofsedimentsupplyto theNiger.

• Riverbed accretion and incision patterns have been demonstrated along the middle NigerRiverfortwostretchesoftheNigerRiver. TheeffectsoftributarycontributiononthesedimentandwaterdischargeofthemiddleNiger RiverisdiscussedinpartIVandpartVofthiswork.

73

PPaarrttIIIIII––LLaannddccoovveerr cchhaannggeeiinntthheeMMiiddddllee NNiiggeerrbbaassiinn

74 Land cover changes can be local or widespread in scale and may be monitored by ground observationorbyremotelysenseddata.Theenvironmentalconsequencesoflandcoverchange arenumerous,andmayhavefeedbackeffectsonclimateasproposedbyCharney[1975].

In order to understand the land cover dynamics of the study area with respect to climatic variabilityandhumanimpacts,itwasnecessarytoevaluatethelandcoverchangesthatoccurred asfarbackastheavailabilityofremotelysenseddatapermits.

Remotelysensedimageryprovidesameansforobservingandmonitoringlargeareasfromthe river reach scale to the basin scale, that would otherwise be difficult, time consuming and expensive.

Remote sensing is used to investigate land surface change based on the premise that such changes result in changes in radiancevalues [J F Mas , 1999]. The quantity and quality of the reflectedradiationreceivedbysatellitesensorsisdependentupontheabundance,composition andconditionofsuchlandsurfacecomponentsasvegetation,soil,orwater[J Rogan et al. ,2002].

Theaimofthispartofthestudywastocharacterizethevegetationandbaresoildynamicsovera ~30yearperiodbyremotesensingmethodsinorder toevaluatethepropensityfor sediment productionandtransportinthestudyarea.

Theobjectivesinclude:

• ReviewingtheliteratureontheeffectsofSahelianlandcoverchange

• Quantifyingthelandcoverchangesthathaveoccurredinthestudyarea

• Comparingthelandcoverchangesofthreesubbasinsinthestudyarea

• Discussingthepossibleimpactsonerosionandsedimenttransport.

75 1. Monitoringlandcoverchange

Remotesensinginvolvesobservingtheearth’ssurface,ormeasuringitscharacteristicswithout beingindirectcontactwithit.Thisisachievedby recording the reflected or emitted energy, whichisprocessedandanalysedinavarietyofways.Thesatellitesandsensorsusedvaryinterms ofspectralresolution(thesensor’sabilitytodifferentiateelectromagneticradiationsofdifferent wavelengthintervals),radiometricresolution(thesensor’ssensitivitytothemagnitudeofradiated energy),spatialresolution(referstothesmallestpossiblefeaturethatcanbedetected),temporal resolution(therevisitperiodofaremotesensingsystemtoimagetheexactsameareaatthesame viewingangle)aswellasthescenesize.Initsmostbasicform,remotesensingrequiresasource ofenergyandaradianceresponsefromthesurfacebeingobserved.

1.1. Methods and tools for land use and land covermonitoring

Theinstrumentsorsensorsformeasuringordetectingthereflectedoremittedenergyfromthe targetsurfacerequireaplatformthatmaybelocatedwithinoroutsidetheearth’satmosphere. Thesesensorscouldbeplacedontheground,onaircraftoronsatellitesthatrevolveroundthe earth.

Data collected by many different satellites and sensors have been applied for various earth surfacemonitoringapplications;suchashighresolutiondatacollectedbysatellitesandprograms launchedspecificallytoprovideearthsurfaceobservationdatasuchasLANDSATmanagedby theU.S.GeologicalSurvey,the“SystèmePourl’ObservationdelaTerre”(SPOT)designedand launchedbytheCentreNationald’étudesSpatiales(CNES) of France and the IndianRemote Sensing(IRS)series.Thesesatellitesareequippedwithdifferentmultispectralsensorsandvary intermsofthegroundresolution,temporalresolution,andthescenesizeoftheimagerythey capture.

Thereexistothersatellitesystemsoriginallysetupasphotoreconnaissancesatellitesthathave nowbeendeclassifiedincludingtheCorona,ArgonandLanyardprograms.

Aerialphotographshavebeencommonplacesincethe1920sand1930sandthereforeremaina powerfultoolforlanduse/landcoverchangedetection[A D Cameron et al. ,2000; J Nachtergaele and J Poesen ,1999],gullyerosion[J Nachtergaele and J Poesen ,1999]riverchannelmorphology[V Vanacker et al. ,2005]

76 WinterbottomandGilvear[1997]usedairbornemulti spectral imagery and aerial photography forathreedimensionalriverchannelmorphologybycorrelatingreflectancelevelswithwater depth.

Lowresolutiondatahavealsobeenusefulformonitoringlandsurfacechanges;theAdvanced VeryHighResolutionRadiometer(AVHRR)operatedbytheNationalOceanicandAtmospheric Administrationisoneofseveralsuchsensors.AVHRRdatacovermuchlargerareasatacoarse resolutionof1.1km.Suchlowresolutiondatacoveringlargeareasiscommonlyusedindrought monitoringstudies[A Anyamba and C J Tucker ,2005; A Bonfiglio et al. ,2002; P Diello et al. ,2005; A Diouf and E F Lambin ,2001; S E Nicholson et al. ,1990]

Remote sensing using multispectral imagery has been used to map erosion and accretion patterns[M El-Raey et al. ,1999; O E Frihy et al. ,1998; K White and H M El Asmar ,1999],stream morphology [A Wright et al. , 2000]. Suspended sediment concentration can also be estimated from statistical relationships between fieldmeasured suspended sediment concentration and satellitemeasuredspectralreflectance[S M J Baban ,1995; D Doxoran et al. ,2002; M D Nellis et al. , 1998; W Zhou et al. ,2006].

Suspendedsedimentconcentrationcanalsobeestimatedfromstatisticalrelationshipsbetween fieldmeasured suspended sediment concentration and satellite measured spectral reflectance usingLandsat[S M J Baban , 1995; M D Nellis et al. , 1998; W Zhou et al. ,2006]andSPOT[D Doxoran et al. ,2002]imagery.

Radarhasalsobeenusedtoestimateriverstageanddischargeincombinationwithtopographic data[L C Smith ,1997].

1.1.1. Tools

LandsatandCoronaimagery,twomajortypesofdatathathavebeenusedtomonitorlandcover changewillbebrieflypresented.

1.1.1.1. LANDSATimagery

The Landsat program, originally known as the Earth Resources Technology Satellite (ERTS) program,begantoprovidemultispectralimagesoftheearthin1972andhascontinueduntilthe presenttime.Landsat1waslaunchedinJuly1972andLandsat7isthelatestsatelliteintheseries. The capabilities of these satellites have been greatly improved over time. Several imaging instrumentshavebeenflownontheLandsatsatellites.TheReturnBeamVidicon(RBV)sensor wasflownonthefirstthreemissions,togetherwithaMultiSpectralScanner(MSS)sensor.

77 Landsats4and5wereequippedwithanimprovedversionoftheMSSalongwiththeThematic Mapper(TM);however,routinecollectionofMSSdatawasterminatedin1992.

Landsat6carriedan“EnhancedThematicMapper”only,andLandsat7isequippedwithan “EnhancedThematicMapperplus”(ETM+).

TMandETM+dataincludeathermalinfraredban;band 6. The ETM+ sensor includes an additionalpanchromaticband(band8).

ThekeycharacteristicsoftheLandsatprogram[USGS ,2005;2006; USGS and NOAA ,1984]are listedinTableC1toTableC4(SeeappendixC).

ThelonglifespanoftheLandsatprogramaswellasitshighresolutionandgoodspatialcoverage make it well suited for long term monitoring and research. Lauer et al. (1997) discuss the evolutionoftheLandsatprogram.

CooleyandTurner[1982]evaluatedtheapplicationofLandsatimageryformonitoringtransient environmental changes in the Sahel. They highlighted the use of Landsat imagery for the mapping of accelerated erosion in the Sahel region with the lightest areas on the images indicatingsevereerosionactivityaccordingtoonsiteinspection.

1.1.1.2. CORONAImagery

In1995,theUnitedStatesgovernmentdeclassifiedCORONAsatelliteimagerycollectedbetween 1960and1972.ThegroundresolutionoftheimageryacquiredduringtheCORONAprogram improvedfrom8metersto2meters[National Reconnaissance Office NRO ].

TheavailabilityofCoronaimageryextendsourability to assess land surface conditions using highresolution imagery to the 1960s (a decade before the availability of commercial satellite imagery).Coronaimageryhavebeenused,incombinationwithmorerecentsatelliteimageryto studylanduseandlandcoverchange[J Liu et al. ,2001; O Rigina ,2003; G G Tappan et al. ,2000], asanaidinarchaeologicalprospection[M J F Fowler ,2004; R Goosens et al. ,2006],forgeological [H Lorenz ,2004]andperiglacialgeomorphology[G Grosse et al. ,2005].Coronaimagesprovide enoughdetailtodetectindividualtrees[G L Andersen ,2006].

EarlyCoronasystemscarriedasinglepanoramiccamera,orasingleframecamera,whilelater systemscarriedtwopanoramiccameraslooking30degreesapart(aforwardlookingcameraand an afterwardlooking camera). Occasionally one of the pair of cameras malfunctioned or was programmedtohalt,whiletheothercontinuedtooperate[USGS ,1996].

Goosensetal.[2006]pointedouttheimportanceofstereoscopicviewingoftheCoronaimagery forarchaeologicalapplications.Thecombinationofstereoscopicimageshelpstogivetheeffect

78 of solidity or depth, and thus, can be used for relief mapping and threedimensional interpretationoflandscape,whereavailable.

Coronaimageshavedigitalvaluesthatrangefromzero(black)to255(white),withcoherentdark pixels representing low reflection and high absorption of sunlight, the greyscale values are correlatedtosurfacereflectance.TheCoronaimagesarethuswellsuitedtovisualinterpretation as water (high absorption) and barren land (high reflectance) as well variations in soil and vegetationmoisturecanbediscriminated.[G Grosse et al. ,2005].

The major drawback of Corona images appears to be the fact that they contain geometric distortions;thisisespeciallytrueforimagesofmountainousregions.

Inadditiontoenlargingtherecordoflandsurfacemonitoring,thespatialcoverageandground resolutionofCoronaimagesmakethemaninterestingoptionforstudyinghistoriclandsurface change.

1.1.2. Processing

Oneofthemostsignificantapplicationsofremotesensingistodetectandmeasurechangeby following the evolutionof one or moreenvironmental parameters over a period using multi temporaldatasets.

Proceduresthatutiliseremotelysensedimageryforchangedetectionusuallyinvolvethreemajor steps,namely:preprocessing,imageanalysis,andanaccuracyassessmentoftheresults.

1.1.2.1. Preprocessing:

Rawsatellitedatamaynotalwaysbe“suitable”forusewithoutsomecalibrationorcorrection. Preprocessingisthatphaseofdataprocessingwherepreliminarystepsaretakentopreparethe raw data for analysis by correcting them for distortions due to sensor noise, platform or atmosphericconditionsatthetimeofacquisition. Thesedistortionsaremainlygeometricand radiometric.

Geometriccorrectioninvolvesthetransformationofdatatomatchspatialrelationshipsonthe Earthssurfacebylocatingseveralidentifiablegroundcontrolpoints(GCPs)intherawimageand matchingthemtotheirtruegroundcoordinates.

Radiometriccorrectionisoftenrequiredtocompareimagescollectedatdifferenttimesorby differentsensors.

79 Noise in an image is usually caused by sensor response errors during data recording and transmission.Thetechniquesforcorrectingerrorsduetonoiseerrorsaresensorspecific.

Thebrightnessvaluesofthepixelsinasatelliteimage,recordedasdigitalnumbers(DNs)ina binaryformatdependonthenumberofbitsusedtorecordthedata.Theyarealsoaffectedby severalfactorsthataredependentonthespecificsensorandatmosphericconditionsatthetime of data acquisition including the sun elevation angle, interference of atmospheric aerosols, changesinthesensorresponseovertimeetc.

The atmospheric correction procedure helps to reduce the error in estimating the surface reflectanceortosetamultitemporaldatasettoacommonradiometricscale[C Song et al. ,2001].

Throughscattering,atmosphericaerosolsincreasetheapparentreflectanceofdarkobjectsand reduceitforbrightobjectsintheimagecausingalossofinformationthatcannotberecovered byatmosphericcorrection.Thisisbecausethenumberofsurfacereflectancevaluesorcorrected DNswillnotexceedthenumberofrawDNlevels.

Thereexisttwotypesofradiometriccalibration,namely:

• Absoluteradiometriccorrection:Digitalnumbersareconvertedintosurfacereflectance orradiance.Thishelpstoextractsubtledifferencesinreflectance.

• Relativecalibration:Thisisaprocessusedtoremoveornormalizethevariationwithina sceneandnormalizetheintensitiesbetweenimagesofthesamestudyareacollectedon differentdates. Atmosphericcorrectionisunnecessarywhen:

• Workingwithasingledateimage;

• Postclassificationisusedasthemethodofchangedetection;

• Trainingdataaretobederivedfromtheimagebeingclassified. Thisisbecauseatmosphericcorrectionforasingledateimageisoftenequivalenttosubtractinga constantfromallpixelsinaspectralband[C Song et al. ,2001].

1.1.2.2. Imageanalyses

Change detection involves the application of data transformation procedures and analysis techniquestohighlightareasofsignificantchange.Thereexistmanychangedetectiontechniques

80 from simple visual comparison or interpretation to more sophisticated techniques. Luetal.[2004]giveasummaryofchangedetectiontechniquesthatinclude:

• Algebraic methods: These methods utilize indices, ratios or simple subtraction relationshipsbetweentwoormorespectralbandsinordertoidentifyimagebandsor thresholdsofchange.

• Classificationmethods:Theresultsofsupervisedandunsupervisedclassificationarethe basisofthesemethods.

• Advancedmodels:Thesemethodsconvertimagereflectancevaluestophysicallybased parametersthroughlinearornonlinearmodels.

• VisualAnalysis:Includesthevisualinterpretationofmultitemporalcolourcomposite imagesandonscreendigitizingofchangedareas.

• Othermethods:combinationsofoneormoremethods,GISoverlayetc.

1.1.2.3. Accuracyassessment:

Theaccuracyofchangedetectionanalysisisassessedbyancillarydatasuchasgroundtruthas wellastheanalyst’sfamiliaritywiththestudyarea.Quantitativemethodsforaccuracytestingare basedonindicesthatcompareresultsagainstknownreferencedata.

Theparametersusedtoassesstheaccuracyofclassificationresultsare:

• Overallaccuracy:Thisisthenumberofcorrectlyclassifiedpixelsasapercentageofthe totalnumberofpixels.

• Producer’saccuracy(omissionerror):Theproducer’saccuracyindicatestheprobability ofareferencepixelbeingcorrectlyclassified.

• User’saccuracy(commissionerror):Theuser’saccuracymeasurestheprobabilitythata pixelclassifiedonthemap/imageactuallyrepresentsthatpixelontheground.

• Thekappastatisticdescribesagreementachievedbeyondchance,asaproportionofthat agreementwhichispossiblebeyondchance[ Rogan et al. 2003 ].

1.2. Dataandmethodsappliedinthisstudy

AmultitemporalandmultisensordatasetthatincludedLandsat(MSS,TM,andETM+)and Corona satellite imagery was used for this study. The characteristics of the imagery used are presented in Table III 1. The Landsat images range from the mid1970s to 1999, while the

81 Coronaimageryareusedinanattempttoextendtheremotelysensedinformationtothepre 1970periodi.e.theperiodbeforethedrought.

TheLandsatimagescoverfourperiodsaround1975,1984,1990,and1999.

Onemajordifficultyinassessingthelandusechangesforthethreetributarybasinsbetweenthe 1970sand1999wasthedifficultyinacquiringimagesthatcoveredtheentirebasinareasforthe fourperiods.Theimagesfortheperiodaround1999aretheonlycompletemosaicsforthethree tributarybasins.Themultitemporalcomparisonisthereforemadebetweensuccessivelysmaller basinareasfortheperiodsaround1984and1975withtheassumptionthatthesesmallerareas largelyrepresentthebasinconditionsfortheperiodsconsidered.

Aseconddrawbackoftheanalysesmaybethedatesofimageryparticularlyforimagesacquired in mid October when the effect of the rainy season may still be in effect particularly in the southernpartofthestudyarea.

TableIII1:Summaryofsatellitedatausedinthestudy

Sensor SceneIDorPath/Row AcquisitionDate CORONA DS10252122DF(049to052) 13OCTOBER1965 206/052* 17OCTOBER1973 LANDSAT1MSS 207/052* 18OCTOBER1973 LANDSAT2MSS 207/051* 22NOVEMBER1975 LANDSAT3MSS 208/050* 29NOVEMBER1979 194/050* 18OCTOBER1992 LANDSAT4TM 193/051* 20NOVEMBER1989 194/050 05NOVEMBER1984 LANDSAT5TM 193/051 14NOVEMBER1984 192/051 07NOVEMBER1984

195/049 29OCTOBER1999 195/050 29OCTOBER1999 195/051 13OCTOBER1999 194/050 22OCTOBER1999 194/051 11OCTOBER2001 LANDSAT7ETM+ 194/052 7NOVEMBER1999 193/053 20OCTOBER2000 193/051* 31OCTOBER1999 192/051* 9NOVEMBER1999 192/052 26OCTOBER2000 192/053 26OCTOBER2000 *Source for this data set was the Global Land Cover Facility,www.landcover.org . All other data was provided by the Centre Regional Agrhymet

Data from GLCF was received as MSS 57 meter resolution, TM and ETM+ 28.5 meter resolution. 82 1.2.1. Coronaimagery

Four parallel strips from the DS 10252122DF scene that covered parts of the middle Niger Riverbasinwereacquired.TheimageswerecapturedbytheKH4AsysteminOctober1965(see TableIII1).Theimageswereprovidedasfilmpositives by the “Centre regional Agrhymet, Niamey”inadigitalformat319MB(x4files)perscene,scannedat3600dpi..ThissetofCorona imagesweretheonlyonesavailablethatcouldbecomparedwithmorerecentimageryasthey wereacquiredinOctober.

Wherenecessarythefourfileswerereassembledbyselecting6to8tiepointsonoverlapping sectionsofthefiles.

The image strips were radiometrically calibrated by a dark subtract algorithm with ENVI 4.2 software.

30groundcontrolpoints(GCPs)wereidentifiedontheCoronascenemosaic(seeFigureIII1:) for coregistration with the Landsat ETM+ imagery (path 193 row 051). The image mosaics werethenrectifiedtotheWGS1984datum,zone31N,withasecondorderpolynomialwarping functionandcubicconvolutionresamplingto6mpixels(seeFigureIII2).TheRMSerrorfor rectifyingtheCORONAmosaicwas27.98m,lessthan1pixel.

Theresultingimagewasthenclassifiedusingacombinationofunsupervisedclassificationand visual interpretation. A postclassification comparison was made of Corona and Landsat data usingasubsetofthesamearea.AlthoughtheCoronaimagerycoversonlyaminorpartofthe Sirbabasin,itwasanalysedtogainpreLandsatinformationaboutthestudyareaandtotestit’s applicabilitytolandcoverchangedetection.ThelocationoftheimagecoveredbytheCorona mosaic(2840km²)isindicatedinFigureC18(appendixC)withrespecttothestudyarea.The resultsofthelandcoveranalysisarepresentedinFigureC19andFigureC20ofappendixC andareinagreementwiththeresultstobepresentedinthefollowingsectionsfortheGorouol andSirbaSahelianbasins.Inparticular,theCoronaimageryclassificationconfirmsthenegative impactofthedroughtthatoccurredaround1970onvegetationinthestudyarea.

83 FigureIII1:SelectionofgroundcontrolpointsontheCoronamosaic

84 FigureIII2:WarpedCoronamosaic

1.2.2. Landsatimagery

Wherepossiblecloudfree,nearanniversarydateimageswereobtained.

In order to obtain a consistent and reliable data set, the available Landsat images were co registeredtothemostrecentLandsatETM+imageavailableforthesameareabeforefurther enhancementorclassificationwasperformed.

Image classification: An unsupervised classification procedure was carried out using the ISODATAmethodoftheENVIsoftwarethatclassifiespixelsbyevenlydistributedclassmeans inthedataspaceanditerativelyclusterstheremainingpixelsusingminimumdistancetechniques. Ateachiterationstep,themethodrecalculatesmeansandreclassifiespixelswithrespecttothe

85 new means until the specified pixel change threshold or the specified maximum number of iterations is reached. In other words, pixels are grouped together based on their spectral similarity.

Postclassification involved checking the results of unsupervised classification against visual interpretationfromtheappropriatefalsecolourcompositeimagesorbandratioimagesaswellas field observations of various locations within the study area and combining classes where necessary.TheimageclassificationprocessisschematizedinFigureIII3.

Classified Imagedata Finalimage image ISODATAAlgorithm Postclassification Userdefined Combinationand parameterse.g.number identificationofclasses FigureIII3:Unsupervisedclassificationprocedure

FortheTMandETM+Landsatimages,ashortwaveinfrared(SWIR)compositeofbands7,4 and2(seetableC3andtableC4inappendixfordetails)wasmainlyusedintheclassificationand interpretation of classes, because surface albedo in the SWIR portion of the spectrum is determined primarily by moisture content. The SWIR composite is therefore suited for the detectionofvegetationstress,aswellassoiltypesandlevelsofsoildisturbance.

For Landsat MSS images, with a more limited spectral resolution, a near infrared (NIR) compositeofbands7,5and4(seetableC2inappendixfordetails)wasusedforinclassification procedure.TheNIRcompositeisprimarilysuitedforstudyingvegetationbecauseofthehigh reflectanceofchlorophyllintheNIRportionofthespectrum.

Theimagesusedforthelandcoveranalysisarenearanniversarydateimagesacquiredbetween theendofOctoberandearlyinNovember.ConsideringthatplantingtakesplacearoundJulyand

86 thatthemilletcropreachesmaturityafter60to70days,theperiodofOctober/Novemberisthe postharvestperiodintheSahel.

For the purposes of this study, eight land cover classes were considered appropriate for the descriptionofthestudyareaandtheyaredescribedbelow:Thechoicesweremadebasedonthe ease of identification of classes by visual interpretation after the unsupervised classification algorithmwascarriedoutonalltheimages.Afurtherreasonforthechoiceoftheeightclasses wasthenatureofthestudythatwasconcernedwiththewaterresourcesofthestudyareain relationshipwithdifferentstatesofbaresoilandvegetation.

• Baresoil:Thiscorrespondstoundifferentiatedsoildevoidofvegetationcover.

FigureIII4:Baresoil

87 • Sandybaresoil:Correspondstosoilthathasbeenrecentlydisturbedsuchasrecently cultivatedlandsorsedimentdeposits.

FigureIII5:Sandybaresoil

88 • Paved/rocky bare soil: These are bare soils with high reflectivity and include paved roadsandinfrastructure,butalsoincludecrusted/highlyparchedbaresoils.

FigureIII6:Paved/rockybaresoil

• Tree: Relatively dense wooded vegetation characterised by a high reflectance of the chlorophyllinthenearinfraredbands.

FigureIII7:Treeswithhighmoisturecontent

• Tree, poor state: This is vegetation with comparatively lower moisture content signifyingstressedvegetationorverysparsevegetation.

89 FigureIII8:Treeswithlowmoisturecontent

• Shrubs/Grass:thisislandcoverdominatedbywoodyplantslessthanabout1.5mand grass.

FigureIII9:Shrubsandgrass

90 • Sedimentladen water: In general, the reflectance of water increases with increasing suspended sediment concentration allowing sedimentladen water to be differentiated fromclearwater.

FigureIII10:Shallowsedimentladenwater

• Water:Relativelyclearanddeepwaterbodies.

FigureIII11:Clearwater

91 2. Studysubbasins

Land cover changes are presented for the Gorouol, the Sirba and the Mékrou basins in the followingsections.Theareasofthethreestudysubbasinsweredelimitedusingcontourmapsof the area from the 1960s. The relative location of the three basins was presented earlier in presentingthestudyarea(seeFigureI3).CoverageoftheentirewatershedsfortheGorouol, SirbaandMékrouriverswasachievedforthemostrecentperiod(i.e.1999/2000)butnotforthe otherperiods.Oneshortcomingofthispartofthestudywasthatitwasnotpossibletoacquire theimagesthatwouldhavecoveredtheentirebasinareasfortheearlierperiods.Landcover comparisonwasthereforelimitedtotheareascommontoallimageswiththeassumptionthat theseresultsareapplicableto,andrepresentativeoftheentiretyofthethreebasins.

2.1. TheGorouolBasin TheGorouolbasinhas atotalbasinareaofabout45125 km². A classification image of the GorouolbasinforOctober1999ispresentedinFigureIII12;itwascreatedfromamosaicof threeLandsatscenes(seeTableIII2).

TableIII2:LandsatscenesusedtoderivetheGorouolBasinMosaicfor1999.

Path Row Acquisitiondate 194 50 22October1999 195 49 29October1999 195 50 29October1999

92 FigureIII12:The1999Gorouolbasinmosaic

93 Thecompositionofthe1999mosaicderivedfortheGorouolbasinispresentedinFigureIII13.The sceneacquiredontheOctober22,1999containedsomeclouds,whichrepresentedlessthan1%of thetotalbasinarea.

Cloud mask 0.9% GOROUOL MOSAIC 1999 Water 0.7%

Vegetation 40.6%

Bare soil 57.9%

FigureIII13:PercentagecompositionoftheGorouol1999mosaic

ThelandcovercompositionoftheentireGorouolbasinin1999ispresentedbelowinFigureIII 14.

94 Water Sediment-laden water 0.4% GOROUOL MOSAIC 1999 0.3%

Bare soil Shrubs/Grass 21.7% 16.1%

Tree, poor state 17.4%

Sandy bare soil 10.0%

Paved/rocky bare soil Tree 26.7% 7.4%

FigureIII14:PercentagelandcovercompositionfortheGorouolbasinin1999.

2.2. TheSirbabasin TheSirbabasinhasatotalbasinareaofabout38750km².ThesixLandsatscenesthatformed themosaicfortheSirbabasinarelistedin

TableIII3.Asmallportionofa2001scenewasusedtocompletethe1999mosaic.

TheclassificationresultofSirbabasinmosaicispresentedinFigureIII15

TableIII3:LandsatscenesusedtoderivetheSirbaBasinMosaicfor1999.

Path Row Acquisitiondate 193 51 31October1999 194 50 22October1999 194 51 11October2001 194 52 7November1999 195 50 29October1999 195 51 13October1999

95 FigureIII15:The1999Sirbabasinmosaic

96 Thelandcovercompositionof1999mosaicderivedfortheSirbabasinispresentedinFigureIII 16.ThesceneacquiredontheOctober22,1999containedsomeclouds,whichrepresented1.3% ofthetotalbasinarea.

Cloud mask 1.3% SIRBA MOSAIC 1999 Water 0.6%

Vegetation 19.2%

Bare soil 78.9%

FigureIII16:PercentageimagecompositionfortheSirba1999mosaic

The land cover classes of the Sirba basin in 1999 are presented below in Figure III 17. In comparisontotheGorouolbasinforthesameperiodof1999,theSirbabasinhasmorebare surfacesandlessvegetation.Thisislikelyduetothemoreintenseanthropogenicinfluencethat resultsinmoreclearedlandsforagriculture(recallthatthecultivatedlandsareclassedassandy baresoils),theuseoftreesforfuelwood.TheproximityoftheSirbabasintothecityofNiamey isalsonoteworthy.Additionally,theimagedatesfor the Sirba mosaic (from 11 October to 7 November)werelaterthanthoseusedfortheGorouolmosaic(from22Octoberto29October) andcanthereforebeexpectedtobedrier.

97 SIRBA MOSAIC 1999

Water 0.6% Shrubs/Grass 4.3%

Tree, poor state 12.6% Bare soil Tree 29.4% 2.5%

Paved/rocky bare soil 29.8%

Sandy bare soil 20.7%

FigureIII17:PercentagelandcovercompositionfortheSirbabasinin1999.

2.3. TheMékroubasin The Mékrou basin has a total basin area of about 10690 km². A classification image of the MékroubasinforOctober2000ispresentedinFigureIII18;itwascreatedfromamosaicof three Landsat scenes (see Table III 4). A small portionofa1999scenewasincludedinthe mosaic.

TheclassificationresultofMékroubasinmosaicispresentedinFigureIII18.

TableIII4:LandsatscenesusedtoderivetheMékrouBasinMosaicfor1999.

Path Row Acquisitiondate 192 51 9November1999 192 52 26October2000 192 53 26October2000 193 53 20October2000

98 FigureIII18:The2000Mékroubasinmosaic

99 Thecompositionof2000mosaicderivedfortheMékroubasinispresentedinFigureIII19.All thescenesusedinthemosaicwerecloudfree.

MEKROU MOSAIC 2000 Water 0.2%

Bare soil 13.7%

Vegetation 86.1%

FigureIII19:PercentageimagecompositionfortheMékroubasin2000mosaic

InstarkcontrastwiththetwoSahelianbasins(theGorouolandtheSirba),theMékroubasinhas ahighpercentageofvegetationcover.

ThelandcoverclassesoftheMékroubasinin2000arepresentedbelowinFigureIII20withsix classesandnoteightliketheGorouolandSirbabasins.The“sandybaresoil”and“tree,poor state”classesarenotincludedbecausetheywerenotfoundintheMékroubasin.

100 MEKROU MOSAIC 2000

Water 0.2% Paved/rocky bare soil Sediment-laden water 0.7% 0.0%

Bare soil 13.0%

Shrubs/Grass 27.9% Tree 58.2%

FigureIII20:PercentagelandcovercompositionfortheMékroubasinin2000.

101 3. Resultsanddiscussion

3.1. Accuracyassessment The accuracy of the classification results was evaluated with a confusion matrix comparing historicaltopographicalmapsofthe regionand field surveys to the classification results. The availabletopographicalmapsoftheregionfromwhichlandcoverinformationcouldbeusedto compare with the classification were maps produced by IGN in 1959 for most of the study regionand1980fortheNiameyarea.Thefieldsurveysconsistedofnotingandphotographing the different land cover types across the study area and their locations with a Geographic PositioningSystem.Ingeneral,thegroundtruthinformationobtainedfromthemapsdidnot providedataforallthelandcoverclassespertinenttothisstudy.

• TheaccuracyoftheGorouolbasinimageof1979wasassessedbasedonthe1959IGN topographical maps for the bare soil, water, tree and tree poor state classes. The accuracyoftheotherGorouolimagesof1984,1992 and1999wereassessedonthe basisfieldobservationsmadein2006and2007foralltheclasses.

• The1980IGNtopographicalmapswereusedtoassessthe1975and1984Sirbabasin imagesforthebaresoil,paved/rockybaresoil,water,shrubs/grass,tree,andtreepoor stateclasses.TheaccuracyoftheSirbabasinimagesof1989and1999wereassessedon thebasisfieldobservationsmadein2006and2007foralltheclasses.

• TheaccuracyofthetwoMékroubasinmosaicswasassessedbasedon1959IGNmaps fortheareaforthebaresoil,waterandtreeclassesonly. The overall accuracy and kappa coefficients obtained are presented in Table III 5 and the confusionmatricesfortheclassificationresultsareinappendixC.(TableC6toTableC15)

The results show relatively good accuracy when compared with ground truth data obtained aroundthetimeoftheimageacquisitiondate.

102 TableIII5:Accuracyassessmentfortheclassificationresults

Basin Year Overallaccuracy(%) Kappacoefficient Gorouol 1979 84.43 0.77 1984 20.00 0.05 1992 55.65 0.40 1999 96.21 0.95 Sirba 1975 74.53 0.54 1984 94.5 0.89 1989 64.8 0.50 1999 97.27 0.96 Mékrou 1973 90.00 0.70 2000 89.98 0.18

Althoughtheaccuracyassessmentoftheclassificationresultsisnotidealparticularlyinarapidly changingenvironment,becauseofthetimelagbetweensomeofthegroundtruthdataandthe classificationimages,theresultsmakeitpossibletoobtainareasonableevaluationoftheland coverdynamicsofthestudyarea.

3.2. Landcoverchangeforthethreebasins

3.2.1. ChangeintheGorouolbasinbetween1979and1999 (Area:4757km²) Theareacommontoalltheavailableimages(1979,1984,1992,and1999)wasonly4757km²due tothereasonsdescribedaboveinparagraph2.

TheclassificationresultsoftheGorouolbasinforthefourdatesarepresentedinFigureIII21 toFigureIII24.

103 FigureIII21:Gorouolbasinlandcover.29/11/1979(4757km²)

104 FigureIII22:Gorouolbasinlandcover.05/11/1984(4757km²)

105 FigureIII23:Gorouolbasinlandcover.18/10/1992(4757km²)

106 FigureIII24:Gorouolbasinlandcover.22/10/1999(4757km²)

107 ComparisonsofthepercentagelandcoveroftheareashowninFigureIII21toFigureIII24. Theresultsofthelandcoverclassificationarepresented in Table III 6 and as histograms in appendixC(seeFigureC2andFigureC3).

100% BARE SOIL 90% VEGETATION 80% 70% 60% 50% 40% 30% Percent land cover land Percent 20% 10% 0% 1979 1984 1992 1999 Year FigureIII25:BareandvegetatedsurfacedynamicsintheGorouolBasin(1979to1999)

ThepercentageofbaresoilintheGorouolbasinincreasedfrom1979to1992:61%in1979,78% in1984and86%in1992.Therewasareductioninbaresoilsurfacesbetween1992and1999 from86%to65%.

Precipitation decreased between 1979 and 1984 (discussed in part IV) causing a reduction in vegetation cover and increase in bare soil surfaces between the two dates. The relatively significant(fortheSahel)differenceinimagedatesbetweenthe1979imageandthe1992/1999 imagesmakeitdifficulttocomparethemdirectly.Acomparisonofthe1992and1999images thatwereacquiredatalmostthesamedayoftheyearindicateanincreaseintheShrubs/Grass class(seeTableIII6)from7%in1992tomorethan20%in1999andtoalesserextenttothe tree(poorstate)class.Althoughthetotalpercentageofallbaresoilsurfacesdecreasedbetween 1992and1999,thepercentageofbaresandysoils,increasedinthesameperiod(seeTableIII6), whichcouldhaveaneffectonsedimenttransfertothewatercoursesofthesubbasinandtothe middleNigerRiver.Thebaresandysoilsareasourceofsedimentthatcaneasilybeerodedby windorwateraction.

108 0.70% WATER 0.60%

0.50%

0.40%

0.30%

Percent land cover land Percent 0.20%

0.10%

0.00% 1979 1984 1992 1999 Year FigureIII26:WatersurfaceareaintheGorouolbasin(19791999)

Thesharpincreaseinthewaterclassfrom1979couldbeduetoanumberoffactors.The1979 imagewasacquiredonNovember29(laterintothedryseasonthantheotherimages)whilethe other images were acquired between October 18 and November 5, this time difference is significantinthestudyregion. ThelandcoveranalysisissummarizedinTableIII6forthe4757km²portionoftheGorouol basinconsidered.

TableIII6:EstimatedLandcoveroftheGorouolbasin19791999Area(4757km²)

Class 1979 1984 1992 1999 Water 0.07 0.18 0.12 0.31 Sedimentladen 0 0.33 0.25 0.30 water Baresoil 44.75 62.67 72.24 35.65 Baresandysoil 14.95 14.85 11.34 27.49 Barepaved/rocky 1.54 0.85 1.89 0.54 soil Tree 0.61 2.44 2.70 2.65 Tree(poorstate) 20.35 1.20 4.42 6.72 Shrubs/Grass 17.74 17.48 7.04 25.15

Acomparisonofalargerarea(14888km²)ofthe45,125km²Gorouolbasinforthe1984,1992 and1999images(seeFigureC4toFigureC8andTableC16inappendixC)revealedthe same trend, therefore the summary presented can be assumed to be representative of the Gorouolbasinfortheperiod.

109 3.2.2. Change in the Sirba basin between 1975 and 1999 (Area:1105km²) Theareacommontoalltheavailableimages(1975,1984,1989,and1999)wasonly1105km²due tothereasonsdescribedinparagraph2..

TheclassificationresultsoftheSirbabasinforthefourdatesarepresentedinFigureIII27to FigureIII30.

110

FigureIII27:Sirbabasinlandcover.22/11/1975(1105km²)

111 FigureIII28:Sirbabasinlandcover.14/11/1984(1105km²)

112 FigureIII29:Sirbabasinlandcover.20/11/1989(1105km²)

113 FigureIII30:Sirbabasinlandcover.31/10/1999(1105km²)

114 The land cover classifications for the Sirba basin between 1975 and 1999 are presented as percentagebaresoil,vegetation,andwatersurfacesinFigureIII31andFigureIII32.

100% BARE SOIL 90% VEGETATION 80% 70% 60% 50% 40% 30% Percent land cover land Percent 20% 10% 0% 1975 1984 1989 1999 Year FigureIII31:BareandvegetatedsurfacedynamicsintheSirbaBasin(1975to1999)

AsobservedintheGorouolbasinwherethepercentageofbaresoilsurfacesincreasedbetween 1979and1992,thepercentageofbaresoilsurfacesintheSirbabasinincreasedrapidlybetween 1975and1989:45%in1975,78%in1984and89%in1989.Thepercentageofbaresoilsurfaces decreasedbetween1989and1999from89%to71%. FortheSirbabasin,anincreaseinthepercentageofvegetationinthe“treepoorstate”classwas thecauseofthereductioninthepercentageofbaresoilsurfaces. Between1984and1989,baresoilsurfacesincreasedalthough1984wasaparticularlydryyear comparedto1989.Thisobservationcouldbeduetomoreintensivevegetationremovalbetween 1984and1989.Climaticfactorsorseasonaleffectsmaynotberesponsibleforthisreductionin vegetationcoverconsideringhigherprecipitationin1989andthattheimageswereacquiredat almostthesametimeoftheseasonforbothimages. In the Sirba basin, the shrubs/grass class consistently decreased between 1975 and 1999 (see TableIII7).Thisclassofnaturalvegetationmayhavebeenremovedbylivestockgrazing,orfor firewood,andmayhavegivenwaytocultivatedcrops(essentiallymillet)whichwouldhavebeen harvestedbythetimeofacquisitionoftheimagesanalysedinOctoberorNovember. Thepercentageofbaresandysoil,increasedbetween1975and1999.Thebaresandysoilclass representssandydepositsandhighlydisturbedsoilsthatareeasilytransportedbywaterorwind. Thepercentageofthebasinareacoveredbyclearwaterreducedsharplybetween1975and1984 (seeTableIII7)apparentlyduetotheseveredroughtaround1984.UnliketheGorouolbasin

115 wherepoolandpondformationtookplacefollowingvegetationremoval,thepartoftheSirba basinanalyseddidnotfollowthistrend.Between1984and1989,theareaofwaterintheSirba basinincreasedinsignificantlyfrom0.19km²to0.26km²(approximately0.02%inTableIII7). Thewatersurfaceareaincreasedfurtherbetween1989and1999. SedimentladenwatermostlyintheSirbaRiverandnearitsconfluencewiththeNigerRiverhas increasedsince1975.Thereweretwoperiodsofincreaseinsedimentladenwater:19751984and 19891999(seeTableIII7).Between1984and1989therewasadecreaseinthesedimentladen waterclasswhichoccurredatthesametimeasareductioninthebaresandysoilclass,whichmay indicatethatareductioninthesupplyofeasilydetachablesedimentoccurredinthisperiod.

0.50% WATER

0.40%

0.30%

0.20% Percentlandcover 0.10%

0.00% 1975 1984 1989 1999 Year FigureIII32:WatersurfaceareaintheSirbabasin(19751999)

TableIII7:EstimatedLandcoveroftheSirbabasin19751999Area(1105km²)

Class 1975 1984 1989 1999 Water 0.03 0.02 0.02 0.03 Sedimentladen 0.07 0.28 0.18 0.41 water Baresoil 34.75 32.55 60.56 21.93 Baresandysoil 10.74 25.44 14.83 38.59 Barepaved/rocky 0.27 19.93 13.68 10.64 soil Tree 7.75 2.77 0.89 0.34 Tree(poorstate) 7.13 5.04 3.86 24.48 Shrubs/Grass 39.26 13.98 5.98 3.62

116 TheresultsofthelandcovercomparisonofalargerareaoftheSirbabasin(5104km²)between 1984and1999arepresentedashistogramsinFigureC11toFigureC13andsummarizedin TableC17inappendixC.Thelandcoverresultsonthislargerareaconfirmtheresultsobtained inthecomparisonofthe1975,1984,1989and1999imagesforasmallerareaofthebasin.

Acomparisonofalargerarea(5104km²)ofthe38,750km²Sirbabasinforthe1984,1989and 1999images(seeFigureC11toFigureC15andTableC17inappendixC)revealedthesame trend;thereforethesummarypresentedcanbeconsideredrepresentativeoftheSirbabasinfor theperiod

3.2.3. ChangeintheMékroubasin between1973and 2000 (Area:7690km²) FortheMékroubasin,onlytwodatesarecompared:1973and2000withanareaof7690km² commontobothimages,becausetheimagesfor1973didnotcovertheentirebasin.Theimages thatwerecomparedfortheMékroubasinarepresentedinFigureIII33(for1973)andFigure III34(for2000).

117 FigureIII33:Mékroubasinlandcover.17&18/10/1973(7690km²)

118 FigureIII34:Mékroubasinlandcover.26/10/2000(7690km²)

119 From the results of the land cover classifications for the Mékrou basin for 1973 and 2000a comparisonofthebaresoil,vegetationandwaterclassesispresentedinFigureIII35andFigure III36.

90% BARE SOIL VEGETATION 80%

70%

60%

50%

40% 30% Percent land cover land Percent 20%

10%

0% 1973 2000 Year FigureIII35:BareandvegetatedsurfacedynamicsintheMékrouBasin(1973to2000)

ContrarytothetrendofincreasingbaresoilsurfacesinthetwoSahelianbasins(theGorouoland TheSirba),thepercentageofbaresoilsurfacesintheMékroubasinreducedbetween1973and 2000from35%to19%.TheincreaseinvegetationcoverobservedintheMékroubasinwasasin theGorouolbasinaresultofanincreaseintheShrubs/Grassclass.TheShrub/Grassclassdid notonlyreplacesomeofthebaresoilsurfacesbutalsoreplacedsomeofthepixelsinthe“tree” classwhichreducedfrom54%to48%between1973and2000(seeTableIII8).Theprincipal reasonfortheincreaseinvegetationcoverintheMékroubasinbetween1973and2000isthe successoftheParcRegional–W(establishedinthe1960s)locatedinthisareatoproctectflora andfauna.

ThepercentageofclearsurfacewaterincreasedintheMékroubasinbetween1973and2000.

AcomparisonofthepercentagelandcoveroftheareashowninFigureIII33andFigureIII34 ispresentedinTableIII8andashistogramsinFigureC16andFigureC17(inappendixC).

120 0.20% WATER

0.10% Percent land cover land Percent

0.00% 1973 2000 Year FigureIII36:WatersurfaceareaintheMékroubasin(19732000)

TableIII8:EstimatedLandcoveroftheMékroubasin19732000(7690km²)

Class 1973 2000 Water 0.07 0.17 Sedimentladenwater 0 0 Baresoil 33.55 17.56 Barepaved/rockysoil 1.16 1.03 Tree 54.27 48.21 Shrubs/Grass 10.94 33.02

121 3.2.4. Summary

Insummary,theanalysisoflandcoverchangeindicatesthatthestudyareahasbeenundergoing constantchangesincethe1970s.Atrendofincreasingbaresoilsurfaceswasobservedforthe twoSahelianbasins:theGorouol(1979to1992)andtheSirba(1975to1989).intheGorouol basinanincreaseofwatersurfaceswasduetoanincreaseinsmalldamsandwaterreservoirs,a similar situation of increasing water retention by dams in the region was reported by Mahéetal.[2005]fortheNakambebasininBurkinaFaso.IntheSirbabasin,theincreasein watersurfaceareaoccurredduetoflowingwater,essentiallytheSirbaRiveranditstributaries.

ForthetwoSahelianbasins,aslightincreaseinvegetationcoverwasobservedbetween1992and 1999fortheGorouolbasin,andbetween1989and1999fortheSirbabasin.Again,thecauses weredifferentinbothbasins.AnincreaseinShrubs/GrassoccurredintheGorouolwhileinthe Sirbatherewasaslightincreaseinwoodedvegetation.

In the ~120,000 km² upper Niger River basin, Ruelland et al. [2008] observed a moderate deforestationandlandclearancetendencybetween1975and2000.Similartrendsofvegetation reductionhavebeenreportedonsmallerareasinSahelianNiger.Leblancetal.[2008]studiedthe vegetationcoverofa137km²basin60kmnortheastofNiameybetween1950and1992and reportedpercentagewoodedvegetationcoverof65%in1950,47%in1975and27%in1992, illustrating the consistent reduction in vegetation cover between 1950 and 1992. More recent vegetation studies argue for a “greening” of the Sahel [A Anyamba and C J Tucker , 2005; S Nicholson , 2005] as above average NDVI conditions were observed between 1994 and 2003. However,whiletheprecipitationlevelsseemtoapproachpredroughtlevels,opinionisdivided over the reported greening of the Sahel. Hountondji et al. [2004] observed increasing precipitationin98%of109raingaugestationslocatedintheSahelianpartoftherepublicof Niger.

Consideringtherainuseefficiency(RUE)whichistheratioofannualnetprimaryproduction andannualrainfall,otherauthorshavefoundaweaknessintheuseofNDVIasthesolemeans ofevaluatingvegetationdegradation.AccordingtoHeinandDeRidder[2006],adeclineinRUE overtimeindicatesecosystemdegradationbecauseitreflectsareducedcapacityofthevegetation totransformwaterandnutrientsintobiomass.HeinandDeridderpositedthatintheabsenceof humaninduceddegradationtheupwardtrendinrainfallshouldhavecausedanincreaseinRUE. Bymeasuringphytomassproductionovertime,HeinandDeRidder[2006]showedthatRUEhad remained stable despite the increasing rainfall in recent times while Hountondji et al. [2004] observedawidespreadreductioninRUE.

122 InsomeSahelianareasthathaveexperiencedsomeregenerationofvegetationcoverevidence showing that the species composition of the regenerating vegetation had changed since the droughtofthe1970s[K Rasmussen and B Fog, .Madsen,J.E. ,2001]. ThemoredenselyvegetatedMékroubasindidnotexperiencesignificantvegetationremovalas observedinthetwoSahelianbasins.Althoughtherewasaslightdecreaseinthepercentageof trees, bare soils surfaces did not increase. Shrubs and grass replaced the trees and bare soil surfaces. Anunderstandingofthelandcoverchangesinthestudy area will be useful in assessing the possible impacts on sediment production and transport. Vanacker et al. [2005] noted the significance of changes in spatial organisation and connectivity of land use systems on river sedimenttransportevenwithrelativelysmalllanduseandlandcoverchanges.

123 4. Conclusions

Oneoftheworkinghypothesesofthisstudywasthatthesharpdecreaseinvegetationcoverdue toclimaticandhumanimpactsintheSahelwascausinganincreaseintheavailabilityofsediment inSahelianrivers.

• Thestudyhasshownthattherewasanintensedeclineinthevegetationcoverofthe Gorouol and Sirba basins between 1970 and 1989/1992. Sediment availability particularlyintheSahelianbasinscanbeexpectedtobeontheincreaseconsideringthe increaseinsandybaresoilsbetween1992and1999fortheGorouolbasinandbetween 1975and1999fortheSirbabasin.

• AreductionofbaresoilsurfaceswasobservedinthetwoSahelianbasinsbetween1992 and1999fortheGorouolbasin,andbetween1989and1999fortheSirbabasin.An increaseintheShrubs/Grassclasswasthemaincauseofanincreaseintotalvegetation coverintheGorouolbasin.TheincreaseintheTree poor state class was the main reasonforanincreaseintotalvegetationoftheSirbabasinbetween1989and1999, althoughthedifferenceinimagedatesmayhavebiasedtheobservation.

• In contrast, the Sudanian Mékrou basin while also changing was affected to a lesser extentbyvegetationremovalbetween1973and2000,duetotheeffectsoftheParcW conservationthatextendsintotheMékroubasin.

• InadditiontotheuseofLandsatimageryofvaryingspatialandspectralresolutions,the study has shown that when available Corona images can be applied to improve the amountofremotelysensedinformationforlandcoveranalysesintheSahel.Whilethe applicationofCoronaimagerymayrequireahighamountofcomputerprocessingspace andmayrequirealotofprocessingtime,theycan provide invaluable information in Sahelianareaswithoutanexcessiveamountofdeformationconsideringthattheterrain isrelativelysmooth.

124 PPaarrttIIVVEElleemmeennttssooff hhyyddrroollooggyyaannddddiisscchhaarrggee mmeeaassuurreemmeennttss

125 1. IstheNigerRiverunderthreat?

Riverbasinsareanimportantpartofnaturalecosystemsthatprovideameansoflivelihoodfor itshumaninhabitantsparticularlyindevelopingcountries.Theneedtoharnessriverresources forvarioushumanusesoftenendangersthepopulationthatdependonitfortheirlivelihoodsas wellasthebalanceofthefloraandfaunathatarefoundinit.

In the Niger River basin, with increasing population growth, human activities such as water extraction,navigation,damming,dischargeofindustrialanddomesticeffluent,andoverfishing willposeathreattothewellbeingofthebasinifnotproperlymanaged.

Climatechangeorvariability,withitseffectsonprecipitation,evaporation,andriverdischargein theNigerRiverbasinandinparticular,thesemiaridmiddleNigerbasinfurthercomplicatesthe sustainablemanagementoftheriverbasin.

Acombinationofclimatechangeandthegrowinghumanimpactsontheriver’sresourceshave seentheNigerRiverdryupatNiameyonacoupleofoccasionsinthelastfewdecades.This pressuremaymaketheroutinetaskofsedimentregulationmoredifficultevenforalargeriver liketheNiger.Itisnotthepurposeofthispartofthestudytomakeacompletehydrological analysisofthestudyarea,buttoreviewandanalysesomeoftheelementsthatarelinkedto sedimentproductionandtransferinthestudyareathatwillbediscussedinpartVofthiswork. SpecificattentiontothehydrologyoftheregioncanbefoundinBrunetMoretetal.[1986]and morerecentlyinAmaniandNguetora[2002]andinMahéetal.[2003,2005]amongstothers.

ThispartofthestudyaimstoexploretheNigerRiverbasininthelargercontextoflargeAfrican riversandtoattempttodescribetheeffectsofenvironmentalchangeonthemiddleNigerRiver’s discharge.

Inordertoachievethestatedobjective,itwouldbenecessaryto:

• CharacterisethedischargeregimeofthemiddleNigerRiverinrelationto: - theNiger’sregimeupstreamofthestudyarea; - theeffectofclimaticvariabilityandareductioninprecipitation. • CharacterisethedischargeoftheNigerRiveratNiameyduringthestudyperiodwith respecttothelongtermaverage. Itwasalsonecessarytosimulatedischargevalueswherenodirectmeasurementsweremadein ordertoprovidedataforthesedimentstudiesinpartVofthisstudy.

126 1.1. Floodregimes:

Ariver’sregimeisitsexpectedpatternofflowduringahydrologicalyear[E M Shaw ,1994],and isusuallyderivedfromflowrecordsof20to30years.Riverregimesarecontrolledbyclimatic factors,suchasprecipitationandevaporationaswellastheriverbasin’scharacteristicssuchas soiltype,vegetationcover,slope,basinsizeetc.

1.1.1. MajorAfricanrivers

ThemarkedwetanddryseasonsintropicalAfricaresultinacloselinkagebetweentheclimatic conditionsoftheseriverbasinsandtheirriverregimes.

The meteorological and corresponding hydrological classifications in Africa according to Rodier[1964]arepresentedinTableIV1.

TableIV1:MeteorologicalclassificationofTropicalAfricaandcorresponding hydrologicalregimes Precipitation(mm) MeteorologicalClassification HydrologicalClassification <150 Saharian Desert 150–300 NorthernSahel Subdesert 300–750 SouthernSahel Sahelian 750–1200 SudanI PureTropical >1200 SudanIIandIII Tropicaltransition Below8°&9° LiberoDahomean Equatorialtransition

Riverbasinscoveringrelativelylargeareasarethereforeboundtobeinfluencedbyfactorssuch asthevaryingprecipitationofthebasinareatoseasonaldifferenceswithinthebasin.Theregimes of such rivers may vary markedly along their lengths in terms of timing and magnitude of discharge.AgraphicalrepresentationoftheaboveclimaticclassificationforWestandCentral AfricaispresentedinFigureIV1.

127 FigureIV1: WestandcentralAfricanclimatesafterL'Hôteetal.[1996]

InordertoappreciatethepeculiaritiesofthemiddleNigerRiver’sregime,abriefdescriptionof theregimesoftwootherlargeAfricanriversneartheirmouthsispresented.

• TheNile :TheNileriverbasincoversanareaofabout 08.3 ×10 6 km²[UNEP ,2002] andtheriverflowsforabout6700kmbeforereachingtheMediterraneansea.TheNile Riverhasthreemajortributaries,namely,theWhiteNile,theBlueNile,andtheAtbara, withtwodistinctregimes,theWhiteNileononehandandtheBlueNileandAtbaraon theotherhand.TheWhiteNilemaintainsarelativelyconstantflowallyearthroughdue tostorageinlakesandevaporationlossesasittraversestheSudd,avast,flatexpanseof swamps.TheBlueNileandAtbaraareseasonalriversthatarelargelyinfluencedbythe wetanddryseasonofthetropicalregime,floodinginthewetseasonduetoheavy rainfall on the Ethiopian plateau and receding in the dry season. A characteristic hydrographoftheNileatAswan( 06.3 ×10 6 km²)ispresentedinFigureIV2showing thenearconstantflowduetotheWhiteNileandthepeakflowduetotheBlueNileand theAtbara.TheNilehasarelativelylowspecificdischarge(0.9l/s/km²)duetoalarge partofitsbasinbeinglocatedinaridareas.

128 9 /s) 3 8

7

6 Thousands Thousands (m

5

4

3

2

1

0 JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC. FigureIV2:CharacteristichydrographoftheNileRiveratAswanafter Mohamedetal[2005]

• TheCongo :TheCongoriveris4700kmlong[J C Olivry et al. ,1988]andhasabasin area of about 7.3 ×10 6 km²whichislocatedonnorthandsouthoftheequator. The volumeofwaterdischargedannuallybytheCongoisoneoftheworld’shighest,witha high specific discharge of 11.7 l/s/km². The main controlling factor of the Congo River’sregimeisitslocationoneithersideoftheequatorcausinganalternationinthe rainyseasononeithersideoftheequator.TheCongoRiverbasinhastwoperiodsof peakflow(seeFigureIV3)forthestationatBrazzaville(~ 5.3 ×10 6 km²):themore significant flood period occurs between October and January and is due to the contribution from the northern part of the basin. The lesser flood period occurs betweenAprilandMayandisduetocontributionfromthesouthernpartofthebasin. Laraqueetal.[2001]discussthevariationsinhydrologicalregimeoftheCongoRiver.

129 70 /s) 3

60

50 Thousands Thousands (m 40

30

20

10

0 JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC. FigureIV3:CharacteristichydrographoftheCongoRiveratBrazzavilleafter Bricquet[1993]

Therearealsotwoperiodsoflowflowwiththemoreseverelowflowperiodoccurringbetween June and September due to low flows of the equatorial regime and the falling limb of the southerntropicalregime;andasecondlowflowperiodbetweenFebruaryandMarchduetothe lowflowsofbasinareaslocatedinthenorthernhemisphere.

AcomparisonofthesetwomajorAfricanriverbasinswiththeNigerbasinatNiameyandat ispresentedinTableIV2,withNileriverdatafrom[Y A Mohamed et al. ,2005]and Congoriverdatafrom[J P Bricquet ,1993; J C Olivry et al. ,1988].

TableIV2:FlowcharacteristicsofthemajorAfricanrivers

River(station) Area Modaldischarge Specificdischarge Meanannualdischargevolume (10 6km²) (10 3m 3/s) (l/s/km²) (10 9m 3) Nile(Aswan) 3.06 2.7 0.9 84.1 Congo(Brazzaville) 3.50 40.9 11.7 1290.0 Niger(Onitsha) 1.47 * 5.9 4.0 200.0 Niger(Niamey) 0.70 * 1.0 1.4 31.0 * considering an active basin area of ( 5.1 ×10 6 km²)

130 1.1.2. TheNigerRiverfromitssourcetoMalanville

ThevaryingclimaticregionstraversedbytheNigerRiveraswellasitlargecatchmentbasingive itavariableregimealongitslengthfromitssourcetoitsmouth.

The climatic regions that affect the Niger River’s hydrological regime from North to South accordingtoRodier[1964]arethefollowing(seeTableIV1):

1) ThenorthernSahel :Thesubdesertflowregimeoccursinregionsbetweenthe100mm and300mmisohyetsorthenorthernSahel.Thesubdeserthydrologicregimeismarked byinfrequentrunoffduringtheshortrainyseasonandahighdegreeofevaporation.

2) The southern Sahel : The Sahelian regime prevails between the 300mm and 750mm isohyets.TherainyseasoninthesouthernSahellastsforaboutthreemonths,startingin May/June and ending in September/October. Sahelian watercourses attain their peak flowaroundAugustandaredryormaintainaverylowbaseflowbetweenNovemberand thenextrainyseason.

3) SudanI :ThepuretropicalregimehasaseasonofhighflowsbetweenJulyandOctober, andalowflowseasonbetweenDecemberandJune.Thenorthernlimitisthe750mm isohyetandthesouthernlimitisthe1200mmisohyet.

4) Sudan II and III :RiversintheSudanIIandIIIclimaticregion,withalongerrainy seasonthantheSudanIregion,haveatropicaltransition regime marked by a longer periodofhighriverdischargeandlessseverelowflowsthantheSahelianandSudanI regimes.

TheNiger’sdischargeincreasessteadilyfromitssourcethroughitsuppercourseuntiltheinner deltawhereitlossesabout24to48%ofitsvolumetoevaporationandinfiltration[G Mahé et al. , 2002],dependingontheprevailingclimaticconditions.Rodier[1964]estimatedthatbetween22.5 and43billionm 3ofwaterarelostperannumduetoevaporationandinfiltrationastheNiger river traverses the flat semiarid region known as the Niger’s interior delta , that attains a maximumsurfaceofabout35000km²accordingtoMarikoetal.[2002].

ThecharacteristicsoftheNigerRiverfromKouroussatoMalanvilleupto1979aresummarized inTableIV3,andtherelativelocationsofthestationsarepresentedinFigureIV4.Thedata arecomparedonlyupto1979becauseofissuesofdataavailabilityforsomeofthestations.

131 TableIV3:TheNigerRiverfromKouroussatoMalanville

UpperNigerRiver InnerDelta MiddleNigerRiver Tropical transition regime Sahelian Sahelian Sahelian Pure Tropical Kouroussa 1 Koulikoro 1 Koulikoro+ Diré 1 Niamey 2 Malanville 2 (194578) (190779) Bani 1 (192479) (192979) (195279) (195179) Basinarea(km²) 16560 120000 236000 340000 700000 1000000 Precipitation(mm) 1650 1600 1405 AnnualMean 1545 2050 1110 996 1175 discharge(m 3/s) AnnualModal 238 1505 2070 1090 970 1255 discharge(m 3/s) Lowflow(m 3/s) 6 46 66 50 41 60 Meanpeak 1127 6139 8320 2350 1840 2204 discharge(m 3/s) Mediancumulative NA 49 ×10 9 × 9 × 9 × 9 × 9 annualdischarge(m 3) 70 10 35 10 30 9. 10 40 10 Cumulativeannual NA × 9 × 9 47 ×10 9 × 9 × 9 discharge(90 th 63 5. 10 90 10 38 5. 10 50 10 percentile)wet year(m 3) Cumulativeannual NA 33 5. ×10 9 50 ×10 9 × 9 9 9 discharge(10 th 27 5. 10 21 ×10 29 ×10 percentile)dry year(m 3) 10yearFlood(m 3/s) NA 7900 11080 2660 2135 2197 100yearFlood(m 3/s) NA 9600 13350 2800 2540 3020 1 data from Rodier and Roche[1984] and Brunet-Moret et al.[1986] ;2 data from NBA archives InTableIV3,thefirstestimationofdischargeintheinnerdeltaisderivedfromtheadditionof riverdischargevaluesoftheNigerRiveratKoulikoroandtheBaniRiveratDouna(K+D)in FigureIV4althoughtheinnerdeltabeginsatKéMacina.

132 Upper Niger Inner Delta Middle Niger Lower Niger

FigureIV4:TheNigerRiverfromitssourcetoMalanville

133 HydrographsfortherepresentativestationsalongtheNigerfromKouroussatoMalanvilleare presentedinFigureIV5usingdatafromtheNigerBasinAuthority,toillustratethevariability inriverdischargealongtheriverforagivenhydrologicalyear.

ThecontinuousincreaseindischargeoftheNigerRivercanbeobservedfromKouroussato Koulikoro after which on traversing the inner delta, large evaporation and infiltration losses occur.FurtherlossesoccurbetweenDiréandNiamey.

TheNigerin2006/07atKouroussanearitssourcereacheditspeakdischargearoundOctoberat less then 800 m 3/s, while at Koulikoro the maximum discharge was about 4000m3/s. The dischargeatKouroussahasmorethanonepeakreflectingthecontributionofthetributariesnear theNiger’ssource.

ThemaximumdischargesatKouroussaandKoulikoroontheupperNigerhavesharppeaksthat arenotsustainedincomparisontotheNiger’shydrographatDiréattheoutletoftheinnerdelta. ThesustainedpeakobservedatDiréisduetothestoragethatoccursintheNiger’sinnerdelta. ThemaximumdischargeatDiréofabout2000m 3/soccurredaroundNovember.

ThemiddleNigeratNiameyhastwodistinctpeaks,thefirstoneisduetothelocalrainyseason andoccursaroundAugustandthesecondpeakisduetotheemptyingoftheinlanddeltaand occurs around December or January. Historically, the second peak discharge that occurs in DecemberorJanuarywasmuchlargerthanthefirstpeakdischarge,butthetrendhaschangedin recenttimesaswillbediscussedinthefollowingsections.In2006/07,thefirstpeakwasabout 1840m3/swhilethesecondpeakandmoresustainedmaximumdischargewasabout1770m3/s.

Thehydrographin

FigureIV5(e)fortheNigeratMalanville1989/90ispresentedonlytoillustratethehydrograph atMalanvillewithasimilarshapetotheNiger’shydrographatNiamey.

AnoverviewofthelanduseandclimaticchangesintheSahelandSudanareasofWestAfricais presentedinDescroixetal.[2009]

134 a) b)

c) d)

135 e)

FigureIV5:CharacteristichydrographsoftheNigerRiverfromKouroussatoMalanville

136 1.2. PhysicalcharacteristicsofthemiddleNiger Riverbasin

1.2.1. DefinitionandmaincharacteristicsofthemiddleNiger basin

ThemiddleNigerRiveristhetermusedtodescribethesectionoftheRiverNigerbetweenthe “interiordelta”atDiréandanarbitrarylimitattheNigerNigeriafrontier[Y Brunet-Moret et al. , 1986],otherauthorslikeRodier[1964]havedefineditsdownstreamlimitstobetheconfluence oftheNigerandBenueriversatinNigeria.

ThemiddlecourseoftheNigerRiverischaracterizedbyrelativelylowprecipitationandlimited tributarycontributiontotheNiger’sflowdischarge.

Likemosttropicalrivers,precipitationisthemajorcontrollingfactorof middleNigerRiver’s flow,withevaporationandinfiltrationeffectsbeingofsecondaryimportance.

ThemiddleNiger’stributariesareseasonal,withrunofffromMay/JunetoOctober/November dependingontheprevailingclimaticfactorsforeachtributary’sbasin,althoughbaseflowmay continueuptoJanuary.Incontrasttoitstributaries,theNigerisaperennialriverandhasonly beenintermittentforafewdaysinperiodsofseveredroughtin1974and1985atNiameyforthe entireperiodonrecord(19292008).

1.2.2. TheimportanceofthetributariesoftheMiddleNiger River

ThemiddlesectionoftheNigerRiverisofparticularinterest,intermsofwaterandsediment input,becauseitisthestretchwheretheNigerRiverreceivesitsfirsttributariesafterthelosses thatoccurinitsinteriordelta.OneparticularityofthemiddleNigerRiveristhefactthatbetween its exit from the interior delta and Gaya near the NigerNigeria frontier, it only receives tributariesfromitsrightbankasmostoftheformertributariesonitsleftbankarenowinactive, liketheDallolBossoandDallolMaouri,andhardlysustainrunofftotheNigerRiver.Thename “Dallol”isusedtodesignatedryvalleysusuallycharacterized by their large width and gentle slopes[P Chaperon ,1971].

ThemiddleNigerRiverreceivesthreetributariesalongitscourseuptoNiamey;theGorouol,the DargolandtheSirba.DownstreamofNiamey,theNiger River receives five more tributaries 137 before the NigerNigeria border, the Goroubi, the Diamangou, the Tapoa, the Mékrou, the AliboriandtheSota.

ThebasincharacteristicsofthemaintributariesofthemiddleNigerRiveraresummarisedin TableIV4

TableIV4:TributaryCharacteristics(MiddleNigerRiver)

River BasinArea(km²) Altitude(m) Gorouol 45125 240320 Dargol 7200 200320 Sirba 38750 200320 Goroubi 15500 200320 Diamangou 4400 200280 Tapoa 5500 200280 Mékrou 10690 180650 Alibori 13650 180360 Sota 12100 240320 ThepresentstudyfocusesontheGorouol,theSirbaandtheMékrouRivers,andtheirgeological, soilandvegetationcharacteristicsaredescribedinpartI.BrunetMoretetal.(1986)describesthe othertributaries.

138

• TheGorouolRiver withabasinsizeofabout45000km²andaltituderangingfrom240 mto320misthefirstofthemiddleNiger’stributaries.TheGorouolbasinislocatedin threecountries:Mali,NigerandBurkinaFaso.Meanannualprecipitationbetween1950 and1990overtheGorouolbasinrangedfrom300mmto500mm.Asobservedinpart IIIofthiswork,barragesandwaterretentionbasinsarelocatedontheGorouolbasin andthiscouldhaveaneffectonthehydrologyandtransferofsedimentfromthisbasin tothemiddleNigerRiver.TheGorouolbasinispresentedinFigureIV6.

FigureIV6:TheGorouolBasin

139

• TheSirbaRiver hasabasinareaof38750km²andaltituderangesfrom200mto320 mwithgentleslopes.TheSirbabasinislocatedinBurkinaFasoandNiger,withalarge part of its upper basin in BurkinaFaso. The Sirba River has a dense network of tributariesandreceivesameanannualprecipitationgreaterthan500mm(19501990 data) making it a significant tributary of the middle Niger River. Barrages and water retentionbasinsexistparticularlyintheupstreampartoftheSirbaRiverandmayaffect theriverdischargeandsedimenttransferdynamicsclosertotheSirba’sconfluencewith theNigerRiver.TheSirbabasinispresentedinFigureIV7.

FigureIV7:TheSirbabasin

140

• The Mékrou River hasabasinsizeofabout10769km²andhasasimple network withoutanymajortributaries.TheMékroubasinis locatedmainlyintherepublicof Benin and in Niger. Steep slopes and such features as waterfalls, gorges, and rapids characterizetheMékroubasin.Annualprecipitationisbetween1350mmupstream,and 750mmnearitsconfluencewiththeNigerRiver.A single peak that usually occurs between August and September characterizes the Mékrou River’s discharge. The MékroubasinispresentedinFigureIV8.

FigureIV8:TheMékroubasin

141 1.3. Variability of river discharge in the middle NigerRiverbasin

1.3.1. Riverdischargedependenceonprecipitation

RodierandRoche[1978]definedsemiaridregions,withrespecttotheSahel,asregionswitha rainfalllimitof500600mmandmeanannualtemperatureabove18°C.

ThemiddleNigerRiveranditstributariesarelocatedinthesouthernSahelandSudanIregions andaremainlyinfluencedbytheSahelianandpuretropicalregimes.Theinfluenceofthetwo differentregimesisobservableontheNigerRiveratNiamey,wheretherearetwopeaks,thefirst onebeingduetothetributariesoftheSahelianregimeandthesecondpeakduetotheupper NigerRiverofthetropicaltransitionregime.

RainfallinthemiddleNigerbasindemonstratesahighvariabilityintimeandspaceandappears to follow a cyclical trend of wet and dry periods. The Niger River’s regime being climate dependentisinfluencedbychangesinclimaticfactorssuchasprecipitationaswellasassociated physiographicchangessuchaslandcoverandbasinrunoffcoefficient.

Mahé et al. [2003] highlighted what they described as a post1973 phenomenon of increased runoffinspiteofareductioninrainfallin“sudanosahel”areaswithlessthan700mmofannual precipitation.Inareasofthesudanosahelwithmorethan700mmofannualrainfall,theyfound runofftovarydirectlywithrainfall.InthenonsahelianpartofWestAfrica,Patureletal.[1997] observedacyclicaltrendinvariationsaroundmeanprecipitationvaluesbetween1925and1990, withthemostseveredeficitperiodoccurringaround1970.LubèsNieletal.[2001]observeda changeintheformandintensityofhyetographsforrainfalldataatNiameybeforeandafter1969 fordatabetween1956and1998.

River discharge in the middle Niger basin is strongly dependent upon precipitation. A comparison of percentage departure from the mean for precipitation and cumulative annual volumedischargeforthemiddleNigerbasinisshowninFigureIV9(a)andFigureIV9(b)for theperiodbetween1929and2006.TheprecipitationdataisfortheNigerRiverbasinupstream of Niamey and was calculated by combining standardized precipitation indices derived by Olivryetal.[1993]andbyAliandLebel[2008]TheriverdischargedataisfortheNigerRiverat the Niamey station. The strong rainfall dependence of river discharge is apparent but furthermoreisamplifiedbyafactoroftwoparticularlyinperiodsoflowprecipitation.

142 a) b)

60 40

30 40

20 20

10

0 0

-10 -20

-20 -40

-30

-60 -40 1929 1934 1939 1944 1949 1954 1959 1964 1969 1974 1979 1984 1989 1994 1999 2004

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 0

2 3 3 3 4 4 4 5 5 5 5 6 6 6 7 7 7 8 8 8 8 9 9 9 0 0

9 2 5 8 1 4 7 0 3 6 9 2 5 8 1 4 7 0 3 6 9 2 5 8 1 4 FigureIV9:Percentagedeparturefrommeanvaluesof(a)precipitationovertheUpperandMiddleNigerbasins,(b)cumulativeannual dischargeoftheNigerRiveratNiamey.19292006

143 Thedirectrelationshipbetweenprecipitation(fortheNigerbasinupstreamofNiamey)andriver dischargefortheNigerRiverbasinatNiameyisillustratedinFigureIV10.

60 y = 1.7117x + 2.3905 R2 = 0.7199 40

20

0

-20

-40

% departure from mean river discharge river mean departurefrom % -60 -40 -30 -20 -10 0 10 20 30 40 % departure from mean precipitation FigureIV10:Relationshipbetweenprecipitationandriverdischargeindices

1.3.2. Interannualvariabilityinriverdischargeofthemiddle NigerRiver

ThemaximumrecorddischargeofNigerRiveratNiameyfortheperiodofrecord(19292007) was2360m 3/sandaminimumdischargeofzerom 3/soccurredinyearsofextremedrought.

Thevaluesforannualmaximumandminimumrecorddischargebetween1929and2007forthe NigerRiveratNiameyarepresentedinFigureIV11.Thecyclicaltrendofwetyearsanddry yearsisrepeatedforboththemaximumandminimumflows.FigureIV11showsthatbetween 1972and1991,thelowflowsatNiameywerenearzero,buthavemaintainedanonnegligible levelthereafter.TheSélinguedamconstructedin1981ontheSankaraniRiver(atributaryofthe NigerRiver)upstreamofKoulikoro,hasbeenusedtoregulatelowflowsontheNigerRiver[M Kuper et al. ,2002].Theregulatoryroleofthisdamonlowflowscanbeobservedafter1991in FigureIV11.

144 3000

Q min Q max 2500

2000 /s) 3

1500 Discharge(m 1000

500

0 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Year

FigureIV11:Annualminimum(Q MIN )andmaximum(Q MAX )dailymeandischargeof theNigerRiveratNiamey(1929/30–2007/08)

AnanalysisoftheNigerRiver’sflowdurationcharacteristicsattheNiameystationbetween1929 and2006wascarriedoutusingdailydischargedata.Inadditiontothetotalrecordperiod,the analysiswasextendedtootherperiodsofinterestsuchasthewetanddryspells,aswellasthe years of recorded extreme values in terms of daily discharge and cumulative annual discharge volume(SeeappendixDforFigureD1toFigureD7).

A summary of the flow duration characteristics of the River Niger at Niamey is presented in TableIV5indicatingforeachperiod,theprevailingdischargefor5%,50%,and95%ofthe time.Lowflowsoccuratdischargevaluesbelowthe median value (the discharge equalled or exceeded50%ofthetime)whilehighflowsoccuratvaluesgreaterthanthemedianvalue.The significanceofeachperiodchosenissummarizedintheremarkscolumnofTableIV5.

TheQ 90 /Q 50 ratioiscommonlyusedasabaseflowindextoindicatetheproportionofstream flow due to ground water storage [R J Nathan and T A McMahon , 1990]. The base flow component of river discharge which is dependent upon such basin characteristics as climate, vegetationcover,landuse,soiltypeandgeology,issignificantwhentheslopeofthelowflow portionoftheflowdurationcurveislow(highvaluesoftheQ 95 /Q 50 index).Highvaluesofthe

Q95 /Q 50 indexreflectcontinuousdischargetotheriverfromnaturalstorage.

145 TableIV5:FlowdurationcharacteristicsoftheNigeratNiamey

%oftimethatindicateddischarge( m3/s )was

Year/Period equalledorexceeded Q95 /Q 50 Remarks 5% 50% 95% 1929/302006/07 1600 800 10 0.0125 Entirerecord*(72yrs) 1950/511969/70 1800 900 40 0.0444 Wetspell 1956/57 1400 910 80 0.0889 Yearofmaximumannual dischargevolume 1969/70 2100 1100 18 0.0164 Yearofmaximumdailyflow 1970/711989/90 1500 450 4 0.0089 Dryspell 1984/85 980 155 4 0.0258 Yearofminimumannual dischargevolume 1985/86 1200 280 0.04 0.0001 Yearofminimumdailyflow *(data for 1932/33 and 1936/37 to 1940/41 were unavailable)

ItcanbeobservedfromTableIV5thatbaseflowcontributiontotheNiger’sdischargewas highest in 1956/57 when the Niger discharged its record maximum volume at Niamey. By 1985/86, base flow contribution was greatly diminished. The Niger River’s annual discharge volumein1984/85wasthelowestonrecord,whiletheminimumdailydischargeofzerom3/s wasrecordedin1985/86.ThefallintheQ95/Q50indexfortheconsecutiveyearssuggestsa depletionofthenaturalstorageduringtheseyears.

TheaboveanalysishighlightsthevariabilityoftheNiger’sdischargeatNiameybetween1929and 2008,inperiodsofhighdischargeandperiodsoflowdischargeordroughts.

1.3.3. Definition of drought and high flow periods for the middleNigerRiver

Thedefinitionsofdroughtareasdifferentastheprofessionsthatstudythephenomenon.The basicconceptofdroughtsisassociatedwithaperiodofloworbelownormalwatersupplywith respecttowaterormoisturerequirements,makingdroughtsclimatedependent.

Theappropriatedefinitiondependsonthefieldofstudyandcomponent(s)ofinterestsuchas stream flow, reservoir storage, precipitation, and soil moisture. For the present study, a characterizationofstreamflowisimportantinordertostudytheeffects,ifany,ofperiodsof belowaveragewatersupplyonsedimentproductionandtransport.

146 A threshold value is necessary to define droughtperiods and to distinguish them from other events. Dracup [1980] suggests three fundamental descriptors of drought events; severity, magnitudeanddurationandtheyarerelatedbytheexpression S=M*D.

Where: S,severity=cumulativedeviationfromX 0

M,magnitude=averagedeviationfromX 0

D,duration=timebetweensuccessivecrossesofX 0

ThedroughtperiodsaredescribedasafunctionofthemeanannualrunoffvolumeX 0forthe dischargeseries.X 0isknownasthetruncationlevelanddividestheseriesinto“abovenormal” and“belownormal”sections.Aplotofthedeparturesfromthemeanannualvolumedischarged by the Niger River at Niamey between 1929 and 2008 (with a few years of missing data) is presentedinFigureIV12,highlightingthemagnitudeandseverityofhighandlowflowperiods. ThevaluesfordroughtmagnitudearepresentedinFigureIV12asaratioofthemeanannual volumedischarged,andthusrangefrom1to1.,withnegativevaluesrepresentingdroughtsand positivevaluesrepresentingperiodsofhighriverdischarge.

0,600

0,400

0,200

0,000 Magnitude -0,200

-0,400

-0,600 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Years FigureIV12:DroughtcharacterisationofriverdischargeoftheNigeratNiamey (1929/30to2007/08)basedonannualvolumedischarged

ThedischargerecordoftheNigerRiveratNiameycanthereforebedividedintotwentydistinct periods across the drought threshold value. The periods and the severity of either high flow (positivevalues)orlowflowsordroughts(negativevalues)areindicatedinTableIV6.

147 TableIV6:Relativeseverityofdroughtperiodsbetween1929and2007

Period Severity Rankingofabove Rankingofbelow normalperiods normalperiods 1 19291931 1.092 2 2 19341935 0.178 6 3 19411944 0.696 2 4 1945 0.020 10 5 19471949 0.351 6 6 19501969 5.748 1 7 19701974 0.661 3 8 19751976 0.139 8 9 19771978 0.391 5 10 1979 0.049 9 11 19801993 4.939 1 12 1994 0.162 7 13 19951997 0.528 4 14 19981999 0.187 5 15 2000 0.023 9 16 2001 0.015 11 17 2002 0.208 7 18 2003 0.280 3 19 2004 0.174 8 20 20052007 0.195 4 ThevaluesareplottedinFigureIV13highlightingthemajorperiodsofhighdischarge(1950 1969)andlowdischargeordrought(19801993)accordingtoTableIV6.

8

6

4

2

0 Severity, Severity, S

-2

-4

-6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 FigureIV13:RelativeseverityofhighandlowflowperiodsfortheNigerRiverat Niamey(19292007)

148 Inordertocomparetheaveragehydrographsofrelativelysmallersamplesizeofrepresentative periodsof“abovenormal”and“belownormal”riverdischarge,fourperiodscanbeidentified fromFigureIV12andTableIV6:

• Twoperiods(1929to1935and1950to1969)withannualdischargevolumesgreater thanthelongtermaverage;

• Twoperiods(1941to1949,and1970to2007)withannualdischargevolumeslessthan thelongtermaverage. ThemeanhydrographsforthefourperiodsarepresentedinFigureIV14below.

1929-1935 Average Hydrograph at Niamey 1941-1949

2500 1950-1969 1970-2007

2000

1500 /s 3 m 1000

500

0 mai juil sept oct déc févr mars mai Month FigureIV14:AveragehydrographsoftheNigerRiveratNiamey

Theaveragehydrographsforthetwo“abovenormal”periods,19291935and19501969are nearlyidentical,exceptforthefactthatthelow waterdischargeismoresevereandthepeak dischargeishigherforthe19501969periodwhichcouldbeanearlyeffectoflanduseandland cover change. However, the quality of data may be questioned for earlier dates particularly becausedatadoesnotexistforthesomeyearsbetween1932and1941(seeFigureIV12).In addition,anevaluationoftherunoffcoefficientsofthesetwoperiodswouldneedtobemadefor thisassertiontobevalid,especiallybecauseenvironmentaldatafortheearliestperiodmaybe inexistent.

A comparison of the two “below normal” periods 19411949 and 19702007 reveals that the Niger at Niamey now peaks about 32 days earlier (19702007) compared to 19411949. Furthermore,theNiger’smeanannualdischargepeakisnow(19702007)about100m 3/slower thanthelast“belownormal”dischargeperiod(19411949).Themostsevereperiodofdroughtin terms of river dischargeoccurred for the NigeratNiameybetween1980and1993,ascanbe observedinFigureIV13.Acomparisonoftheaveragehydrographforthisperiodwith the

149 averagehydrographofthelongtermlowflowperiodof19702007inFigureIV15illustrates the severity of the drought that occurred between 1980 and 1993. The average maximum dischargebetween1980and1993wasalmost200m 3/slessthanfortheperiodbetween1970and 2007.

Average Hydrograph at Niamey 1970-2007 1980-1993 2000

1500 /s

3 1000 m

500

0 mai juil sept oct déc févr mars mai Month FigureIV15:AveragehydrographsoftheNigerRiveratNiamey

1.3.4. ChangeinMiddleNigerRiverinput:theSirbaexample

An analysis of discharge data of the Sirba River between 1956 and 2008 indicate a trend of increasing annual cumulative discharge that in turn has an impact on the Sirba’s percentage contributiontodischargeoftheNigeratNiameyasshowninFigureIV16andFigureIV17.

200

150

100

50

0

% departure% from meanvalue -50

-100 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 Year FigureIV16:Percentagedeparturefrommeanannualcumulativedischargeforthe SirbaRiver

150 10 9 8 7 6 5 4

% contribution 3 2 1 0 1950 1960 1970 1980 1990 2000 2010 Water Year FigureIV17:PercentagecontributionoftheSirbaRivertothemiddleNiger

ThedischargerecordfortheSirbaRiveratGarbéKourouconsistsofonly42completeyearsof recordandin18ofthoseyears,theannualvolume discharged by theSirba where above the thresholdofabout886millionm 3.Thepositivedeparturesfromthemeanvaluebetween1956 and1967(inFigureIV16)occurredatthesametimeasthepositivedeparturesfromthemean valuesforprecipitationandriverdischargefortheNigerRiveratNiamey(seeFigureIV9). Since1988,largerdepartures(upto3timesthelongtermmean)ofthevolumedischargedbythe Sirba Riverat Garbé Kourou have occurred. This is in contrast to the Niger River’s relative dischargethatdecreasedduringthesameperiod.Theeffectoftheslightrecoveryinprecipitation intermsofthelongtermaverageismanifestintheriseinannualvolumedischargedbytheSirba River.ThecumulativeannualdischargefortheSirbaRivershowsahighvariabilityrangingfrom justover100millionm 3 indryyearstoover2500millionm 3 inyearswithhighdischarge.The cumulativeannualdischargeoftheSirbaRiveratGarbéKourouwas over 2 billion m 3inthe 1988/89,1994/95,1998/99and2003/04wateryears.

Albergel[1987]studiedtherainfallrunoffrelationshipontwoexperimentalplotsinBurkinaFaso forawetperiod(1950–1968)andforadryperiod(1969–1984),andfoundthatrunoffwas morefavourableinthedryperiod,makingupfortherainfalldeficitexperiencedduringthedry period.

AmaniandNguetora[2002]observedamodificationintheNigerRiver’sdischargeregimeat Niameybasedonthedischargedatabetween1929and2000.Theyfoundthatbetween1970and 2000theNigerRiveratNiameyreacheditspeakdischargeinDecember,incontrasttotheperiod between1928and1969whenthepeakdischargewasattainedinFebruary.Theysuggestedthata reductioninwaterdischargefromupstreamareasof the Niger River coupled with increasing

151 runoffcoefficientsinthemiddleNiger’ssubbasinsduetovegetationcoverandsoildegradation, werethecausesofthischangeindischargeregime.

1.3.5. WaterbalanceforaregionofthemiddleNigerRiver basin:Interannualevolutionofthewaterbalance:

Inordertoevaluatetheimpactofthetrendofincreasingtributaryflowanddecreasingdischarge oftheinputfromtheUpperNigerRiver,awaterbalance,intermsofannualcumulativeriver discharge,wascarriedoutbetweentwopointsonthemiddleNigerRiver;KandadjiandNiamey.

AcomparisonwasmadeofthecumulativeannualvolumeinputoftheNigeratKandadjiandits tributaries between Kandadji and Niamey (the Dargol River and the Sirba River) and the cumulativeannualvolumeoutput(oftheNigerRiveratNiamey)asillustratedinFigureIV18.

.

FigureIV18:RiverNiger’sdischargebetweenKandadjiandNiamey

ThedataavailableforsuchacomparisonbetweenthetwostationsonthemiddleNigerRiver wasforatotaloftwentyyearsbetween1975and2007asshowninTableIV7.

152 TableIV7:WaterBalancebetweenKandadjiandNiamey1975/76–2007/08

WaterYear Sumofmeasured Measuredoutput(10 6m3) Balance(10 6m3) input(10 6m3) 1975/76 31733.0 29476.0 2257.0 1976/77 31399.5 29169.8 2229.7 1977/78 19381.3 17853.6 1527.7 1978/79 27179.7 26264.6 915.1 1979/80 28585.2 28747.6 162.4 1980/81 20680.2 20792.1 119.9 1981/82 24436.3 23595.2 841.1 1982/83 20292.5 19349.4 943.1 1983/84 16163.2 16100.0 63.2 1985/86 20517.6 19146.3 1371.3 1986/87 16986.6 15578.4 1408.2 1987/88 15934.8 14442.4 1492.4 1988/89 22419.7 21676.1 743.6 1990/91 17941.6 16242.1 1699.5 1991/92 21200.8 18096.4 3104.4 1995/96 26722.8 24778.3 1944.5 1998//99 28411.6 29263.7 852.1 2001/02 27124.0 27835.9 711.9 2006/07 28134.8 29166.7 1031.9 2007/08 26919.5 29969.8 3050.3

Aplotofthedifferencebetweeninputandoutputintermsofannualcumulativewaterdischarge betweenKandadjiandNiameyontheNigerRiverispresentedinFigureIV19. ) 3 4000 m 6 3000

2000

1000

0

-1000

-2000

-3000

Cumulative annualCumulative discharge(10 -4000 1975 1980 1985 1990 1995 2000 2005 Years FigureIV19:WaterbalancebetweenKandadjiandNiamey1975to2008

153 Negative values in Figure IV 19 occur when the annual cumulative discharge measured at NiameyislessthanthesumofannualcumulativedischargeoftheNigeratKandadjiandthe annual discharge volumes of the Dargol Sirba Rivers, while positive values indicate higher cumulativedischargeatNiameycomparedtoalltheupstreaminputsasschematizedinFigure IV20.

V Kandadji

V Dargol Evaporation, V Sirba River Infiltration Niger etc. V intermittent sources

V Niamey

FigureIV20:WaterbalanceforRiverNigerbetweenKandadjiandNiamey

The input is the annual volume discharged at Kandadji plus the volumes discharged by the DargolandSirbariverswhiletheoutputistheannualcumulativewaterdischargedbytheNiger at Niamey plus losses. These losses are due to evaporation, infiltration, as well as water abstraction.

Itwasobservedthatingeneral,between1975and1996theinputvolumewasgreaterthanthe outputvolume.Since1998,fortheyearswithcompletedischargedata,thereversehasbeenthe case.ThetwoperiodsarecomparedinFigureIV21showingthatthepeakdischargeatKandadji is reproduced at Niamey in December or January. This implies that the “surplus” volume dischargedatNiameyisduetothemoreprominentfirstpeakdischargeperiodduringthelocal rainyseason(AugusttoSeptember)andnottomeasurementerrors.

Theevaporationandinfiltrationlossesinasemiaridregionlikethestudyareacanbeexpectedto beconsiderable.However,theobserved“surplus”volumedischargedbytheNigeratNiameyis significantconsideringthattheevaporationlossesforthe~186kmreachbetweenKandadjiand NiameywasestimatedusingdatafromtheFoodandAgricultureOrganization’swebLocClim

154 estimator [FAO , 2008b] to be of the order of 764 ×10 6 m 3 per year (see Table D 1 in appendixD).

2000 Kandadji 1975-1996 1800 Niamey1975-1996 Kandadji 1998-2007 1600 Niamey 1998-2007 1400 /s) 3 1200

1000

800

MeanDischarge(m 600

400

200

0 mai juil sept oct déc févr mars mai FigureIV21:ComparisonoftheaveragehydrographsfortheNigeratKandadjiand Niamey

TheaveragehydrographsoftheNigeratKandadjiandNiameyfortheperiodbetween1975and 1996havesimilarshapesincontrastwiththehydrographsfortheperiodbetween1998and2007 wherethetributarycontributiontotheNiameyhydrographisapparent.

Several studies of the Sahelian hydrology have reported changes in response to climatic and humanimpacts.AmaniandNguetora[2002]suggestedthattherunoffcoefficientofthemiddle Niger’stributariescouldbeincreasingduetoareductioninvegetationcover.Mahéetal[2003] highlighteda“post1973phenomenon”ofincreasedrunoffinspiteofareductioninrainfallin mostly Sahelian areas with less than 700 mm of annual precipitation including most of the present study area. In areas of the SudanoSahel with more than 700mm of annual rainfall, Mahéet al. [2003] found runoff to vary directly with rainfall. A similar trend was noted by Séguisetal[2004]inWankamaonthemainlyendorheicleftbankoftheNigerriverwiththe runoffcoefficientestimatedtohaveincreasedbyupto1.7timesthevaluein1950inspiteofthe reduction in precipitation. Yero [2008] citing Esteves and Lapetite observed that runoff coefficientvaluesatTondikiboro,aSahelianbasin,hadincreasedfrom36%to46%between 1991and2008.

155 2. Focusonthestudyperiod:River discharge (measurement,estimationand hydrologicalcontext)

2.1. Measurement and estimation of river discharge

In order to estimate the sediment flux of the middle Niger River and its tributaries it was necessary to derive mean daily discharge data for the selected sediment measuring stations. ThesedischargevalueswillbeusedinthesedimenttransportanalysisinpartVofthisworkto calculatesedimentfluxandtoderivetheparameterstoevaluatethesedimenttransportcapacity ofthemiddleNigerRiver.Dependingonwhetherthestationwasequippedwithameansfor measuringriverdischarge,dischargevaluesweremeasuredorestimated.Thelocationsoftheten stationsalongtheNigerRiveranditstributariesforwhichdischargedatawerederivedareshown inFigureIV22.

2.1.1. Atstationmeasurements

Measurementofdischargeatstationsequippedwithstaffgauges

Atstationsequippedwithstaffgauges,thedailymeanriverdischargewasestimatedbymeasuring thewaterlevelstwiceadayandtransformingthesevaluestomeandailydischargeinm 3/s.The River Niger Basin Authority provided the transformed discharge data for the stations at Kandadji, Niamey, W.Niger on the Niger River and Alcongui on the Gorouol River as well as Garbé Kourou on the Sirba River.

Estimationofdischargeatotherstations

The river discharge at Ayorou was estimated as the difference between the Niger’s discharge measured at Kandadji and the discharge of the Gorouol at its confluencewiththeNigerRiver.TheriverdischargeatBrigambouwasassumedequaltothat measuredattheW.NigergaugingstationclosetoBrigambou.

ThedischargeatTiambiontheSirbawasestimatedbymultiplyingthebasinsizeratiobythe measureddischargeatGarbeKourou.

156 FigureIV22:Dischargemeasurementsinthestudyarea 157 2.1.2. 1Dmodellingfortheestimationofriverdischarge

Theprogram

CARIMA(CAlculdeRIvieresMAillees)isanumericcodedevelopedbySOGREAHconsultants foropenchannelflowcalculationsinriversandfloodplainsaswellasfornetworks[J A Cunge et al. ,1980; F M Holly and J B Parrish ,1993].

It was designed to calculate two types of flow conditions, namely; 1D flow in the principal channelbyresolvingthecompleteSaintVenantequations,andfloodplainflow(quasi2Dflow) withsimplifiedflowequationswithoutthemomentumterm.

ItisvalidwhereflowconditionscanbeassumedtomeetSaintVenant’shypotheses:

• onedimensionalflow,withuniformcrosssectionalvelocity;

• verysmallstreamlinecurvatureandhydrostaticpressuredistribution;

• flowresistanceandturbulencelossesassumedto be the same as for steady uniform flow;

• smallbedslope;

• constantwaterdensity. TheNigerRivermodel:fromSelinguetoMalanville

A model of the Niger River from Selingue in Mali to Malanville in Bénin was designed by SOGREAHfortheNigerRiverbasinAuthority.Themodelwasdevelopedfromtopographic measurements of the river’s geometry in 1983, with the aim of simulating flood propagation alongthemeasuredstretchoftheNigerRiver.

Initialandboundaryconditions

Approximate initial conditions were set by the program and refined until a steady state was obtained.TheboundaryconditionsweretheNiger’shydrographatKandadji.

Objectives

Themodelisusedforthefollowingtasks

 Estimating the discharge at measurement stations thatwerenotequipped withaflow gaugestation(FariéHaoussaandLatakabiey),bysimulatingfloodpropagationfroman upstreamstationofknowndischarge.

 Estimating flow characteristics such as the energy gradient, surfacevelocity, bed shear velocity.

158 Assumptionsandlimitations

Themajordrawbackoftheuseofthemodeldescribed above is the fact that it has not been updated since 1983 and thus may not give reliable results that are within its original computationalaccuracy.

For the purposes of this study, it will be assumed that the model is able to furnish reliable informationonflowconditionsatthekilometrescale,despitelocalchangesinchannelgeometry. Other information that can be provided by this model includes the flood propagation time, energyslope,flowdepth,andmeansurfacevelocity.Theassumptionmadeherewillbetestedin thefollowingsection.

2.1.3. Evaluationofthehydraulicmodellingofriverdischarge

TheresultsofthefloodpropagationsimulationbetweenKandadjiandNiameyareevaluatedbya comparisonofmeasuredandsimulateddischargeatNiamey.ThemeasureddischargeatNiamey andinparticulartherainyseasonpeakdischargesarewellreproducedbythemodel.Thelargest observed deviations of the simulated values from measured values occur at intermediate dischargevalues.AplotofmeasuredandsimulatedriverdischargeispresentedinFigureIV23 andaplotofmeasureddischargeagainstsimulateddischargeispresentedinFigureIV24.

2000 Simulated 1800 Measured

1600

1400

/s) 1200 3

1000

800 Discharge(m

600

400

200

0 juin-07 juil-07 sept-07 nov-07 déc-07 févr-08 avr-08 mai-08 FigureIV23:MeasuredandsimulatedriverdischargeNigeratNiamey(June2007to May2008)

159 2000

1800 y = 1.0205x - 3.7209 R2 = 0.9907 1600

1400

1200

1000

800 Measured (m3/s) Measured

600

400

200

0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Simulated (m3/s) FigureIV24:Measuredvs.simulatedriverdischargeNigeratNiamey(June2007to May2008)

InadditiontoprovidingriverdischargevaluesforungaugedstationsalongtheNigerRiver,the modelalsoprovidedthehydraulicdata(energygradient,depthofflow,)necessaryforcalculating thesedimenttransportcapacityoftheNigerRiverinpartVofthiswork.

2.2. Hydrologicalcontextofthestudyperiod

Thesedimentsamplingforthepresentstudywascarriedoutbetween2005and2008.Previous samplingontheNigeratKandadji(1976to1982)hadbeenundertakenbetweenbyORSTOM[R Gallaire ,1986].

TheprincipaldischargecharacteristicsforthemiddleNigerRiverarepresentedinTableIV8 fortworepresentativegaugingstations(KandadjiandNiamey)coveringtheperiodsthatriver suspendedsedimentconcentrationweremeasured.Thesecharacteristicsincludetheannualmean discharge, maximum daily discharge, minimum daily discharge and the percentage of water volumedischargedduringthelocalrainyseason(JunetoOctober).

160 TableIV8:RiverdischargecharacteristicsoftheNigeratKandadjiandNiamey

%VD rs Station Year Qmean QMax Date( Q Max ) QMin Date( Q Min ) Averageon Annualvalue theperiod 1976/1977 975 2050 26/01/1977 9.3 05/07/1976 23.3 1977/1978 590 1580 11/12/1977 8.5 31/05/1978 30.8 1978/1979 843 1830 28/12/1978 5.5 07/06/1978 31.0 1979/1980 875 1930 28/12/1979 8.3 09/07/1979 30.7 31.3 1980/1981 620 1500 10/12/1980 6.3 29/06/1980 31.6 Kandadji 1981/1982 743 1760 23/12/1981 4.7 22/06/1981 33.2 1982/1983 602 1470 09/12/1982 10.1 28/05/1983 38.3 2005/2006 818 1690 11/12/2005 42.0 13/05/2006 41.2 2006/2007 854 1730 26/12/2006 43.0 21/06/2006 33.9 35.0 2007/2008 787 1790 31/12/2007 30.6 25/06/2007 30.0 1975-2008 721 2100 13/01/1976 1.1 07/07/1985 N/A 1976/1977 925 1930 24/01/1977 14.0 28/06/1976 24.4 1977/1978 566 1400 13/12/1977 7.0 28/05/1978 33.5 1978/1979 833 1800 08/01/1979 6.0 05/06/1978 31.5 1979/1980 909 1950 01/01/1980 8.41 29/05/1980 31.8 33.0 1980/1981 659 1500 09/12/1980 3.89 28/06/1980 35.3 1981/1982 748 1730 22/12/1981 2.62 28/06/1981 33.6 Niamey 1982/1983 614 1390 11/12/1982 3.91 15/06/1982 40.9 2005/2006 902 1730 03/09/2005 47.8 28/05/2006 45.2 2006/2007 925 1840 30/08/2006 33.2 03/07/2006 38.2 40.5 2007/2008 945 1830 01/01/2008 34.0 25/05/2008 38.1 03/07/1974 1929-2008 879 2360 30/01/1970 0.0 N/A and 15/06/1985

%VD rs.= volume of water discharged between June and October as a percentage of annual volume discharged

Withrespecttothelongtermmeandischarge,themeasurementcampaigncarriedoutbetween 1976and1982occurredduringarelativelyvariableperiodofhighriverdischargeandlowriver discharge.Themeasurementsforthepresentstudy20052008werecarriedoutduringaperiod withhighermeandailydischargethanthelongtermaverage.Intheperiodbetween1976and 1982peakdischargesatKandadjiandNiameywereclosetothelongtermmaximumdischarge forthestationandminimumdischargevalueswererelativelylow.Between2005and2008,peak dischargewas considerably lower than the longtermvalueandminimumdischargewasmuch higherthanthe1976to1982period.

ThemajordifferencebetweenthetworepresentativestationsisthatwhileatKandadjithepeak dischargeoccurredataboutthesametimeforalltheyearsunderconsideration,atNiameyit

161 occurredmuchearlierin2005and2006.Inordertoestimatetheinfluenceofthelocalrainy season on river discharge, the volume of water discharged during the rainy season (June to

October)asapercentageofthetotalannualvolumedischargedisrepresentedas %VD rs.

Ingeneral,attheNiameystation,thedischargevolumethatoccurredintherainyseasonasa percentageoftotalannualdischargevolumeismarkedlyhigherforthe2005to2008periodin comparisontothe1976to1982period.

162 3. Conclusions

Thefollowingconclusionscanbedrawnattheendofthispartofthestudy:

 ThehydrologicalanalysisofthemiddleNigerRivershowsthat:

• River discharge is largely dependent on precipitation and the effect of reduced precipitationonriverdischarge.Theroleofbaseflow in sustaining low flows of the middleNigerRiverhasbeendemonstrated.

• TheaveragehydrographofthemiddleNigerRiverhastwocrests:afirstpeakwitha steeprisinglimbthatoccursduringthelocalrainyseason,andasecondpeakthatoccurs becauseofthedischargefromoftheinnerdelta’sstorage.Thefirstpeakdischargeis moreprominentaroundNiameyandislessprominentfurtherupstreamordownstream ofNiamey.

• ThetributariesofthemiddleNigerRiverhavenotrespondedinthesamewayasthe Niger River. The cumulative volume discharged at Niamey is increasing relative to Kandadji, a trend that cannot be explained as being solely due to the increase in dischargeofgaugedtributaries,thedischargeofungaugedintermittentstreamsisalso increasing. A study of these ungauged intermittent streams may provide a better understandingofthisphenomenonassumingthatlossesfromevaporation,infiltration, andabstractiondidnotreducebetween1998and2008.

• Thepresentstudywascarriedoutduringarelativelyhomogenousperiodofincreasing localrunoffcontributiontotheNigerRiver’speakflows.  SimulationofriverdischargeusingtheCARIMAmodeloftheNigerRivergivesresultsin goodagreementwithmeasuredvaluesbutmayneedtobeverifiedagainstastationof knowndischargetobeacceptedasreliable.

163 PPaarrttVVSSeeddiimmeenntt ttrraannssppoorrttiinntthheemmiiddddllee NNiiggeerrRRiivveerrbbaassiinn

164 AnunderstandingofthesedimenttransportdynamicsofthemiddleNigerRiverisvitalbecause apartfromhavinganadverseeffectonwaterqualityandtheaquatichabitat,sedimentdeposits canalsofilluphydraulicworksalongtheriver.Abetterunderstandingofthesedimenttransport ofthemiddleNigerRiverisparticularlyimportantforbasinmanagementinviewofthereducing riverdischarge.

Incomparisontohydraulicorhydrologicalstudies,sedimenttransportstudiesingeneralrequire moredatabutusuallygivelesspreciseresults.Themaininformationthatthispartofthestudy aimstoderiveisessentiallythatonerosionanddepositiontrendsalongthemiddleNigerRiver.

Inordertoachievethisaimitwasnecessaryto:

• Set up an appropriate sedimentsampling program to measure the concentration of suspendedsedimentalongthemiddleNigerRiverandsomeofitstributariesinorderto quantifythesedimenttransportedinthestudyarea;

• AnalysethesizecharacteristicsoftheriverbedmaterialfoundinthemiddleNigerRiver andsomeofitstributaries;

• Analyse the size characteristics of sediment transported in suspension by the middle NigerRiverandsomeofitstributaries;

• Calculate the sediment transport capacity at different points along the middle Niger Riverfrommeasuredandsimulatedhydrodynamicdata.

165 1. Methodology

The measurement of sediment discharge can be complex because it is made up of two components,onecomponentistransportedeitherinsuspensionbyflowingwaterwhiletheother componentistransportedalongthestreambed.Insuspension,sedimenttransportismeasuredas suspended sediment concentration (SSC) being the quantity of sediment transported per unit volumeofwater,whilebedloadtransportisthequantityofsedimenttransportedperunittime alongtheriverbed.

Thesuspendedsedimentcomponentofthetotalsedimentdischargeisofparticularinterestwhen basin erosion is to be estimated, as is the case in this study. This is because transport by suspensionisthelikelymodeoftransportoferodedsedimentfromtheriverbasinandthuscan beconsideredasasurrogatemeasureofbasinerosion.

1.1. Suspendedsedimentmeasurementmethods

Thenumerousmethodsthatexistfortheestimationofsuspendedsedimentconcentrationcan generallybedividedintodirectandindirectmeasurementmethods.

• Directmethods: DirectmeasurementsofSSCconsistoftrappingagivenquantityof thewatersediment mixture.The simplest form of directsamplinginvolvesdippinga bottle or bucket into the watercourse and extracting the required sample. Vacuum actioncanalsobeusedtoextractasampledirectlyasusedinpumpsamplersbutdueto thepumpingactionpumpsamplersrarelysampleisokinetically. Depth integrating samplers and point integrating samplers can be described as sophisticatedbottlesamplers,inthattheyaredesignedtoautomaticallytakecomposite samplesoveragivenverticaloratdifferentpointsonacrosssection.

• Indirectmethods :Indirectmeasurementsaimtosimplifythesamplingtaskthrougha surrogateparameterthatcanberelatedtomeasuredconcentrationvalues. Baban[1995],Gomezetal.[1995]andNellisetal.[1998]appliedaremotesensing methodwherereflectancevaluesofwaterarerelatedtogroundreferencedvaluesof suspendedsedimentconcentration.Acousticmethodshavealsobeenusedtoestimate SSC; SSC is estimated as the acoustic intensity of backscattering signals due to particlessuspendedinthestreamflow[R L Dinehart and J R Burau ,2005; P D Thorne et al. , 1993]. Optical methods that estimate SSC by relating stream turbidity measurementstomeasuredSSCarealsocommon[I D L Foster et al. ,1992].Theuse of indirect measurement methods is advantageous because they can be time and 166 laboursavingbuttheirmajordrawbackmaybethefactthattheresultsobtainedusing thesemethodsareonlyasgoodasthedirectlymeasureddatausedforthecalibration ofthemeasurementequipment. Wrenetal.[2000]notedthatalthoughtherearevariousmethodsfortheestimationof SSC, bottle samplers remain the standard by which other sampling methods are calibrated. Thepurposeandobjectivesofastudyarethemostpertinentfactorsinchoosingan appropriatemethodforthemeasurementofSSC. OtherfactorsthatinfluencethechoiceofsamplingmethodsforSSCdetermination includebutarenotlimitedtothesizeofthesamplingarea,theappropriatesampling interval, the sediment size fraction(s) of interest, operational ease, as well as cost. Wren et al. [2000] describe methods for the measurement of suspended sediment concentrationaswellastheiradvantagesanddisadvantages.

1.2. Methodappliedinthisstudy

Burkham [1985] posited that increasing sampling frequency increases data accuracy up to a maximumlevelatwhichpointdeviationsfromtruevaluescanbesaidtorepresentrandomerrors duetoturbulentfluctuationsinthewatersedimentmixtureandrandomsystematicerrorsdueto instrumentation,samplingtechniqueandcomputation.

Dataqualityisonlylimitedbythecostofequipmentforfieldandlaboratorymeasurementsfor near continuous sampling. Daily sampling was adopted in order to increase the accuracy of suspendedsedimentdischargedata,withrespecttoearliersampling(seeparagraph2.1)onthe NigerRiverthatemployedathreedaysamplinginterval.

Thedailygrabsamplesweretakenfromeachofthesamplingstationsbyloweringaonelitre bottle to at least 50 cm below the water surface and allowing it to fill up. RooseboomandAnnandale[1981]comparedalargedatabankofsedimentsamplesobtainedin this way to average concentrations obtained from more sophisticated optical methods. They foundthatresultsobtainedbythe“bottlemethod”weregenerallyabout25%lowerthanthose obtainedusingmethodsthataremoresophisticated.

167 2. Measuringstationsanddata

Thestationsatwhichmeasurementsweremadearepresentedinthefollowingparagraphswith anoverviewofexistingriversedimentdataforthestudyarea.

2.1. PreviousworkinthemiddleNigerbasin

DirectmonitoringoftheSSCforthemiddleNigerRiveranditstributariesisrareandhashardly beencarriedoutatmorethanonestationinadownstream sequence for the same period of observation.

Between1976and1983,SSCwasmeasuredontheNigerRiveratKandadjiandontheGorouol RiveratDolbelbyORSTOM[R Gallaire ,1986; R Gallaire and R Gathelier ,1982; R Gallaire et al. , 1981; R Gallaire et al. ,1982; P Harang and R Gathelier ,1979; M Hoepffner ,1978].

SSCmeasurementswerealsocarriedoutontheNigerRiveratNiameyfrom1984to1986[R Gallaire ,1995].ThedataforNiameywasonlyavailableasmonthlysedimentflux.Theduration andfrequencyoftheseearliersedimentmonitoringprogramsarepresentedinTableV1andthe samplinglocationsareshowninFigureV1.

TableV1:SummaryofavailablehistoricsedimentdataforthemiddleNigerbasin

River Station Period Samplingfrequency

Niger Kandadji July1976May1983 ~3dayinterval

Niger Niamey February1984–September1986 ~3dayinterval

Gorouol Dolbel June1976October1982 ~3dayinterval

168 FigureV1:Locationsofprevioussuspendedsedimentmeasurements

2.2. Choiceofmeasuringstationsforthepresent study

Becauseoneofthemainobjectivesofthepresentstudywastomeasurethesedimentfluxalong themiddleNigerRiveranditstributaries,themeasuring stations for this study were sited to locatethem:

• near azone of degradation (of vegetation and/or soil) or deposition of alluvium (as identifiedfromsatelliteimagery);

• at or near river flow gauging station in order to measure the corresponding water dischargeformeasuredsedimentconcentrationvalues;

• inrelativelyaccessibleareas. TwosubbasinswerechoseninthesemiaridSahelianzone(theGorouolandtheSirba),while theMékrouintheSudanzonewaschoseninordertocomparethesedimentfluxalongtheNiger crossingthetwozonesandtoprovidearepresentativesetofsamplingpointswithrespecttothe middleNigerRiver.

169 AttheconfluenceofallthreetributarieswiththeNiger,twomeasurementstationswerechosen, oneupstreamandonedownstream,inordertostudysedimenttransferfromthetributariesto theNiger.

MeasurementswerealsocarriedoutonthetributariesoftheNigerRiverinordertoquantifythe sediment transport of the tributaries and transfer to the River Niger. On the Gorouol, measurementsweremadeatAlcongui,whilethesedimenttransportfromtheSirbawasmeasured attwostationsontheSirba(atTiambiandatGarbéKourou).

TheGorouolandSirbaarerepresentativeSahelianbasinsandwerechosenbecauseofvegetation and soil degradation of their basins evaluated in part III as well as for their relatively large catchmentareasincomparisontotheothertributariesofthemiddleNigerRiver.Althoughno sampling was carried out on the Mékrou River itself due to reasons of accessibility, stations upstream and downstream of its confluence with the Niger River were selected in order to contrastthesedimentinputofSahelianriverswiththeinputofariverbasinwithmorerainfall andvegetationcover.

Overall,themeasuringstationswerelocatedinstablecrosssectionsandinstraightreachesfree from backwater effects. The sampling stations for this study are located in the study area as showninFigureV2.

170 FigureV2:Samplingstationsforsuspendedsediment

171 3. Suspendedsedimentanalysis

Thefateofriversedimentdependsonthesedimentsizecompositioninadditiontosediment supply.Thesizeofsedimentparticlesisanimportantsedimentpropertythatalongwithflow conditions determines the sediment transport processes like entrainment, transport, and deposition.

Sediment grain size analysis can therefore provide information about the sediment source, transporthistoryaswellasdepositionconditions[S J Blott and K Pye ,2001].

3.1. Laboratory determination of the suspended sedimentconcentrationofariverwatersample

Two laboratory methods were applied for the determination of suspended sediment concentration in conformity with the ASTM International’s “Standard Test Methods for DeterminingSedimentConcentrationinWaterSamples”[ASTM Standard D 3977-1997 ,2007]:

• Evaporation(TestmethodA):Theevaporationmethoddescribedinsections8to13of ASTM standard D 397797 was employed for the determination of the suspended sedimentconcentrationoftheriverwatersamples.

• Filtration (Test method B): The filtration method described in sections 14 to 19 of ASTM standard D 397797 was also used to determine the suspended sediment concentrationoftheriverwatersamples.Thiswasparticularlynecessaryconsideringthe factthatwiththeevaporationmethodsamplesrequiredastoragetimeofabout10to14 days to settle before the analysis by evaporation. The samples were filtered through Whatman934AH,glassmicrofibrefilterswith1.5mparticleretention.Thefiltration methodallowedasamedayanalysisonthesamples. Over90%ofthesampleswereanalysedbytheevaporationmethodwhilethefiltrationmethod wasmostlyappliedtogetafirstestimationofSSCvaluesforcontrolsamplesandtocheckcontrol thequalityoftheresultsobtainedbytheevaporationmethodthatwascarriedoutonalargescale. TheprecisionandbiasdatagivenbyASTM[2007]indicatethattheevaporationmethodismore accuratethanthefiltrationmethodforlowsuspendedsedimentconcentrationsofabout10mg/l. Theresultsobtainablebythetwomethodsareverysimilaratconcentrationsaround1000mg/l.

172 3.2. Derivingsuspendedsedimentconcentration valuesforacrosssection

A large part of sampling error for direct sampling methods probably occurs in obtaining the watersediment sample from the stream. The errors are largely due to the variability in the concentration of sandsized sediment particles. Representative sampling becomes particularly difficultinstreamswithalargeconcentrationofsandsizedsediment.

Picouet [1999] observed a strong linear relationship between single grab samples and multi verticalsamplesinthe“UpperNigerRiver”,whichisupstreamofthepresentstudyarea.This indicatesthatthesuspendedsedimentconcentrationcanbeexpectedtovaryonlyslightlyinthe verticaldirection.However,inlargeriversliketheNiger,suspendedsedimentconcentrationmay vary across the river section. In order to account for crosssectional suspended sediment concentrationvariability,itwasnecessarytoestimateameancrosssectionalvalue 5ofsuspended sediment concentration “SSC X”. The single grab samples were calibrated to a few measured crosssectionalvaluesalongtheNigerRiverfromAyoroutoDiabouKiria(seeFigureV2).

Suspendedsedimentconcentrationwassampledataminimumofthreeverticalsatthreedepths at the time of obtaining the usual single grab sample several times during the measurement period.Therelationshipobtainedbetweenthesuspendedsedimentconcentrationsofthesingle grabsamplesandthemeasuredcrosssectionalvaluesispresentedinFigureV3.

1800 y = 0,9581x + 59,569 1600 R2 = 0,8493

1400

1200

1000

800

concentration(mg/l) 600 1:1 relationship

400 Cross-sectional Suspended sediment Cross-sectional 200

0 0 200 400 600 800 1000 1200 1400 1600 1800 Single grab sample Suspended sediment concentration(mg/l) FigureV3:RelationshipbetweensampledcrosssectionalSSC(n=16)andsinglesample SSCforthemiddleNigerRiver2007

5 The mean suspended sediment concentration of a minimum of three verticals per cross-section 173 AttheNiameystation,uptotenverticalsweresampledfromtheKennedyBridge.

The relationship obtained was then used to estimate the mean crosssectional suspended sedimentconcentrationvaluesSSCxgiveninequationV1.

SSC = .0 9581 (SSC ) + 59 .569 X EquationV1 2 = = r .0 8493 ;n 16

Where SSC x= estimated crosssectional suspended sediment concentration; SSC = suspended sedimentconcentrationofasinglegrabsample; n=samplesize.

Atvaluesaboveabout1000mg/l,EquationV1(thesolidlineinFigureV3)isconvergentwith the1:1line,suggestingthatatvaluesabove1000mg/l,thesuspendedsedimentconcentrations obtainedfromsinglegrabsamplesarerepresentativeofthemeancrosssectionalvaluesanddo not vary considerably. At low suspended sediment concentrations, the single grab sample underestimatesthemeancrosssectionalsuspendedsedimentconcentrationbyupto60mg/l(i.e. upto45%atthelowestmeasuredconcentrations).

3.3. Determinationofsedimentgrainsize

Due to the wide range of sediment particle characteristics, the appropriate method for the determinationofsedimentgrainsizeisusuallydependent upon the size characteristics of the sedimentparticles.Forexample,duetotheirlargesizes,materialsuchasbouldersandcobbles aremeasureddirectlybycircumferenceordiameter.Intermediatesizes,rangingfromgravelsto sands, are measured semidirectly by sieves while small sizes ranging from sands to clay are measuredbysedimentation(i.e.theirsettlingcharacteristicsinwater)orbylaserdiffraction(i.e. theirdiffractionoflight).

In addition to suspended sediment sampling, bed material was also collected at each of the suspended sediment sampling stations. The differenceinthemodeofcollection,thequantity collectedaswellastheparticlesizesofthetwo typesof samplesmadeitnecessarytoapply differentmethodsforthedeterminationofthesedimentparticlesizeofthesamples.

Thegrainsizedistributionforbedmaterialsampleswasdeterminedbythesieveanalysisofbulk samples(usuallygravelsizeorsmaller)orpebblecount(coarsegravelsandcobbles),whilethe sizedistributionforsuspendedsedimentwasdeterminedbylaserdiffraction.

Table V 2 shows a Wentworth classification of sediment particle size [modified from Kondolfetal.[2003]].

174 TableV2:Sedimentsizeclassification

Designation Subdesignation Sizelimits(mm) Boulder Boulder >256 Cobbles LargeCobbles 128–256 SmallCobbles 64–128 Gravel VerycoarseGravel 32–64 CoarseGravel 16–32 MediumGravel 8–16 FineGravel 4–8 VeryfineGravel 2–4 Sand VerycoarseSand 1–2 CoarseSand 0.5–1 MediumSand 0.25–0.5 FineSand 0.125–0.25 VeryfineSand 0.0625–0.125 Silt CoarseSilt 0.0312–0.0625 MediumSilt 0.0156–0.0312 FineSilt 0.0078–0.0156 VeryfineSilt 0.0039–0.0078 Clay CoarseClay 0.002–0.0039 MediumClay 0.001–0.002 FineClay <0.001

3.3.1. Pebblecount

DuetothevariablenatureoftheSirbariverbedatGarbeKouroutwomethodshadtobeused: theWolmanpebblecountmethod[M G Wolman ,1954]wasemployedinthecharacterizationof thesedimentparticlesizeinthecoarsegravelsectorandbulksamplinginthesandsector.One hundredparticleswererandomlysampledfromtheriverbedsurface.

3.3.2. SieveAnalysis

Sedimentsamplesfromtheriverbottomwereovendriedat105°C,weighedonabalancewithan accuracyof0.1gandsievedthroughacolumnofsieveswithopeningsof10,5,2.5,1.6,0.63, 0.315,0.2,0.125,0.1,0.08,0.063,and0.05mmrespectively.Thesievingactionwasfacilitatedby amechanicalsieveshakerforabout15minutes.Eachsedimentsampleweighedaminimumof 100g.

175 3.3.3. Particlesizingbylaserdiffraction

Theparticlesizeofsedimentinsuspensionwasdeterminedbythelaserdiffractionmethod.The residuesobtainedfromtheevaporationmethodin3.2.1wereusedtodeterminethesuspended sediment particle size. The laser diffraction technique is based on the principle that particles passingthroughalaserbeamscatterlightatanangledirectlyrelatedtotheirsize.TheMalvern Mastersizer2000,withameasurementsizerangeof0.022000mwasusedforthistest.

176 4. Anoverviewofpreviousstudies

The results obtained in the present study are detailed after a brief discussion of the results obtained in previous suspended sediment measurement campaigns, and in particular the data obtainedbyORSTOMforthemiddleNigerRiverbasin[Gallaire,1986].

TheresultsofthemeasurementscarriedoutbyORSTOM[R Gallaire ,1986]between1976and 1985arediscussedbecausetheyrepresenttheonlymeasuredsedimentdataforthemiddleNiger Riverbasin(theGorouolatDolbelandtheNigerRiveratKandadjiandNiamey)andcanthus serveasabaselinetowhichthepresentstudycanbecompared.

DatafromtheUpperNigerRiverandinteriordelta[C Picouet ,1999]isalsobrieflydiscussedin comparisonwithdatafromthemiddleNigerRiver.

4.1. TheGorouolRiver SSC measurements on the Gorouol River were carried out from 1976/77 to 1982/83 not at AlconguibutatDolbelupstreamofAlcongui(seeFigureV4).

TheSSCvaluesmeasuredatDolbelcanbeexpectedtobeclosetovaluesatAlcongui,giventhat thehydrographsatthetwostationsareofsimilarformandmagnitudefortheperiodandthe DolbelislocatedonthemajorbranchoftheGorouolRiver.

177 FigureV4:TheGorouolbasin

Thesuspendedsedimentconcentration(SSC)rangedfrom166.5mg/lto3820mg/latDolbelon theGorouolRiver(seeFigureV5)overthesevenyearperiodbetween1976and1982.

Discharge Dolbel Discharge Alcongui 350 7000 SSC Dolbel

300 6000

250 5000 /s) 3

200 4000

150 3000 SSC (mg/l)

River discharge (m discharge River 100 2000

50 1000

0 0 juin-76 juin-77 juin-78 juin-79 juin-80 juin-81 juin-82 juin-83 Figure V 5: Discharge and SSC for the River Gorouol at Dolbel 1976 – 1982 [Source: Gallaire(1986)]

178

ThecalculatedsedimentfluxoftheGorouolRiveratDolbelfortheperiodispresentedinTable V3usingdatafromGallaire[1986].

TableV3:SedimentfluxoftheGorouolRiveratDolbel

Period RiverDischarge(10 6m3/year) Sedimentflux (10 6 Tonnes/year) 1976/77 230.04 0.164 1977/78 334.16 0.173 1978/79 361.88 0.147 1979/80 249.42 0.155 1980/81 347.61 0.213 1981/82 204.05 0.147 1982/83 355.17 0.159

4.2. TheNigerRiver AccordingtoPicouet[1999],SSCdatafromtheupperNigerRiveranditsinteriordeltaforthe periodbetween1991and1998indicatedrelativelylowSSCvalues.SSCrangedfrom0.1mg/lto 45mg/lbetweenBanankoroandKéMacina(fortheUpper Niger River) and from 4mg/l to 250mg/lbetweenAkkaandDiréfortheNiger’sinteriordelta.(SeeFigureV6fortherelative locationsofthemeasuringstations).

AclassicexampleoftheSSCpeaksprecedingtheriverdischargepeakscanbeseeninFigureV5 andFigureV7.

179 FigureV6:MeasuringstationsalongtheNigerRiver

Meanannualsedimentfluxrangedfrom567,000tonnesto1.297milliontonnesalongtheupper NigerRiverbetweenBanankoroandKéMacinaandintheinteriordeltabetweenAkkaandDiré from833,000to1.012milliontonnes.

WhencomparedwiththesuspendedsedimentdatafromtheupperNigerRiverthedataacquired duringtheORSTOMsuspendedsedimentsamplingprogram for Kandadji between 1976 and 1983 [R Gallaire , 1986] are much higher in terms of sediment concentration and sediment discharge.TheSSCvaluesatKandadjirangedfrom2mg/lto1600mg/lbetween1976and1982 (seeFigureV7).ThehighersedimentconcentrationvaluesobservedinthemiddleNigerwhen comparedtotheUpperNigermaybeduetothereductioninvegetationcoverastheriverflows fromtheGuineaSavannatothedrierSahelianregion.Asecondexplanationforthisincreasein sediment concentration between the upper Niger and the middle Niger may be the Niger’s “interior delta” from where stored sediment may be remobilized towards the middle Niger River.

Thesedimentfluxcalculatedfortheperiodusingdatafrom Gallaire[1986]ispresentedinTable V4fortheNigerRiverKandadjiandNiamey.

180 2500 1800 River discharge

SSC 1600

2000 1400 /s) 3 1200 1500 1000

800

1000 SSC (mg/l) 600 River discharge (m discharge River 400 500

200

0 0 juin-76 juin-77 juin-78 juin-79 juin-80 juin-81 juin-82 juin-83 FigureV7:DischargeandSSCfortheRiverNigeratKandadji(19761982)[source: Gallaire(1986) ]

TableV4:SedimentfluxofthemiddleNigerRiveratKandadjiandNiamey

Station Period River Sedimentflux(10 6 Discharge(10 9m3/year) Tonnes/year) Kandadji 1976/77 30.073 2.007 1977/78 18.090 1.287 1978/79 26.580 1.831 1979/80 27.669 1.469 1980/81 18.990 1.485 1981/82 23.424 1.528 1982/83 19.004 1.680 Niamey 1984/85 13.015 3.162 1985/86 19.146 3.919

4.3. Discussionofthemethodsandresultsof thepreviousstudy Theprimarysourcesofdiscrepancybetweenanytwodistinctsedimentsamplingprogrammesare samplingmethodandfrequency.TheORSTOMsamplingprogramforthemiddleNigerRiver employedasimilarwatersedimentsampleextractionmethodasthepresentstudy.Themajor differencesinthetwomeasurementprogrammeswere:

181 • Samplingfrequency:Whiledailymeasurementwasadoptedin the present study, SSC dataforthepreviousstudywereobtainedat3dayintervals.

• Laboratoryequipment:Thecompositionofsedimentsamplesiscriticalinchoosingthe methodfordeterminingtheconcentrationofawatersedimentsample. TheORSTOMsamplingprogramonthemiddleNigerRiveremployedthefiltrationmethodto determineSSCvaluesusing10msizefilters.Gallaire[1995],citingworkbyEstevesandTaupin between November 1992 and April 1993, estimated that the sediment particles smaller than 10m,whichmayhavebeenexcludedbythefiltersize,wereoftheorderof10to15%ofthe totalsuspendedsedimentvolume.

An analysis of about 360 sediment samples obtained throughout the hydrological year at Kandadji and Niamey between 2006 and 2008 indicated that on average, the percentage of sedimentparticleslessthan10mwasabout25%.Thisdiscrepancyinthepercentageofparticles lessthan10m,couldindicateachangeinsedimentsourceatKandadjibetweenthe1980sand theperiodofthepresentstudyormaybeduetothepaucityofdataintheORSTOMstudyused todeterminegrainsizedistributionofsuspendedsediment.Achangeinsedimentsourceinthis casewouldindicatehigherbasinerosionleadingtohigherSSCvalues.

Theunmeasuredsedimentparticles(<10m)alone,donotaccountforthelargedifferencein calculatedsedimentfluxes.Burkham[1985]andPhillipsetal.[1999]foundthatsamplinginterval exerts a significant influence on sediment fluxestimates, with precision declining as sampling frequencywasreduced.Phillipsetal.[1999]workingontheRiverOuseinEnglandfoundthatthe referencesedimentload(measuredat15minuteintervals)wasunderestimatedbybetween108 and22%byweeklysampling,bybetween108and20%byfortnightlysamplingandbybetween 110and13%bymonthlysampling.Samplingfrequencyisparticularlypertinentinthemiddle NigerRiverwhereSSCvaluesshowahighvariabilityintherainyseasonaswillbeshowninthe followingsections.Adailysamplingintervalwasappliedinthepresentstudycomparedtothe3 day sampling employed in the previous study.in order to improve the measurement accuracy withinthelimitsofthisstudy.

Therefore, any attempts at a comparison between the previous measurements and the present studyshouldconsiderthefollowingpoints:

• With respect to the present study, the sediment concentration values previously obtainedforthemiddleNigerbasinmaybeupto25%lessthanthevaluesmeasurable bythepresentstudy.

• Intermsofthecalculationofsedimentflux,the3dayintervalappliedintheprevious study would have introduced a greater degree of error in comparison to the daily samplingprogrammeusedforthepresentstudy. 182 5. Resultsfromthepresentstudy

The results obtained for the present study are presentedinthefollowingsectionsfortheGorouol RiveratAlcongui,fortheSirbaRiveratTiambiand GarbéKourou and for the middle Niger River at Ayorou, Kandadji, FariéHaoussa, Latakabiey, Niamey,Brigambou,andDiabouKiria.

Themeasuredsedimentcharacteristicsofthestudy areaaredescribedinthefollowingparagraphs.The SSCvaluesarepresentedinrelationtodischargeat eachofthestations.TheSSCcharacteristicsarefurtherinvestigatedintermsofsedimentparticle size classes for a majority of the suspended sediment samples. The suspended sediment transportedatthesamplingstationsofthestudyareahavebeendividedintofiveclassesforthe purposesofthisstudy:040m(claytomediumsilt),4170m(coarsesilt),71125m(veryfine sand),126630m(finetomediumsand),6311600m(coarsetoverycoarsesand).

5.1. ResultsfortheGorouolRiver

5.1.1. Riverbedsediments AnanalysisofthebedsedimentatAlconguiin2006and2007showedthattheriverbedismade upoffinetomediumsand,withamedianparticlesizeofabout230m.

5.1.2. Suspendedsedimentconcentrationsandgrainsize Suspendedsedimentconcentration(SSC)rangedfrom137mg/lto3060mg/lin2006/07and from124mg/lto3751mg/lin2007/08atAlconguistationontheRiverGorouol.Thesevalues aresimilartotheearliermeasurementscarriedoutontheGorouolRiveratDolbel.

SSCvaluesoftheGorouolRiveratAlconguiareplottedalongsideriverdischargeinFigureV8 for the 2006/07 and 2007/08 seasons. It can be noted that the magnitude of SSC values at Alconguidonotshowaparticularlystrongdependenceonriverdischargebutratherarerelated tothemagnitudeofrainfallatAlcongui.ThisisparticularlytrueinJulyandAugustwhereSSC peaksoccuraroundthesametimeasrainfallpeaks(seeFigureV9).

183 River Gorouol at Alcongui 2006/07 River Gorouol at Alcongui 2007/08

400 4000 400 4000 Discharge Discharge 350 SSC 3500 350 SSC 3500

300 3000 300 3000 /s) /s) 3 3 250 2500 250 2500

200 2000 200 2000 SSC(mg/l) 150 1500 SSC(mg/l) 150 1500 Discharge (m Discharge Discharge(m 100 1000 100 1000

50 500 50 500

0 0 0 0 juin-06 juillet-06 août-06 septembre-06 octobre-06 juin-07 juillet-07 août-07 septembre-07 octobre-07 FigureV8:RiverdischargeandSSCrelationshipfortheRiverGorouolatAlcongui(2006and2007)

River Gorouol at Alcongui 2006/07 River Gorouol at Alcongui 2007/08

60 3500 60 4000 Rainfall Rainfall SSC 3000 SSC 3500 50 50 3000 2500 40 40 2500 2000 30 30 2000 1500 SSC(mg/l) SSC(mg/l) 1500 Rainfall (mm) Rainfall Rainfall (mm) Rainfall 20 20 1000 1000 10 10 500 500

0 0 0 0 juin-06 juillet-06 août-06 septembre-06 octobre-06 juin-07 juil.-07 août-07 sept.-07 oct.-07 FigureV9:AtstationrainfallandSSCrelationshipfortheRiverGorouolatAlcongui(2006and2007)

184 Theconcentrationvaluesofthesedimentsizeclassespresentinsuspensionarepresentedwith corresponding river discharge for the Gorouol River at Alcongui in Figure V 10. It can be observed that the Gorouol Riverat Alcongui mainly transports sediment in the 040m size class. It can also be noted that the highest concentrations (up to about 200mg/l) of coarse sedimentparticles(uptothe126630msizeclass)aretransportedatthestartofrunoff.

ThemeandistributionofsuspendedsedimenttransportedbytheGorouolRiveratAlconguifor the2006/07and2007/08seasonsispresentedinFigureV11.Onaverage,duringthestudy period,74.5%ofthesuspendedsedimenttransportedbytheGorouolwasclayandmediumsilt.

185 River discharge River discharge River Gorouol at Alcongui River Gorouol at Alcongui 0-40 µm 0-40 µm 41-70 µm 41-70 µm 400 71-125 µm 4000 400 71-125 µm 4000 126-630 µm 126-630 µm 350 3500 350 3500 631-1600 µm 631-1600 µm 300 3000 300 3000 /s) 3 250 2500 250 2500

200 2000 200 2000 SSC(mg/l) 150 1500 SSC(mg/l) 150 1500 Discharge(m Discharge(m3/s) 100 1000 100 1000

50 500 50 500

0 0 0 0 juin-06 juillet-06 août-06 septembre-06 octobre-06 juin-07 juillet-07 août-07 septembre-07 octobre-07 FigureV10:RiverdischargeandSSCrelationshipfortheRiverGorouol(accordingtosizeclass)atAlcongui(2006and2007)

186 0-40 µm 80 41-70 µm 0.15 71-125 µm 70 126-630 µm 631-1600 µm 60 0.12

50 0.09 40

30 0.06

20 0.03 10 Sediment size distribution byclass(%) Sediment size distribution by class(%) by distribution size Sediment 0 0 AL AL Measuring station Measuring station FigureV11:MeansuspendedsedimentsizedistributionbypercenttransportedbytheRiverGorouolatAlcongui(n=101samples)

187

5.1.3. Changesinsedimentparticlesizedistribution Figure V 12 shows the variation of the percentage of sediment size particles (by class) in suspensionwithsedimentconcentration.

Onaverage,the040mparticlesrepresentover70%ofthevolumeofsedimenttransportedin suspensionbytheGorouolRiveratAlcongui.Assedimentconcentrationincreasestheamount ofveryfinesediment,(040m)alsoincreases.Thefigurealsoshowsthatthelargersediment particles(411600m)thataretransportedinsuspensionmakeuplessthan35%atmostofthe total sediment transported in suspension. The coarser sediment groups make up a high percentageoftotalsedimentonlyatlowsedimentconcentrationvalues.TheGorouolRiverat Alconguirarelytransportsparticlesizesgreaterthan630m.

River Gorouol at Alcongui

100 90 0-40 µm 80 41-70 µm 70 71-125 µm 60 126-630 µm 50 631-1600 µm 40 30 20 % volume% in suspension 10 0 0 500 1000 1500 2000 2500 3000 3500 SSC (mg/l) FigureV12:SSCandparticlesizedatafortheRiverGorouolatAlcongui

TheSSCandgrainsizeobservationsfortheGorouolRiveratAlconguicanbesummarizedas schematizedinFigureV14.AtlowSSCvalues,thesuspendedsedimentconsistsofamixofall sedimentsizes.AsSSCvaluesincrease,the040mparticlesmakeupamuchhigherpercentage of the sediment in suspension. This indicates that SSC peak values are largely due to basin erosion,occurringatthestartoftherainyseasonandafterthelongdryseason,transporting easilydetachablesedimentandaeoliansedimentdeposits.

188 FigureV13:SSCandparticlesizerelationshipfortheRiverGorouolatAlcongui

The relationship of four of the suspended sediment size classes of with river discharge is describedinFigureV14.Ingeneral,asrainfalllinkedriverdischargeincreases,the040msize insuspensionincreasesuptoapointwherefurtherincreasesinriverdischargehavenofurther effectonthissizeclass.Thepercentageofcoarsersedimentinsuspensionshowsatendencyto decrease with increasing discharge. This availability of very fine sediment, which may be entrainedbyraindropimpactandoverlandflow,appearstocontroltheabilityoftheriverflowto transportcoarserparticles.Forthisstation,coarsersedimentparticlesaremainlytransportedat the start of the rainy season, indicating that in addition to the fine sediment (040m) transported,theGorouolmayalsobetransportingbedmaterialinsuspension.

189 0-40 µm 41-70 µm River Gorouol at Alcongui River Gorouol at Alcongui Linéaire (0-40 µm) Linéaire (41-70 µm)

100 18

90 16

80 14 70 12 60 10 50 8 40 6 30 4 % volume in suspension % volume in suspension 20

10 2

0 0 0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450 River discharge (m 3/s) River discharge (m 3/s)

71-125 µm 126-630 µm River Gorouol at Alcongui River Gorouol at Alcongui Linéaire (71-125 µm) Linéaire (126-630 µm)

12 25

10 20

8 15

6

10 4 % volume in suspension % volume in suspension 5 2

0 0 0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450 River discharge (m 3/s) River discharge (m 3/s) FigureV14:RiverdischargeandparticlesizerelationshipfortheRiverGorouolatAlcongui

190 5.2. ResultsfortheSirbaRiver The sediment characteristics of samples collected at Tiambi and at GarbéKourou on the River Sirba (see Figure V 15) in 2006 and 2007 are presented in the following paragraphs. The relationships between SSC, river discharge, and size of sediment in suspension obtainedforTiambiareapplicableforGarbéKourou.

5.2.1. Riverbedsediments Analysis of the bed material size of the Sirba River showedanincreaseinthemedianparticlesizebetweenTiambiandGarbéKourou.Themedian particlesizewas385matTiambi,and450matGarbéKourou.ThebedmaterialoftheSirba RiveriscoarserthanthebedmaterialoftheGorouolatAlcongui(medianparticlesizewasabout 220m).

5.2.2. Suspendedsedimentconcentrations AtTiambi,SSCvaluesrangedfrom54mg/lto2841mg/landfrom94mg/lto2282mg/l.in 2006/07and2007/08respectively.NeartheSirba’sconfluencewiththeNigeratGarbéKourou, SSCrangedfrom130mg/lto2917mg/landfrom196 mg/lto2696mg/lin2006/07and 2007/08;respectively.Themaximumconcentrationvaluesarealmost1000mg/llowerthanthe valuesmeasuredattheGorouolatAlcongui.

191 FigureV15:TheSirbabasin

SSCvaluesatTiambiandGarbéKourouontheSirbaRiverareplottedalongsideriverdischarge inFigureV16forthe2006/07and2007/08seasons.UnliketheGorouolatAlcongui,theSSC valuesfortheSirbaRiverappeartobepartlyrelatedtoriverdischargeparticularlyatthestartof therunoffseason.SSCvaluesdonotappeartobeasdependentonrainfallevents(seeFigureV 17)asobservedfortheGorouolatAlcongui.

192 River Sirba at Tiambi 2006/07 River Sirba at Tiambi 2007/08

350 3000 350 3000 Discharge Discharge 300 300 SSC SSC 2500 2500

250 250 2000 2000 /s) /s) 3 3 200 200 1500 1500 150 150 SSC (mg/l) SSC (mg/l) Discharge (m Discharge Discharge (m Discharge 1000 1000 100 100

500 500 50 50

0 0 0 0 juin-06 juillet-06 août-06 septembre-06 octobre-06 juin-07 juillet-07 août-07 septembre-07 octobre-07 novembre-07

River Sirba at G.Kourou 2006/07 River Sirba at G.Kourou 2007/08

350 3000 350 3000 Discharge Discharge 300 SSC 300 SSC 2500 2500

250 250 2000 2000 /s) /s) 3 3 200 200 1500 1500 150 150 SSC(mg/l) SSC (mg/l) Discharge(m

Discharge (m Discharge 1000 1000 100 100

50 500 50 500

0 0 0 0 juin-06 juillet-06 août-06 septembre-06 octobre-06 juin-07 juillet-07 août-07 septembre-07 octobre-07 novembre-07 FigureV16:RiverdischargeandSSCrelationshipfortheRiverSirbaatTiambiandGarbeKourou(2006and2007)

193 River Sirba at Tiambi 2006/07 River Sirba at Tiambi 2007/08

100 3000 80 3000 Rainfall Rainfall 90 SSC 70 SSC 2500 2500 80 60 70 2000 2000 50 60

50 1500 40 1500 SSC (mg/l) 40 SSC (mg/l) 30 Rainfall (mm) Rainfall Rainfall (mm) 1000 1000 30 20 20 500 500 10 10

0 0 0 0 juillet-06 août-06 septembre-06 octobre-06 juin-07 juillet-07 août-07 septembre-07 octobre-07 novembre-07

River Sirba at G.Kourou 2006/07 River Sirba at G.Kourou 2007/08

100 3000 100 3000 Rainfall Rainfall 90 90 SSC SSC 2500 2500 80 80

70 70 2000 2000 60 60

50 1500 50 1500 SSC(mg/l)

40 SSC (mg/l) 40 Rainfall (mm) 1000 Rainfall (mm) 1000 30 30

20 20 500 500 10 10

0 0 0 0 juillet-06 août-06 septembre-06 octobre-06 juin-07 juillet-07 août-07 septembre-07 octobre-07 novembre-07 FigureV17:AtstationrainfallandSSCrelationshipfortheRiverSirbaatTiambiandGarbéKourou(2006and2007)

194 Theconcentrationvaluesofthesedimentsizeclassespresentinsuspensionarepresentedwith correspondingriverdischargefortheSirbaRiveratTiambiandatGarbéKourouinFigureV 18.

Highconcentrationsoffinesedimentoftheclaytomediumsiltclass(040m)aretransported by the Sirba River between the start of the runoffseasonandthemiddleofJuly.Duringthis period,SSCpeaksforthisclassoccuratthesametimeasthedischargepeaksthatoccuronthe risinglimboftheSirba’shydrograph.AsriverdischargecontinuestoincreaseinmidJulyand August,therelativeproportionsofthe040msedimentinsuspensiondecreasesandthestream flowentrainsagreaterproportionoflargerparticles.Inparticular,atGarbéKourou,inAugust andSeptember,theSirbatransportsupto500mg/lofsedimentparticlesinthe126630mas wellasthe6311600mclasses.

TheobservationsfortheSirbaRivermaybeexplainedbytheoccurrenceoferosionduetothe raindropimpactearlyintherainyseason,transportingtheavailablefineparticlesatthestartof theseasonuntilsupplyisdepleted.TheSirbaRiverthereafterbeginstotransportmuchlarger particlesthatarelikelyfromtheriverbed.

ThemeandistributionofsuspendedsedimenttransportedbytheSirbaRiveratTiambiandat GarbéKourou for the 2006/07 and 2007/08 seasons is presented in Figure V 19. In comparisontotheGorouolRiver,theSirbatransportedaslightlylowerpercentageofparticlesin the040mclassbutahigherpercentageofthelargestsedimentclass(6301600m).

195 River Sirba at Tiambi River Sirba at Tiambi River discharge River discharge 0-40 µm 0-40 µm 350 3000 350 41-70 µm 3000 41-70 µm 71-125 µm 71-125 µm 300 300 126-630 µm 126-630 µm 2500 2500 631-1600 µm 631-1600 µm 250 250 /s) /s) 2000 2000 3 3 200 200 1500 1500 150 150 SSC(mg/l) SSC(mg/l) 1000 1000 Discharge(m Discharge (m Discharge 100 100

50 500 50 500

0 0 0 0 juin-06 juillet-06 août-06 septembre-06 octobre-06 juin-07 juillet-07 août-07 septembre-07 octobre-07

River Sirba at G-Kourou River Sirba at G-Kourou

River discharge 350 River discharge 3000 350 3000 0-40 µm 0-40 µm 41-70 µm 41-70 µm 300 300 71-125 µm 71-125 µm 2500 2500 126-630 µm 126-630 µm 631-1600 µm 250 631-1600 µm 250 2000 2000 /s) /s) 3 3 200 200 1500 1500 150 150 SSC(mg/l) SSC(mg/l) Discharge(m Discharge (m Discharge 1000 1000 100 100

500 500 50 50

0 0 0 0 juin-06 juillet-06 août-06 septembre-06 octobre-06 juin-07 juillet-07 août-07 août-07 septembre-07 octobre-07 FigureV18:RiverdischargeandSSCrelationshipfortheRiverSirba(accordingtosizeclass)atTiambiandGKourou(2006and2007)

196 0-40 µm 80 41-70 µm 0.6 71-125 µm 70 631-1600 µm 126-630 µm 60 0.4 50

40

30 0.2 20

10 Sediment size distribution byclass(%) Sediment size distribution by class(%) by distribution size Sediment 0 0 TI GK TI GK Measuring stations Measuring stations FigureV19:MeansuspendedsedimentsizedistributionbypercenttransportedbytheRiverSirbaatTiambi(n=123samples)andGKourou (n=168samples)

197 5.2.3. Changesinsedimentparticlesizedistribution TheSSCrelationshiptosedimentgrainsizetransportedintheSirbaissimilartotheobserved 0relationshipintheGorouol.Thepercentagesizecompositionofthesuspendedsedimentfor theSirbaatTiambiispresentedinFigureV20.Therelationshipbetweenthesedimentsizesin suspensionandSSCissimilartothatdescribedfortheGorouolRiverinFigureV13.FigureV 20,whichisalsorepresentativeoftheSirbaatGarbéKouroushowsthatsampleswithhighSSC valuesarecomposedofahighpercentageofparticlesinthe040mclass.Ontheotherhand, lowconcentrationsedimentsampleshaveahighpercentageofcoarserparticles,andinparticular, the 126630m class. The Sirba River transports a higher percentage of particles larger than 40mincomparisontotheGorouolRiver.

River Sirba at Tiambi

100 90 80

70 0-40 µm 60 41-70 µm 50 71-125 µm 40 126-630 µm 631-1600 µm 30 20 % volume% in suspension 10 0 0 500 1000 1500 2000 2500 3000 SSC (mg/l) FigureV20:SSCandparticlesizedatafortheRiverSirbaatTiambi

Therelationshipoffourofthesuspendedsedimentsizeclasseswithriverdischargeisdescribed in Figure V21 for theSirba River at Tiambi. Contrary to the relationship observed for the Gorouol at Alcongui, in the Sirba, as river discharge increases, the percentage of 040m particles in suspension reduces. The percentage of other classes (from 41m to 630m) transportedinsuspensionincreaseswithincreasingriverdischarge.Thisappearstoindicatethat asriverdischargeincreasesbedmaterialiserodedandthusthepercentageofveryfineparticlesin suspensionbeginstodecreasewhilelargeparticlesbegintoincrease.

198

0-40 µm 41-70 µm River Sirba at Tiambi River Sirba at Tiambi Linéaire (0-40 µm) Linéaire (41-70 µm)

100 20 90 18 80 16

70 14 60 12 50 10 40 8 30 6 % volume in suspension % volume in suspension 20 4 10 2 0 0 0 50 100 150 200 250 0 50 100 150 200 250 River discharge (m 3/s) River discharge (m 3/s)

71-125 µm 126-630 µm River Sirba at Tiambi River Sirba at Tiambi Linéaire (71-125 µm) Linéaire (126-630 µm)

18 45

16 40

14 35

12 30

10 25

8 20

6 15

% volume in suspension 4 % volume in suspension 10

2 5

0 0 0 50 100 150 200 250 0 50 100 150 200 250 River discharge (m 3/s) River discharge (m 3/s) FigureV21:RiverdischargeandparticlesizerelationshipfortheRiverSirbaatTiambi

199 5.3. Discussionofthesedimentcharacteristicsin theSahelianbasins The two Sahelian basins that were studied showed different sediment characteristics. The GorouolRiverbasintransportsfinersedimentincomparisontotheSirbabasin.TheGorouol carriesveryfineparticleslessthan40mwhilethe4070msizeclassdominatesthesuspended sedimentoftheSirbaRiver.TheriverbedmaterialintheSirbawasfoundtobecoarserthanthe materialintheGorouol.Thefinestsedimentclass(040m)increasedwithriverdischargeinthe GorouolRiverwhilethereversewasthecaseintheSirbaRiver.

Ashasbeennotedpreviously,thevariabilityofSSCinthesetworiverbasinsisnotonlydueto riverdischargebutalsotoprecipitationandsedimentavailability.Inadditiontotheamountof precipitation, the rainfallintensity may provide a better relationship between rainfall and SSC values. The relationship between the median particle size of suspended sediment and river dischargefortheGorouolandSirbariversispresentedinthreesubsetseach:alldata,dataforthe risingphaseoftheriver’sdischargeanddataforthefallingstageoftheriver’sdischarge.

Theregressioncoefficientsofthefittedcurvesforthestationsonthetributariesarepresentedin TableV5showingthedegreetowhichriverdischargeisresponsibleforthevariationinthe mediansizeofsuspendedsediment.TherelationshipbetweenriverdischargeandD 50 isstronger fortherisinglimbofthetributaries’hydrographs.Themediangrainsize(D 50 )wasrelatedtoriver dischargebyasecondorderpolynomialequation(EquationV2),orbyanexponentialequation (EquationV3).

D = αQ 2 + βQ + γ 50 EquationV2

D = α * e βQ + γ 50 EquationV3

Table V 5: River discharge and suspended sediment size relationship for the Gorouol andSirbarivers

Location Data α β γ R² Equation N Alcongui All 22.78 -0.0992 2.633*10 -4 0.1135 2° Polynomial 122 (Gorouol) Rise 21.55 -0.142 3.768*10 -4 0.4028 2° Polynomial 67 Fall 19.01 -0.809 0.0003 0.294 2° Polynomial 25 Tiambi All 17.19 0.1539 -0.0004734 0.0756 2° Polynomial 97 (Sirba) Rise 17.64 0.0038 0 0.33 Exponential 55 Fall 38.89 0.001394 0 0.12 Exponential 23 Garbé All 11.16 0.2117 -0.0005827 0.0935 2° Polynomial 163 Kourou Rise 14.85 0.004253 0 0.24 Exponential 81 (Sirba) Fall 39.49 0.001697 0 0.06 Exponential 39

200 5.4. ResultsforthemiddleNigerRiver The characteristics of the sediment samples collected at sevenlocationsalongthemiddleNigerRiverbetween2005 and2008arepresentedinthefollowingparagraphs.

5.4.1. Riverbedsediments An analysis of the bed sediment along the middle Niger River indicated that themedian particle size ranged from 120mto450m.Themedianparticlesizedecreasevery slightly between Ayorou and FariéHaoussa, but at Latakabiey, there is a sharp increase in the size of the riverbed material. At Niamey, the median particle size decrease and thereafter continues to increaseuptoDiabouKiria(seeFigureV22).AtthestationsalongthemiddleNigerRiver, sandsizedparticles(>63microns)makeupbetween90to100%oftheriverbedmaterialexcept atFariéHaoussawhere10%oftheriverbedmaterialarelessthan55m.

500 450 400 350 300 250 200 150 100 Median bed material size (µm) size bedmaterial Median 50 0 AY KD FH LT NY BR DK FigureV22:MeanbedmaterialsizealongthemiddleNigerRiver

The size of riverbed material typically decreases with increasing distance downstream and is attributedtoacombinationofabrasion,weatheringandselectiveentrainmentoffinerparticles.It hasbeenrecognizedthattributariescandisruptthesefiningpatterns[J E Pizzuto ,1995]. TheslightdecreaseinthemedianparticlesizeofriverbedmaterialbetweenKandadjiandFarié HaoussamayindicatethattheDargolRiver(thetributary between the two stations) does not createadiscontinuityinriverbedmaterialsizeasobservedfortheSirbaNigerconfluence.Onthe otherhand,theothertributariesbetweenNiameyandBrigambou(theGoroubi,theDiamangou

201 andtheTapoa)mayhaveasignificanteffectontheriverbedmaterialsizeofthemiddleNiger River.AccordingtoHooke[2003],insufficienttransportingcapacitytotransportcoarsesediment mayproducean“unconnectedsystem”ordiscontinuityinthesizeofriverbedmaterialasoccurs atLatakabieyalongthemiddleNigerRiver.ThesizesofbedmaterialoftheSirbaRiveratTiambi andgarbeKouroumayaffecttheincreaseinbedmaterialsizeobservedbetweenFariéHaoussa andLatakabiey.

5.4.2. Suspendedsedimentconcentrations Suspended sediment sampling started at Niamey in December2005,whilesamplingattheotherstations began in June 2006. In the first sampling season (2006/07),samplingatallstationsexceptatNiamey wasfromJunetoOctoberonly.Thiswasinorderto evaluate the effect of the local rainy season and tributarysedimentfluxontheRiverNiger.Forthe second season, an attempt was made to continue sampling throughout the hydrological year, by samplingdailybetweenJuneandOctoberandat3 dayintervalsbetweenNovemberandMay,becauseitwasassumedthatsedimenttransportinthe latterperiodshowslessvariationwithtime.SamplingatAyoroustoppedinOctober2007dueto operational problems while at Niamey sampling was interrupted between January 2008 and March2008.FigureV23displaystherelationshipbetweenmeancrosssectionalSSCandriver dischargealongthemiddleNigerRiver,fortheperiodofmeasurement.

SSCvaluesinthemiddleNigerRiverforthestudyperiodrangedfromabout7mg/ltoover 4000mg/l.TheclearestdistinctionbetweenSSCvaluesintherainyseasonanddryseasonis observedforthesouthernpartofthemiddleNigerRiver(BrigambouandDiabouKiria),where concentrationsreach1500mg/lbetweenJuneandOctoberandarerarelyaboveabout500mg/l inthedryseason.

Data from the present study shows that in general thehighestsedimentconcentrationsinthe middleNigerRiveroccurbetweenJuneandAugust(seeFigureV23).FigureV23showsthat inadditiontohighsedimentconcentrationvaluesbetweenJuneandAugust,highSSCvalues wereobservedattheNigeratKandadjiandFariéHaoussabetweenJanuaryandApril.Atthe Niameystation,inadditiontothepeakSSCvalues thatoccurbetweenJuneandAugustSSC valuesremainrelativelystablethroughouttheyeardroppingwellbelow500mg/lonlybetween AprilandMay.

202 Discharge Discharge River Niger at Ayorou 2006 to 2008 River Niger at Kandadji 2006 to 2008 SSC SSC 2000 4500 2000 4500

1800 4000 1800 4000 1600 1600 3500 3500 1400 1400 3000

3000 /s) 3 /s)

3 1200 1200 2500 2500 1000 1000 2000 2000 800 SSC(mg/l)

800 SSC(mg/l)

Discharge(m 1500 Discharge(m 1500 600 600 400 1000 1000 400 200 500 200 500 0 0 0 0 juin-06 sept décembre- mars-07 juin-07 sept décembre- mars-08 juin-08 juin-06 septembre-06 décembre-06 mars-07 juin-07 septembre-07 décembre-07 embre-06 06 embre-07 07

Discharge Discharge River Niger at F-Haoussa 2006 to 2008 River Niger at Latakabiey 2006 to 2008 SSC SSC 2000 4500 2000 4500

1800 4000 1800 4000 1600 1600 3500 3500 1400 1400 3000 3000 /s) /s) 3 3 1200 1200 2500 2500 1000 1000 2000 2000 SSC(mg/l) 800 SSC(mg/l) 800 Discharge(m Discharge(m 1500 1500 600 600 1000 400 1000 400

200 500 200 500

0 0 0 0 juin-06 septembre- décembre- mars-07 juin-07 septembre- décembre- mars-08 juin-08 juin-06 septembre- décembre- mars-07 juin-07 septembre- décembre- mars-08 juin-08 06 06 07 07 06 06 07 07

203 Discharge Discharge River Niger at Niamey 2005 to 2008 River Niger at Brigambou 2006 to 2008 SSC SSC 2000 4500 2000 4500

1800 4000 1800 4000 1600 3500 1600 3500 1400 1400 3000 3000 /s) /s) 3 1200 3 1200 2500 2500 1000 1000 2000 2000 SSC(mg/l) 800 800 SSC(mg/l) Discharge(m 1500 Discharge(m 1500 600 600

400 1000 400 1000

200 500 200 500

0 0 0 0 décembr mars-06 juin-06 août-06 novembr février- mai-07 août-07 novembr février- mai-08 juin-06 septembre- décembre- mars-07 juin-07 septembre- décembre- mars-08 juin-08 e-05 e-06 07 e-07 08 06 06 07 07

Discharge River Niger at D-Kiria 2006 to 2008 SSC 2000 4500

1800 4000

1600 3500 1400 3000 /s) 3 1200 2500 1000 2000

800 SSC(mg/l)

Discharge(m 1500 600

400 1000

200 500

0 0 juin-06 septembre- décembre- mars-07 juin-07 septembre- décembre- mars-08 juin-08 06 06 07 07 FigureV23:RiverdischargeandSSCrelationshipforthemiddleNigerRiver.

204 Theparticlesizedistributionofsomeofthesuspendedsedimentsampleswasdeterminedandis presentedinrelationshiptoriverdischargeandSSCinFigureV24.Foreachstation,theparticle size distribution of between 130 and 200 samples was analysed in order to gain a better understandingoftherelativeamountsofeachsedimentsizeclasstransportedduringthedifferent sedimenttransportphasesobservedinFigureV23.

ThefirstSSCpeakthatiscommontoallthestationsisduetothelocalrainyseasonandtributary sedimentdischargetotheNigerRiver.FigureV24supportsthisassertionbecauseitshowsthat theobservedhighSSCvaluesbetweenJuneandAugustaremainlycomposedofsedimentinthe 040msizeclass.

ThesecondperiodofhighSSCvaluesobservedatKandadjiandFariéHaoussabetweenJanuary andApril(seeFigureV23)arecomposedmainlyoflargersizedsedimentparticles.Itisapparent thatthisincreaseinsedimentconcentrationoccurringinthedryseasonisnotduetotributary contributionorrainfalleffectsbecausetheyconsistmainlyofcoarseparticlesandispossiblydue tosedimenttransferfromupstreamofthestudyarea(theNiger’sinteriordelta).FigureV24 showsthatthesehighSSCvaluesarecomposedmainlyofrelativelylargesedimentparticlesin thefinetomediumsandrange(71to630m).

205 River discharge River Niger at Ayorou River Niger at Kandadji River discharge 0-40 0-40 µm 40-70 41-70 µm 2000 70-125 4500 2000 4500 71-125 µm 125-630 1800 1800 126-630 µm 630-1600 4000 4000 631-1600 µm 1600 1600 3500 3500 1400 1400 3000 3000 1200 1200 2500

2500 /s 3

/s 1000 3 mg/l 1000 m mg/l m 2000 2000 800 800 1500 1500 600 600 1000 1000 400 400 200 500 200 500 0 0 0 0 juin-06 septembre- décembre- mars-07 juin-07 septembre- décembre- mars-08 juin-08 juin-06 septembre-06 décembre-06 mars-07 juin-07 septembre-07 06 06 07 07

River Niger at F-Haoussa River discharge River Niger at Latakabiey River discharge 0-40 µm 0-40 µm 41-70 µm 41-70 µm 2000 4500 2000 4500 71-125 µm 71-125 µm 1800 126-630 µm 4000 1800 126-630 µm 4000 631-1600 µm 631-1600 µm 1600 1600 3500 3500 1400 1400 3000 3000 1200 1200 2500 2500 /s /s 3 1000 3 1000 mg/l mg/l m m 2000 2000 800 800 1500 1500 600 600 1000 1000 400 400

200 500 200 500

0 0 0 0 juin-06 septembre- décembre- mars-07 juin-07 septembre- décembre- mars-08 juin-08 juin-06 septembre- décembre- mars-07 juin-07 septembre- décembre- mars-08 juin-08 06 06 07 07 06 06 07 07

206 River discharge River Niger at Niamey 0-40 µm River Niger at Brigambou River discharge 41-70 µm 0-40 µm 2000 71-125 µm 4500 2000 41-70 µm 4500 126-630 µm 71-125 µm 1800 631-1600 µm 4000 1800 126-630 µm 4000 631-1600 µm 1600 1600 3500 3500 1400 1400 3000 3000 1200 1200 2500 2500 /s /s 3 1000 3 1000 mg/l mg/l m 2000 m 2000 800 800 1500 1500 600 600 1000 1000 400 400

200 500 200 500

0 0 0 0 décembre- mars-06 juin-06 septembre- décembre- mars-07 juin-07 septembre- décembre- mars-08 juin-08 juin-06 septembre- décembre- mars-07 juin-07 septembre- décembre- mars-08 juin-08 05 06 06 07 07 06 06 07 07

River Niger at D-Kiria River discharge 0-40 µm 41-70 µm 2000 4500 71-125 µm 1800 126-630 µm 4000 631-1600 µm 1600 3500 1400 3000 1200 2500 /s 3 1000 mg/l m 2000 800 1500 600 1000 400

200 500

0 0 juin-06 septembre- décembre- mars-07 juin-07 septembre- décembre- mars-08 juin-08 06 06 07 07 FigureV24:RiverdischargeandSSCrelationship(accordingtosizeclass)forthemiddleNigerRiver

207 Ingeneral,atmostofthestationsalongthemiddleNigerRiver,itwasobservedthatthefirst hydrographpeakthatoccursduringtherainyseasonbetweenJuneandSeptembertransportsa highpercentageofthefinestsedimentclass.TheexceptionistheNiameystation,wherehigh concentrations of sediment particles in the 126m to 630m class are transported between AugustandSeptember(seeFigureV24).

Consideringthatthisbehaviourwasnotobservedat otherstationsalongtheNiger,andthatthereareno conventional tributaries between Latakabiey and Niamey, this incidents may be due to such point sources as the “koris” that have been observed aroundNiamey.Inaddition,significanttransport of the 126630m sediment class was not observed downstreamofNiameyatBrigambouindicatingthat depositionofthissizeofsedimentmaybeexpected between Niamey and Brigambou. Further investigation on the characteristics of the sediment transportedbythese“koris”isrequiredtoconfirmthissupposition.

ThemeandistributionofsuspendedsedimenttransportedbythemiddleNigerRiverduringthe study period is presented as histograms in Figure V 25 (Ayorou AY , Kandadji KD , Farié Haoussa FH ,Latakabiey LT ,Niamey NY ,Brigambou BR ,DiabouKiria DK ).

Theplotshowingthesizecompositionofthesedimenttransportedinsuspensionindicatesthat the040msizeclassincreasesalongtheNigerRiverfromAyorouuptoLatakabiey.Between LatakabieyandNiamey,thepercentageofthe040mtransportedreducesabruptly,andthen increases again from Niamey to DiabouKiria. This could indicate that there is a zone of sedimenttransferdiscontinuitybetweenLatakabieyandNiameyorthatthereexistsasediment sourcezonesupplyingcoarsesedimenttotheNigerRiverbetweenthesetwostations.

Theoppositebehaviourisobservedforalltheothersizeclasses:,thepercentageinsuspensionof the 4170m, the 71125m and the 6301600m size classes decrease steadily downstream fromAyoroutoLatakabiey,increaseatNiameyandthen continue decreasing downstream to DiabouKiria.Theabruptdecreaseinthe6301600msizeclassbetweenAyorouandKandadji isduetoadecreaseinbedshearvelocitybetweenthetwostationsaswellastheeffectofthe GorouolRiver’sfinesedimentinputthatispreferentiallytransported.

Theexceptionisthe126630m(finetomediumsand)class,whichdecreasesinthedownstream direction from Ayorou to FariéHaoussa. At Latakabiey, there is a slight increase in the percentageofthissizeclass,andafurtherincreaseatNiamey.

208

0-40 µm 70 41-70 µm 2.0 71-125 µm 631-1600 µm 60 126-630 µm 1.6 50

1.2 40

30 0.8

20 0.4 10 Sediment size distribution by class(%) by distribution size Sediment Sediment size distribution by class (%) class by distribution size Sediment 0 0.0 AY KD FH LT NY BR DK AY KD FH LT NY BR DK Measuring station Measuring stations FigureV25:MeansuspendedsedimentsizedistributionbypercenttransportedbythemiddleNigerRiver

209 5.4.3. ChangesinmeanSSCalongthemiddleNigerRiverbysize class ThemeanvalueSSCtransportedbysizeclassbetween2006and2008atstationsalongthemiddleNiger RiverarepresentedinFigureV26andFigureV27.SSCvaluesforthe040mclassarerepresented alongtheprincipalyaxis,whiletheSSCvaluesforthecoarsersizeclasses(41125m)arerepresentedon thesecondaryyaxisinFigureV26.TheentrypointsofthemiddleNiger’stributariesareshownbetween the stations in Figure V 26 and Figure V 27. Mean SSC values of the 6311600m size class are presentedinFigureV27

600 140 0-40 µm 41-70 µm 71-125 µm 120 500 FH 126-630 µm

KD 100 400 LT 80 NY DK 300 BR mg/l AY mg/l 60

200 40

100 GOROUBI 20 DIAMANGOU GOROUOL DARGOL SIRBA MEKROU TAPOA

0 0 FigureV26:MeanSSCvaluestransportedalongthemiddleNigerRiver(0630m)

The plot of mean sediment concentration over the study period measured at seven stations along the NigerRiverindicatesthefollowingbehaviourforthefivesedimentclasses: • Clay to medium silt (040m): The mean concentration of this class increases exponentially betweenAyorou(180mg/l)andLatakabiey(470mg/l). After Latakabiey, the mean sediment concentration of the 040m sediment diminishes at Niamey before increasing slightly at Brigambou.AfurtherincreaseinthemeanconcentrationofthissedimentclassatDiabouKiria isobservedandispossiblyduetofinesedimentsupplyfromtheMékrouRiver

210 • Coarsesilt(4170m):TheconcentrationofthisgrainsizeclassincreasesalongthemiddleNiger Riverinadownstreamdirectionbutunlikethe040mclass,itreachesapeakatFariéHaoussa. BetweenFariéHaoussaandBrigambou,theconcentrationofthissedimentclasscontinuesto decrease.AtDiabouKiria,likeforthe040mclass,anincreaseinthesedimentconcentration ofthe4170mclasswasobserved.

• Veryfinesand(71125m):ThemeanconcentrationofveryfinesandincreasesbetweenAyorou andFariéHaoussa.AtLatakabiey,theconcentrationofthissedimentclassdecreases,increasing again slightly at Niamey. After Niamey, the concentration of very fine sand in suspension decreasesprogressivelyupuntilDiabouKiria.

• Finetomediumsand(126630m):Thetrendobservedfortheveryfinesandclassisrepeated forthisclassofsedimentinsuspension.Theonlydifferenceisthattheincreaseinconcentration ofthefinetomediumsandclassbetweenLatakabieyandNiameyismoreabrupt. .

5

KD

4 631-1600 µm AY FH

3 mg/l NY BR 2

DK LT 1

GOROUBI DIAMANGOU GOROUOL DARGOL SIRBA MEKROU 0 TAPOA FigureV27:MeanSSCvaluestransportedalongthemiddleNigerRiver(6311600m)

• Coarse to very coarse sand (6311600m): The concentration of coarse sand transported in suspensionalongthemiddleNigerisrelativelyhighbetweenAyorouandFariéHaoussaandlow thereafter.BetweenAyorouandFariéHaoussa,theconcentrationofthissizeclassinsuspension

211 increasesatKandadjiandthendecreasesatFariéHaoussa.Asharpfallintheconcentrationof coarse sand is observed between FariéHaoussa and Latakabiey. A slight increase in the concentration of coarse sand occurs between Latakabiey and Niamey, after which its concentrationdecreasesuntilDiabouKiria. AsummaryoftheobservationsforstretchesbetweenthemeasuringstationsalongthemiddleNigerRiver canbemadeasfollows:

• Ayorou to Kandadji: The concentration of all sediment classes increase between Ayorou and Kandadji,indicatingtheavailabilityofallclassesofsediment.Themediansizeofthebedmaterial measuredatAyorouwas130mandabout98%oftheparticleswerelargerthanabout100m. Itcanthereforebeassumedthattheveryfinesedimenttransportedinthisstretchismainlydue tolanderosionbetweenAyorouandKandadji.

• Kandadji to FariéHaoussa: The trend of increasing sediment concentration for all classes continuesbetweenKandadjiandFariéHaoussa.

• FariéHaoussatoLatakabiey:Theconcentrationofthefinestsedimentclass(040m)increases whiletheconcentrationofallsedimentlargerthan40mdecreases.Thesupplyandtransferof washloadcanbeobservedbetweenFariéHaoussaandLatakabiey.Thedecreaseinconcentration ofallsedimentsizeslargerthan40mindicatessedimentdeposition.Thismayalsoexplainthe relativelylargesizeoftheriverbedmaterialatLatakabiey.Themediangrainsizewas340mand the10%ofthebedmaterialwaslessthan140m.

• LatakabieytoNiamey:BetweenLatakabieyandNiameyitwasobservedthattheconcentrationof sedimentsizeslessthan 70mreducedwhiletheconcentration of sediment sizes larger than 70mincreased.Thisindicatesadifferenceinthesourcesofsedimentbetweenthetwostations.

• Niamey to Brigambou: An increase in fine sediment concentration was observed between NiameyandBrigambou.Areductionofthemeanconcentrationofallsizeslargerthan40m occursbetweenNiameyandBrigambouindicatingthedepositionofsedimentgreaterthanabout 40m.

• BrigamboutoDiabouKiria:Thesedimentconcentrationofthesizeslessthan70mincreases whiletheconcentrationofsedimentlargerthan70mdecreases.Thisisanindicationofthesize ofsedimentsuppliedbytheMékrouRiver(<70m). TheSSCandparticlesizedataforthestationsalongthemiddleNigerRiverispresentedinFigureV 28andtheyshowasimilarrelationshiptovaryingdegreestotheobservationsfortheGorouolriver seeFigureV13.

212

River Niger at Kandadji 0-40 µm River Niger at Ayorou 41-70 µm 71-125 µm 100 100 126-630 µm 90 90 631-1600 µm 80 80 0-40 µm 70 70 41-70 µm 60 60 71-125 µm 50 126-630 µm 50 40 631-1600 µm 40 30 30 20

% volume in suspension in volume % 20 % volume in suspension in volume % 10 10 0 0 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 SSC (mg/l) SSC (mg/l)

0-40 µm River Niger at Latakabiey 0-40 µm 41-70 µm River Niger at F-Haoussa 41-70 µm 71-125 µm 100 71-125 µm 126-630 µm 100 90 126-630 µm 631-1600 µm 90 80 631-1600 µm 80 70 70 60 60 50 50 40 40 30 30 20

% volume in suspension in volume % 20 % volume in suspension in volume % 10 10 0 0 0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 4000 SSC (mg/l) SSC (mg/l)

213 River Niger at Niamey 0-40 µm River Niger at Brigambou 41-70 µm 0-40 µm 100 71-125 µm 100 41-70 µm 90 126-630 µm 90 71-125 µm 80 126-630 µm 631-1600 µm 80 70 631-1600 µm 70 60 60 50 50 40 40 30 30 20

% volume in suspension in volume % 20 10 suspension in volume % 10 0 0 0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 SSC (mg/l) SSC (mg/l)

0-40 µm River Niger at D-Kiria 41-70 µm 71-125 µm 100 126-630 µm 90 631-1600 µm 80 70 60 50 40 30 20 % volume in suspension in volume % 10 0 0 1000 2000 3000 4000 5000 SSC (mg/l) FigureV28:SSCandparticlesizedataforthemiddleNigerRiver

214 5.4.4. SeasonaleffectsontheriverdischargeSSCrelationship TwopeakscharacterizethemiddleNigerRiver’shydrograph;thefirstpeakisduetotributary contributionduringthelocalrainyseason(inAugustorSeptember)andthesecondpeakthat occursinDecemberorJanuaryisduetothepeakoftheUpperNigerRiverdelayedduetothe bufferingactionoftheinlanddelta.Itwasnecessarytoanalysethesedimentdatainlightofthe hydrologicalandseasonalbehaviourofthemiddleNigerRiverinordertodeterminetheseasonal and sediment source effects. The data can be divided into four distinct groups, the limits of whichareevidentfromthemiddleNigerRiver’shydrographshowninFigureV29fortheNiger atNiamey.AlltheotherstationsalongthemiddleNigerexhibitsimilarcharacteristicstovarying degrees.ThefollowingfourgroupsaredistinguishedinFigureV29:

• Therisinglimbofthehydrographduetothelocalrainyseason(1);

• Thefallinglimbofthehydrographthatoccursattheendofthelocalrainyseason(2);

• TherisinglimbofthehydrographduetopeakingofUpperNigerriverthatoccursin thelocaldryseason(3);

• ThefallinglimbofthehydrographduetoUpperNigerriver(4)

Le Niger à Niamey

1 2 3 4 2006/07 /s) 3

Débit (m Débit Crue amont Crue locale

juin sept déc mars juin Temps FigureV29:CharacteristichydrographofthemiddleNigerRiver

The relationship between the percentage particle size in suspension and river discharge is presentedinFigureV30.Itwasobservedthattovaryingdegrees,thesedimenttransportedin suspensionalongthemiddleNigerRiverfollowedtherelationshippresentedinFigureV32.

215

Rainy-rising limb 0-40 µm Rainy-rising limb 41-70 µm Linéaire (0-40 µm) Linéaire (41-70 µm) 100 40 90 35 80 30 70 60 25 50 20 40 15 30 10 20 % volume in suspension % volume in suspension 10 5 0 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 River discharge (m 3/s) River discharge (m 3/s)

Rainy-falling limb Rainy-falling limb 0-40 µm 41-70 µm 100 Linéaire (0-40 µm) 30 Linéaire (41-70 µm) 90 25 80 70 20 60 50 15 40 10 30 20 % volume in suspension % volume in suspension 5 10 0 0 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 River discharge (m 3/s) River discharge (m 3/s)

216 Dry-rising limb 0-40 µm Dry-rising limb 41-70 µm Linéaire (0-40 µm) Linéaire (41-70 µm) 100 40 90 35 80 30 70 60 25 50 20

40 15 30 10 20 % volume in suspension % volume in suspension 10 5 0 0 0 500 1000 1500 2000 0 500 1000 1500 2000 River discharge (m 3/s) River discharge (m 3/s)

Dry-falling limb Dry-falling limb 0-40 µm 41-70 µm 100 Linéaire (0-40 µm) 30 Linéaire (41-70 µm) 90 80 25 70 20 60 50 15 40 10 30 20 % volume in suspension % volume in suspension 5 10 0 0 0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800 River discharge (m 3/s) River discharge (m 3/s) FigureV30:RiverdischargeandparticlesizerelationshipfortheRiverNigeratKandadji

217 FigureV30ispresentedonlytoshowthegeneraltrendintherelationshipbetweenriverdischargeand thevolumeofsedimentclassesinsuspension,asthereexistsareasonableamountofscatterinsomeofthe plots. Twomajortrendswereobserved,oneforfinesedimentbetween0and40mandasecondtrendfor sedimentbetween41and70m.Thecoarsersedimentfrom711600mfollowsthetrendobservedfor the4170msizeclass. ItcanbenotedinFigureV30thatasthemiddleNigerRiver’shydrographrisesduringthelocalrainy season(JunetoSeptember),thepercentageofsuspendedsedimentparticlestransportedincreases.Thisis becausesedimentfineparticles,whichareeasilyeroded,aretransferredfromtheriver’sbasintotheNiger. Atthesametime,thepercentageoflargerparticles(411600m)insuspensiondecreasesbecausemore finesedimentistransported. AsthemiddleNigerRiver’shydrographfallsattheendoftherainyseason,thepercentageof040m sizedsedimentinsuspensionincreases.Thisindicatesthatthelocalrainyseasondischargepeaksupplies mainly the 040m sediment class. As discharge and velocity reduces, the larger sizes that were also entrainedbytheflowsettlecausinganincreaseinthe040mclass. InthedryseasonasthemiddleNigerRiver’shydrographrisesforasecondtime(aroundDecember),the percentageoffineparticles(040m)decreasesandthepercentageofcoarseparticles(411600m)in suspensionincrease.Thisisduetoupstreamsediment supply of coarser sediment and entrainment of coarserriverbedmaterial. ForthefallinglimbofthemiddleNigerriver‘shydrograph(January/February),seasonaleffectsandthe availabilityofsedimentarethecontrollingfactors.Thepercentageof040msizedsedimentdecreasesas dischargedecreases.ThisismainlybecauseofareductionintransferoffinesedimenttotheNigerand becauseathighdischargeevenonthefallinglimb,theriverisabletotransportcoarserriverbedmaterial. AsummaryofthesedimentsupplydynamicsalongthemiddleNigerRiverispresentedbelowforthetwo highdischargephasesofthemiddleNigerRiver. Risinglimbrainyseason

• At Ayorou, the suspended sediment of 040 m and 4170 m the size classes decrease as dischargeincreasesduringthelocalfloodthatoccursintherainyseason.Thelargersizeclasses (71125mand126630m)increasewithincreasingriverdischarge.ThisindicatesthatatAyorou sedimentdischargeissupplylimited,asthereisadeficiencyoffinesedimentevenatthestartof therainyseason.

218 • AtKandadji,FariéHaoussa,Latakabiey,andDiabouKiria,asdischargeincreasesduringthelocal rainyseason,thepercentagebyvolumeinsuspension of the 0–40 m size class increases. The percentage of the larger size classes in suspension decreases with increasing discharge. This indicatesthatfinesedimentisavailablefortransportintotheNigerRiveraroundthesesstations.

• The relationship is more complex for the stations at Niamey and Brigambou where the relationship between discharge and suspended sediment size is a quadratic function. As river dischargeincreasesduringthelocalrainyseason,thepercentageofsedimentinthe0–40mclass increasesuptoapointandthenbeginstodecreasefollowingaquadraticrelationshipwithriver discharge.Theothersizeclassesbetween41mand630mdisplaytheinverserelationshipwith discharge.Thisnonlinearitymayindicatethattherearetwodistinctsuspendedsedimentsources, thefirstsourcesupplyfine(040m)sediment,andthesecondsource,whichistransportedafter certaintimelagprovidinglargersizedsediment.

Risinglimbdryseason

• At Ayorou, Kandadji, FariéHaoussa, Brigambou and DiabouKiria as river discharge increases duringthesecondpeakoftheNigerRiver’shydrograph,thepercentagevolumeinsuspensionof the 040 m size class decreases. The size classes between 41 and 630m increase with river dischargeduringthisphaseofriverdischarge.Thisindicatesthatduringthefirstpeakdischarge duetothelocalflood,thesedimentdepositsweremainlylargerthan40m.

• AtLatakabiey,thereverseisthecaseasthesedimentparticlesbetween0and70mincreasesas riverdischargeincreaseswhilethepercentageoflargersedimentbetween71and630mreduces withincreasingdischarge.Thedischargerelationshipwiththesizefractionbetween0and70mat Latakabieyindicatesthatasignificantamountofrelativelyfineparticlesbetween0and70mwere depositedbetweenFariéHaoussaandLatakabieyduringtherainyseasonandareremobilizedby theseconddischargephaseoftheNigerRiver.

• AtNiameythepercentagevolumeofsedimentsizeslessthan70mreducesastheriverdischarge increaseswhilethepercentagebyvolumeofsedimentsizesbetween70and630mincreaseswith increasingdischarge.

219 5.4.5. DiscussionofresultsfromthemiddleNigerRiver ThereexistsacomplexrelationshipbetweenriverdischargeandSSCinthemiddleNigerRiverbasin.This isduemainlytothevariabilityofsedimentsupplyinthecourseofahydrologicalyear.Thisisofparticular significanceinthemiddleNigerRiverbasinwheretwodistinctdischargepeaksareobserved.Thesemi aridnatureoftheSahelianpartofthestudyareaplaysanimportantroleintheseasonalnatureofveryfine sedimentatthestartoftherainyseason.Inadditiontoriverdischarge,rainfallandoverlandflowplayan importantroleinthetransferofsedimenttothemiddleNigerRiver. Additionally,thesizecompositionofsedimentcontributestothevariabilityofSSCduringahydrological year.RainfallappearstobethemajorfactorcontrollingthetransferoffinesedimenttotheNigerbasinas observedforthetwoSahelianbasins.Thetransportofcoarserparticlesappearstobedependentupon riverdischargebutalsouponthepercentageoffineparticlesalreadyavailableandbeingtransportedbythe river.ThepredictionofSSCisoutsidethescopeofthepresentstudy,butitcanbenotedthatanyattempt atpredictingsuspendedsedimentconcentrationalongthemiddleNigerRivermustconsiderthefactors describedabove.

220 6. SedimentfluxinthemiddleNigerRiverbasin

Thecomputationofsuspendedsedimentdischargeatasectionalongariverinvolvestheapproximationof suspended sediment concentration in the vertical, acrossthestream,andintime.Forthis reason, the errors that occur in estimating the sediment flux are due to the methods applied in collecting a representativesampleandtheinterpolationsthatareinherentincalculatingthesedimentfluxoveragiven period.ThisisparticularlytrueduetothevariabilityofdailySSCvaluesduetotheeffectsofrainfall, surfacerunoff,landuseandotherhumaninfluences.

6.1. Determinationofthesedimentflux Theinstantaneousatastationsuspendedsedimentloadorfluxcanbeestimatedastheproductofthe instantaneous river discharge and the mean suspended sediment concentration in the river section. Interpolation procedures were used to estimate suspended sediment flux on the assumption that the instantaneoussampleconcentrationisrepresentativeoftheintersampleperiod.Phillipsetal.[1999]found that the precision of load estimates declined as sampling frequency was reduced. Errors arising from interpolationareminimizedbyincreasingsamplingfrequency.

Thesedimentfluxandannualriverdischargewerecalculatedasshownbelow.

n 3 × Annualflooddischarge(m ): ∑(Qmean dT ) i=1

n × 6 Annualsedimentdischarge(g): ∑(QC mean dT ) ,canbeexpressedinTonnesbydividingby10 i=1

× Instantaneoussedimentflux(g/s): Qi Ci

Where

3 Q mean (m /s):meandischargefortheperiodbetweentwomeasurements. dT:samplinginterval(s)

3 VolumeduringsamplingintervaldT(m ):Q mean xdT

QiandC i aretheinstantaneousvaluesofdischargeandsuspendedsedimentconcentrationrespectivelyat thetimeofsamplingandnisthenumberofsamples.QC mean istheintersamplemeansedimentflux.

Othermethodsforcalculatingthesedimentfluxhavebeendescribedelsewhere[N Filizola ,2003; G Lienou , 2007].

221 6.2. SedimentfluxalongthemiddleNigerRiver Inthe2006/07wateryear,samplingatthestationsalongtheNigerRiveronlycontinueduptoOctober 2007,exceptfortheNiameystationwheresamplingcontinuedthroughouttheyear.Totalwaterdischarge atNiameyforthe2006/07seasonwas29.1billionm3andthesedimentfluxwas10.35milliontonnes (calculatedusingsinglesampleSSCvalues)or11.66milliontonnes(usingthecorrectedcrosssectional values).ThesedimentfluxalongthemiddleNigerRiverwillbediscussedintermsofthecorrectedcross sectionalvalues.

FromJunetoOctoberofthe2007/08season,sedimentsamplingwasdoneonadailybasis,whilethe samplingfrequencywasreducedto3dayintervalsfortherestoftheyear.Thecumulativeriverdischarge andannualsedimentfluxateachstationalongtheNigerRiverarepresentedinTableV6andincludethe valuesmeasuredatNiameyinthe2006/07wateryear.

ThecumulativeannualriverdischargeincreasesinthedirectionoftheriverflowexceptfortheNiamey Brigambouarea.ThewaterdeficitbetweenNiameyandBrigamboucanbeattributedtotheamountof waterabstractedfordomestic,agricultural,andlimitedindustrialuseinNiamey.AccordingtoFAO[FAO , 1997],theNigerRiveranditstributariesprovideabout90%ofthewaterdemandoftheNigerrepublic. Davis [T Davis ,2003]estimatedthattheagriculturalwaterdemandintheNigerRiverbasinwithinthe republicofNiger(themiddleNiger)isabout1.89billioncubicmetresperyear.

TableV6:SedimentfluxofthemiddleNigerRiver

Station Distancefrom Period WaterDischarge Sedimentflux(10 6 Tonnes/year) nearest (10 9m3/year) upstream Singlesample Crosssectional station(km) estimate Ayorou 2007/08 incomplete incomplete

Kandadji 13 2007/08 24.904 11.67 12.68

FariéHaoussa 105 2007/08 25.132 11.74 12.74 Latakabiey 5 2007/08 26.898 12.36 13.50

Niamey 53 2006/07 29.104 10.41 11.84 2007/08 29.978 15.19 16.36 Brigambou 167 2007/08 26.486 10.03 11.17 DiabouKiria 15 2007/08 29.185 10.10 11.44

TableV6showsthatsedimentdischargeincreasesalongtheNigerRiverintheflowdirectionreachinga maximumatNiamey.

222 As at the time sampling stopped at Ayorou (04/10/2007), 1.91million tonnes of sediment had been measuredatAyorouand2.92milliontonnesofsedimenthadbeentransportedbytheNigeratKandadji.

BetweenKandadjiandFariéHaoussa,thesedimentfluxincreasesonlyslightlyindicatingthattheNiger RiverdoesnotreceivesignificantsedimentinputalongtheKandadjiFariéHaoussastretch.Theincrease insedimentfluxbetweenFariéHaoussaandLatakabieyislargelyduetothesedimentinputoftheSirba River.ThegreatestincreaseinsedimentfluxbetweenanytwostationsoccursbetweenLatakabieyand Niamey.TheNigerbetweenthesetwostationsdoesnotreceiveanymajortributary,butasdiscussedin partIIofthisworkreceivesnumerousungaugedephemeralstreams.Areductioninthesedimentflux occursalongthemiddleNigerRiverbetweenNiameyandBrigamboubyabout5milliontonnesperyear. This amount of sediment that is not transferred fromNiameytoBrigamboumaybedepositedinthe riverbed(forlargeparticles)ormaybeexitingthesystembyoverlanddeposition.

Betweenthe2006/07wateryearandthe2007/08wateryear,thesedimenttransitingatNiameyincreased fromabout11.84milliontonnes/yeartoover16milliontonnes/yearwithonlyaslightincreaseinthe cumulativeriverdischarge.

Thespecificfluxes(fluxperbasinarea)showsimilartrends,seeTableV7.

TableV7:SpecificsedimentfluxalongthemiddleNigerRiver

Station Basinarea(km²) Périod Annualflux(millionT) Specificflux(T/km²) Kandadji 628830 2007/08 12.68 20.2 FariéHaoussa 650380 2007/08 12.74 19.6 Latakabiey 689130 2007/08 13.50 19.6 Niamey 700000 2006/07 11.84 16.9 2007/08 16.36 23.4 Brigambou 736250 2007/08 11.17 15.2 DKiria 757640 2007/08 11.44 15.1

ItistobenotedthattheNiameymeasuringstationwaslocateddownstreamofthewaterretainingsillat Goudel,thereforethedeficitinsedimentbetweenNiameyandBrigambouisnotduetosedimenttrapping orsettlinginthisreservoir.

BetweenBrigambouandDiabouKiria,thereisaslightincreaseinsedimentfluxlargelyduetotheMékrou River. Based on the sediment flux calculated upstream and downstream of the Sirba and the Mékrou rivers, it can be noted that the sediment input to the Niger River by the Sirba River (about 800,000tonnes/year)isalmostthreetimesthatoftheMékrouRiver(about270,000tonnes/year).

223 6.3. Sedimentfluxinthetributaries ThesedimentfluxvaluescalculatedforthetwoSahelianbasinsduringthestudyperiodarepresentedin TableV8.Anincreaseinwaterdischargebetweenthetwoseasonsoccurredinthetwobasinsduringthe studyperiod.

TableV8:SedimentfluxoftheGorouolandSirbaRivers

Station Period Water Sedimentflux(10 6 Discharge(10 9m3/year) Tonnes/year) Alcongui 2006/07 0.814 0.476 2007/08 0.963 1.097 Tiambi 2006/07 0.810 0.497 2007/08 1.650 0.853 GarbéKourou 2006/07 0.848 0.587 2007/08 1.701 1.332

TheGorouoldischargedabout814and963millioncubicmetresofwaterinthe2006/07and2007/08 wateryearsrespectively.Forthesameperiods,theSirbaatGarbéKouroudischarged848millioncubic metresand1.7billioncubicmetresofwater.IncomparisontotheSahelianbasins,theMékrouatBarou (neartheMékrouNigerconfluence)dischargedabout2.65billioncubicmetresinthe2006/07year.

Theincreasedvolumeofwaterdischargedresultedinanincreaseinthesedimentdischargeinthetwo Sahelianbasinsduringthestudyperiod.Forthetwoseasons,thewaterandsedimentdischargedbythe Sirba was higher than volume of water and mass of sediment discharged by the Gorouol. Although suspended sediment was not measured on the Mékrou River, the relatively small increase between sedimentdischargeatBrigambouandDiabouKiriaindicatethatalthoughtheMékroudischargesmore watertotheRiverNigerthantheSirbadoes,thesedimentinputfromtheMékrouisrelativelylow.

ThespecificfluxesarepresentedinTableV9showingthesametrenddescribedbythesedimentfluxin TableV8.

TableV9:SpecificsedimentfluxesoftheGorouolandSirbaRivers

Station Basinarea Périod Annualflux Specificflux(T/km²) (km²) (millionT) Alcongui(Gorouol) 44450 2006/07 0.476 10.7 2007/08 1.097 24.7 Tiambi(Sirba) 37370 2006/07 0.497 13.3 2007/08 0.855 22.9 GKourou(Sirba) 38704 2006/07 0.582 15.2 2007/08 1.332 34.4

224 6.4. Changeinsedimentfluxinthecourseofawater year AgraphicalrepresentationoftheevolutionofsedimentfluxalongthemiddleNigerRiverfor2007/08is presentedinFigureV31.(SedimentfluxwasnotcalculatedfortheNigerRiveratAyoroubecauseof incompletedata)

Sediment flux (2007/08)

18

16

14

12 Kandadji 10 F.Haoussa Latakabiey Niamey 8 Brigambou D.Kiria Million tonnes/year Million 6

4

2

0 juin-07 août-07 oct.-07 déc.-07 févr.-08 avr.-08 juin-08 FigureV31:SedimentfluxalongthemiddleNigerRiver2007/08

FigureV31indicatesthesedimentfluxisuniformalongallthe stationsalongthemiddleNigerinJune.BytheendofJuly,the amountofsedimentpassingFariéHaoussabeginstoincreasein comparison to sediment discharged at Kandadji.This could be duetosedimentinputfromasource(liketheinteriordelta)ora smallertributaryupstreamofKandadji.Thesedimentthatcanbe seentotransitfromKandadjibetweenFebruaryandAprilcould besaidtobeduetotheremobilizationofstoredsedimentathigh riverdischargeandlowsedimentsupplyfromthebasin.

225 AttheSirbaNigerconfluencebetweenFariéHaoussaandLatakabiey,thedifferenceinsedimentfluxat the two stations begins to increase in July and reaches a maximum in October. This first phase of sedimentsurplusbetweenFariéHaoussaandLatakabieycanbesaidtobeduemainlytosedimentinput fromtheSirbaRiver.ThedifferenceinsedimentfluxismaintaineduntilMay,whichmaysignifythe transportofsedimentdepositedintheriverbedbetweenFariéHaoussaandLatakabiey. Between Latakabiey and Niamey, the departure in the amount of sediment transported past the two stationsoccursinAugustattheheightofthemiddleNiger’sdischargepeakduetopthelocalrainy season.Fromthenon,theamountofsurplussedimentdischargedpastNiameycontinuestoincrease, attainingabout2.8milliontonnesmorethanthesedimenttransportedpastLatakabieyforthe2007/08 wateryear.Thisexcesssedimentcanbeattributedtoephemeralstreamsandgulliesthatoccurbetween LatakabieyandNiameyinadditiontothetransportationofriverbedmaterial. ThesedimentfluxbetweenNiameyandBrigambouisonlyuniformuntilAugust,whenlargeamountsof sedimenttransportedpastNiameydonotreachBrigambou. AttheMékrouNigerconfluencebetweenBrigambouandDiabouKiria,thedifferenceinsedimentflux beginstoincreaseinJulyreachingapeakinSeptemberduemainlytosedimentinputfromtheMékrou River.

6.5. Discussion PrevioussuspendedsedimentmeasurementsalongthemiddleNigerRiver(seeTableV4)reportedthat thesedimentfluxatKandadjirangedbetween1.3and2milliontonnes/yearatKandadjiandbetween3.1 and3.9milliontonnes/yearatNiamey.Thepresentstudyhasshownthatbyexcludingfinesedimentless thanabout10m,sedimentconcentrationvaluesandthussedimentfluxmayhavebeenunderestimated byupto25%onaverageusingthesamefieldsamplingmethod.Furthermore,theimprovedsampling frequencyappliedtothisstudyparticularlyduringtherainyseasonmayhaveresultedinabetterestimation ofthesedimentcharacteristicsofthemiddleNigerRiverwithrespecttotheprevioussamplingprogram. It is difficult to compare the results of the two samplingprogramsforthesereasonseventhoughitis tempting to expect that some of the “surplus” sediment measured during this study may be due to increasedbasinerosion.

Althoughthesamplingperiodwasforamaximumperiodoftwocompletehydrologicalyears,theresults obtainedrepresentareasonablyaccuratequantificationofthesedimentfluxalongthemiddleNigerRiver. Theestimatedspecificsedimentyieldvalueof26tonnes/km²/yearfortheNigerRiverbasinputforward by Ludwig and Probst [1998] closely approximate the results obtained considering a basin area of 700,000km²atNiameytranslatestoasedimentdischargeof18.2milliontonnes/year.

226 TheresultsindicatethatastheNigercrossestheSahel,thesuspendedsedimentfluxincreasesandreaches amaximumaroundNiamey.ThesharpincreaseinsedimentfluxbetweenLatakabieyandNiameyinthe absenceofconventionaltributariesbetweenthesetwostationsindicatesthatthereexistothersignificant sediment sources on the LatakabieyNiamey stretch of the Niger River. The reduction in sediment discharge between Niamey and Brigambou indicate that between these two stations inchannel or overbankdepositionoccurs.TheresultsalsoindicatethatevenwithhigherriverdischargetheSudanian MékrouRivertransportslesssedimenttotheNigerRiverthantheGorouolandSirbarivers.

227 7. Comparisonofsimulatedsediment transportcapacitywithmeasuredSSC

Inordertogainabetterunderstandingofthefundamentalprocessesandphasesofsediment transportinthemiddleNigerRiveritwasnecessarytocarryoutasimulationofthesediment transportcapacityofthatstretchoftheNigerRiver. Van Rijn [1993] presented a sediment transport formula to calculate the sediment transport capacity by combining river channel hydrodynamic parameters with riverbed material characteristics.Thetransportcapacityforsuspendedloadwascalculatedusingmeasuredriverbed sedimentdataandhydrodynamicdataobtainedfromtheCARIMAmodeloftheNigerRiver fromKandadjitoDiabouKiriausingthefollowingformula:

Z  h − Z  k  Suspendedsedimentconcentration c = c   s  (kg/m 3) a   −   Z  h ks 

5.1 = D50 T ρ 3 Referenceconcentration ca .0 015 * * 3.0 * s (kg/m ) ks D*

ω = s Suspensionnumber Z ()βκ u*

(s −1)g  3/1 Particleparameter: D = D * 50  ν 2 

  GrainrelatedChézycoefficient: C'= 18 log 12 h  (m 1/2 /s)  3D90 

2 Currentrelatedeffectivebedshearstress: τ ' = ρg(u ) (N/m²) b C'

τ Shieldscriticalbedshearstress bcr (N/m²)

When

< ≤ τ = −1(ρ − ρ ) 1 D* 4 ⇒ bcr 24.0 D* s gD 50 < ≤ τ = − 64.0 ()ρ − ρ 4 D* 10 ⇒ bcr 14.0 D* s gD 50 < ≤ τ = − 1.0 ()ρ − ρ 10 D* 20 ⇒ bcr 04.0 D* s gD 50 < ≤ τ = 29.0 ()ρ − ρ 20 D* 150 ⇒ bcr .0 013 D* s gD 50 > τ = ()ρ − ρ D* 150 ⇒ bcr .0 055 s gD 50

τ ' −τ  Bedshearstressparameter: T =  b bcr   τ   bcr 

228 Representativeparticlesizeofsuspendedsediment Ds (m)

= [ + (σ − )( − )] Ds 1 .0 011 s 1 T 25 D50 when ≥ = T 25 ,⇒ Ds D50

ω Particlefallvelocity s (m/s)

(s −1)gD 2 1 < D ≤ 100 µm ⇒ ω = s s s 18 ν  3 5.0  ν  01.0 ()s −1 gD   100 < D ≤ 1000 µm ⇒ ω = 10 1+ s  −1 s s D ν 2 s    > µ []()− 5.0 Ds 1000 m ⇒ 1.1 s 1 gD s

Effectivebedroughness ks (m)

100 ≤ D ≤ 600 µm;⇒ k = 1.5 D When 90 s 84 ≤ ≤ µ = 1000 D90 20000 m;⇒ ks 3.2 D84

Inwhich,

ρ =fluiddensity(1000kg/m 3)

ρ 3 s =sedimentdensity(2650kg/m )

 ρ  s=specificdensity =  s   ρ 

ν =kinematicviscositycoefficient(m 2/s)[ assuming a water temperature of 20°C ] h=flowdepth(m)

D50 =medianparticlediameterofbedmaterial(m)

D16 , D84 , D90 =characteristicdiameterofbedmaterial(m)

σ = 1  D84 + D50  s   Geometricstandarddeviationofbedmaterial 2 D50 D16 

u* =bedshearvelocity(m/s)

κ =vonKarman’sconstant(=0.4)

ω 2 β = 1+ 2 s  Ratioofsedimentandfluidmixingcoefficients  u*  g=accelerationduetogravity(=9.81m/s 2)

229 Inordertocomparethesedimenttransportcapacitytomeasuresuspendedsedimentvalues,the transportcapacityforfourclassesfoundintheriverbedandinsuspensionwascomputed.The foursedimentsizeclasseswere4170m,71125m,126630mand6301600m.Thiswas achievedbycalculatingthesedimenttransportcapacityassumingthebedwasmadeupsolelyof theclassmarkofeachsedimentsizeclassinordertoattainthemaximumamountofsediment transportable.

Theresultsobtainedfor theperiodbetweenJune2006 and May 2008 indicate the maximum amount of transportable sediment concentration for each size class. In other words, when sedimentconcentrationisabovethesedimenttransportcapacity,depositionoccurs.Ontheother hand, sediment concentrations below the sediment transporting capacity for each class are transporteddownstream.

Therateofsedimentdepositionwascalculatedas:

= ( − ) ×ω D 1 C p / Cm Cm

WhereDistherateofsedimentdepositionperunitarea(kg/s/m²)

3 C p =Potentialsuspendedsedimentconcentration(kg/m )

3 Cm =Measuredsuspendedsedimentconcentration(kg/m )

ω =sedimentfallvelocity(m/s)

7.1. Presentationofresults Theresultsobtainedarecomparedforthesedimenttransportcapacityofsedimentsizeclasses ranging from 41m to 1600m with measured values. The range of sediment sizes between 41m and 1600m represent the sediment sizes found both in the riverbed material and in suspension. Values on the yaxis are positive when measured values are greater than the calculatedsedimenttransportcapacity,leadingtodeposition.Yaxisvaluesarenegativewhenthe calculated sediment transport capacity is larger than the measured suspended sediment concentrationvalue.

• Figure V 32 indicates that at Kandadji, FariéHaoussa and Brigambou, suspended sedimentofthe4170msizearetransporteddownstreammostofthetimeexceptat very low river discharge that occurs between May and June. For the other stations (Latakabiey,NiameyandDiabouKiria,lowamountsofthe4170msedimentclassare nottransporteddownstreambutdeposited.

230 River Niger at Kandadji River Niger at F-Haoussa 41-70 µm 41-70 µm 0.002 0.002

0 0.000

-0.002 -0.002 -2 -0.004 -2 -0.004 m m -1 -1 kgs

kgs -0.006 -0.006

-0.008 -0.008

-0.01 -0.010

-0.012 -0.012 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08

River Niger at Latakabiey 41-70 µm River Niger at Niamey 0.002 41-70 µm 0.002 0.000 0.000

-0.002 -0.002

-2 -0.004 -2

m -0.004 m -1 -1

kgs -0.006

kgs -0.006

-0.008 -0.008

-0.010 -0.010

-0.012 -0.012 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08

231 River Niger at Brigambou River Niger at D-Kiria 41-70 µm 41-70 µm 0.002 0.002

0.000 0.000

-0.002 -0.002 -2 -2 -0.004 -0.004 m m -1 -1 kgs kgs -0.006 -0.006

-0.008 -0.008

-0.010 -0.010

-0.012 -0.012 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08 FigureV32:Depositiontrendofsuspendedsediment(4170m)forthemiddleNigerRiver

232 • For the sediment class consisting of particles between 71m and 125m, very low amountsofsedimentaredepositedatthestartandendofthehydrologicalyearbutare largelytransportedatKandadji,FariéHaoussaandLatakabiey.BetweenSeptemberand March,theNigerRiveratLatakabieytransportssedimentbetween71and125m.Thisis becausetheamountofthisclassinsuspensionbetweenSeptemberandMarchislessthan theamountinthe41to70msizeclass.Asecondreasonforthisoccurrenceisthatdue tosizecompositionoftheriverbedmaterialatLatakabiey,thetransportingcapacityfor the71to125msizeclassismuchhigherthanthatforthe41to70msizeclass.Atthe otherstations,thenettransportordepositionofthissizeclassisclosetozero.

• Forthesedimentclassconsistingofparticlesbetween126mand630m,deposition occursatKandadjiandFariéHaoussabetweenJuneandSeptember.Thesedimentofthis sizeclassistransportedbetweenOctoberandFebruary.

• Forthesedimentclassconsistingofparticlesbetween631mand1600m,FigureV35 showsthatatallstations,thissizeclassisdeposited.

233 River Niger at Kandadji River Niger at F-Haoussa 71-125 µm 71-125 µm 0.04 0.04

0.00 0.00 -2 -2 m m -1 -1 kgs kgs

-0.04 -0.04

-0.08 -0.08 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08

River Niger at Latakabiey River Niger at Niamey 71-125 µm 71-125 µm 0.04 0.04

0.00 0.00 -2 -2 m m -1 -1 kgs kgs

-0.04 -0.04

-0.08 -0.08 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08

234 River Niger at Brigambou River Niger at D-Kiria 71-125 µm 71-125 µm 0.04 0.04

0.00 0.00 -2 -2 m m -1 -1 kgs kgs

-0.04 -0.04

-0.08 -0.08 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08

FigureV33:Depositiontrendofsuspendedsediment(71125m)forthemiddleNigerRiver

235 River Niger at Kandadji River Niger at F-Haoussa 126-630 µm 126-630 µm 0.07 0.07 -2 -2 m m -1 -1 0.03 0.03 kgs kgs

-0.01 -0.01 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08

River Niger at Latakabiey River Niger at Niamey 126-630 µm 126-630 µm 0.07 0.07 -2 -2 m m

-1 0.03 -1 0.03 kgs kgs

-0.01 -0.01 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08

236 River Niger at Brigambou River Niger at D-Kiria 126-630 µm 126-630 µm 0.07 0.07 -2 -2 m m -1 -1 0.03 0.03 kgs kgs

-0.01 -0.01 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08

FigureV34:Depositiontrendofsuspendedsediment(126630m)forthemiddleNigerRiver

237 River Niger at Kandadji River Niger at F-Haoussa 631-1600 µm 631-1600 µm 0.07 0.07 -2 -2 m m -1 -1 0.03 0.03 kgs kgs

-0.01 -0.01 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08

River Niger at Latakabiey River Niger at Niamey 631-1600 µm 631-1600 µm 0.07 0.07 -2 -2 m m -1 -1 0.03 0.03 kgs kgs

-0.01 -0.01 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08

238 River Niger at Brigambou River Niger at D-Kiria 631-1600 µm 631-1600 µm 0.07 0.07 -2 -2 m m -1 0.03 -1 0.03 kgs kgs

-0.01 -0.01 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08 juin-06 août-06 nov.-06 févr.-07 mai-07 août-07 nov.-07 févr.-08 mai-08 FigureV35:Depositiontrendofsuspendedsediment(6311600m)forthemiddleNigerRiver

239 7.2. Seasonalsedimenttransferdynamics ThesedimenttransportdynamicsforthestretchfromKandadjitoDiabouKiriaontheNiger Riverisdescribedforfourperiodsofthewateryear.Theperiodsarethelowflowperiod,the highdischargeperiodduetothelocalrainyseason,thehighdischargeperiodduetodelayed upstreamdischargeandthefallinglimbofthehydrograph,correspondingtoJune,September, December,andMarchrespectively.InFigureV36to Figure V 39, positive values indicate depositionwhilenegativevaluesrepresenttransportofthesedimentclassinsuspension.

• FigureV36showsthesedimenttransportdynamicsofsedimentinthe4170msize range.Ingeneral,atlowflowsoccurringinJunesedimentofthe4170maredeposited becausethetransportcapacityatallstationsalongthemiddleNigerRiverarenothigh enoughtokeepthesedimentinsuspension.InSeptember,atthepeakdischargedueto thelocalrainyseason,the4170mclassistransportedpastKandadji,FariéHaoussaand Brigambou,butisdepositedatLatakabiey,NiameyandDiabouKiria.Atpeakdischarge in December, the Niger River transports the sedimentinthe4170mclassatallthe stations except for lowlevel deposition occurring at Latakabiey and DiabouKiria. In Marchastheriverdischargedecreases,sedimentofthe4170msizeclassisdepositedat FariéHaoussa,Latakabiey,Niamey,andDiabouKiria.

• FigureV37describesthesedimenttransferdynamicsforsedimentof71125msize class.LowflowsinJunedonotsustainthetransportbysuspensionofsedimentsinthe 71125msizeclassatanyofthestationsalongthemiddleNigerRiver.InSeptember, theNigerRiversustainsthissizeclassinsuspensionatallstationsexceptatNiameyand DiabouKiria.InDecemberasriverdischargereachesamaximum,theNigertransports allsedimentofthe71125msizeclassatallstationsalongthemiddleNigerRiver.In March,asobservedforthe4170msizeclass,astheriverdischargedecreases,sediment of the 71125m size class is deposited at FariéHaoussa, Latakabiey, Niamey and DiabouKiria.

• Thesedimenttransportdynamicsforthe126630msizeclassisdescribedinFigureV 38.SedimentofthissizeisgenerallydepositedatallstationsalongthemiddleNigerRiver inJune.Theriver’ssedimenttransportingcapacityinSeptemberisenoughtotransport the126630msizesedimentonlyatKandadjiandFariéHaoussa. In December, the 126630msedimentclassistransportedandsustainedinsuspensionatallstationsalong the Niger River except at Niamey and DiabouKiria. In March as river discharge decreases,sedimentofthe126630mclassisdeposited.

240 • Thecoarsestsedimentclass(6311600m)isonlysustainedinsuspensionatKandadjiin SeptemberandatFariéHaoussaandNiameyinDecember.Atallotherperiodsandalong themiddleNigerRiver,theNigerriverssuspendedsedimenttransportcapacitydoesnot sustainsedimentofthissizeinsuspension.

241 JUNE SEPTEMBER 41-70 µm 41-70 µm 3.0E-04 2.0E-03 NY 1.0E-03 2.5E-04 FH DK 0.0E+00 LT 2.0E-04 LT -1.0E-03 BR -2 -2 m m -1

-1 1.5E-04 -2.0E-03 kgs kgs BR DK -3.0E-03 1.0E-04 KD KD NY -4.0E-03 5.0E-05 -5.0E-03 FH

0.0E+00 -6.0E-03

DECEMBER MARCH 41-70 41-70 2.0E-03 8.0E-04 FH 6.0E-04 0.0E+00 LT NY DK 4.0E-04 -2.0E-03 BR 2.0E-04 LT NY DK 0.0E+00 -2 -2 -4.0E-03 m m -1 -1 -2.0E-04 kgs kgs -6.0E-03 KD -4.0E-04 BR

-8.0E-03 -6.0E-04 -8.0E-04 -1.0E-02 FH -1.0E-03 KD -1.2E-02 -1.2E-03 FigureV36:Suspendedsedimentdynamicsofthe4170msizeclass

242 JUNE SEPTEMBER 71-125 µm 71-125 µm 6.0E-04 5.0E-03 NY LT DK 0.0E+00 BR 5.0E-04 FH -5.0E-03

4.0E-04 -1.0E-02 -2 -2 -1.5E-02 m m -1 -1 3.0E-04 KD LT KD BR -2.0E-02 kgs kgs DK 2.0E-04 NY -2.5E-02

-3.0E-02 1.0E-04 -3.5E-02 FH

0.0E+00 -4.0E-02

DECEMBER MARCH 71-125 µm 71-125 µm 1.0E-02 3.0E-03

0.0E+00 DK NY BR 2.0E-03 FH -1.0E-02 1.0E-03 -2.0E-02 LT NY DK 0.0E+00 -3.0E-02 KD BR -2 -2 m m -1 -1 -4.0E-02 -1.0E-03 kgs kgs -5.0E-02 LT -2.0E-03 -6.0E-02 -3.0E-03 -7.0E-02 FH -8.0E-02 -4.0E-03 KD -9.0E-02 -5.0E-03 FigureV37:Suspendedsedimentdynamicsofthe71125msizeclass

243 JUNE SEPTEMBER 126-630 µm 126-630 µm 7.0E-03 1.6E-02

1.4E-02 NY DK 6.0E-03 LT 1.2E-02 1.0E-02 5.0E-03 KD 8.0E-03

-2 4.0E-03 -2 6.0E-03 m m -1 -1 4.0E-03 LT kgs kgs 3.0E-03 2.0E-03 BR 2.0E-03 FH BR 0.0E+00 DK -2.0E-03 1.0E-03 NY KD FH -4.0E-03 0.0E+00 -6.0E-03

DECEMBER MARCH 126-630 µm 126-630 µm 6.0E-03 1.4E-02

4.0E-03 DK 1.2E-02 BR

2.0E-03 NY 1.0E-02 FH

-2 0.0E+00 BR -2 8.0E-03 m LT m -1 -1 kgs kgs -2.0E-03 6.0E-03

-4.0E-03 4.0E-03 KD FH -6.0E-03 2.0E-03 KD LT NY DK -8.0E-03 0.0E+00 FigureV38:Suspendedsedimentdynamicsofthe126630msizeclass

244 JUNE SEPTEMBER 631-1600 µm 631-1600 µm 9.0E-04 2.0E-03 BR 8.0E-04 BR

7.0E-04 1.5E-03

6.0E-04 KD 1.0E-03 -2 -2 5.0E-04 m m -1 -1 4.0E-04 kgs kgs 5.0E-04 DK 3.0E-04

2.0E-04 FH LT 0.0E+00 KD NY 1.0E-04 LT 0.0E+00 FH NY DK -5.0E-04

DECEMBER MARCH 631-1600 µm 631-1600 µm 3.0E-05 1.0E-02 2.0E-05 DK 9.0E-03 BR 1.0E-05 8.0E-03

0.0E+00 KD LT BR 7.0E-03 -1.0E-05 6.0E-03 -2 -2

-2.0E-05 m m -1 -1 5.0E-03 -3.0E-05 kgs kgs 4.0E-03 -4.0E-05 3.0E-03 -5.0E-05 2.0E-03 -6.0E-05 FH -7.0E-05 NY 1.0E-03 KD -8.0E-05 0.0E+00 FH LT NY DK FigureV39:Suspendedsedimentdynamicsofthe6311600msizeclass

245 Theresultsobtainedinthisanalysisindicatethatthemostcriticaldepositingsedimentsizeisthe 126630m class. The area around Niamey is particularly susceptible to the deposition of sedimentofthissize.

246 8. Conclusions

Thesedimenttransportresearchcarriedoutinthispartofthestudyconsideredthesediment compositionandsamplingfrequencyinordertoachievetheaimsofthestudy.

Ananalysisofthesuspendedsedimentsizestransportedbytheriversinthestudyareaduringthe studyperiodhighlighted:

• Thecomplexrelationshipsbetweensedimentsize,riverdischargeandrainfallaswellas theimpactofseasonaleffectsonsedimenttransport.

ThesedimentsupplyatdifferentstationsalongtheNigerRiverwerecharacterisedbyanalysing theseasonalevolutionofsedimentsizestransportedinsuspensionduringthestudyperiod.

• ThesedimenttransportatAyorouwasseentobesupplylimited,withthepercentageof veryfineparticles(040m)decreasingwithincreasingdischargeevenatthestartofthe rainyseason.

• Very fine sediment (040m) was transported at Kandadji, FariéHaoussa, Latakabiey, and DiabouKiriain a direct relationship with river discharge at the start of the rainy season.Thisindicatesthatduetoraindropimpactatthestartoftherainyseason,very fine sediment is available for transport. The very fine sediment are due to easily detachabletopsoilthatbecomeavailableafterthelongdryseasonandtosomeextentto aeoliansedimentdeposits.

• Thebehaviourofveryfine(040m)andcoarse(41630m) particles at Niamey and Brigambou, indicates two distinct sediment sources to these stations during the rising limboftherainyseasonhydrograph.

Thestudyidentifiedandquantifiedtributarysedimentsources,sedimentfluxesfortributariesand alongtheNigerRiver.

• ThesuspendedsedimentinputsofthemajorSahelian tributaries of the middle Niger River(theGorouolRiverandtheSirbaRiver)werequantified.Thecalculatedsediment fluxoftheGorouolRiverwasbetween480,000andover1milliontonnesforthestudy period.ThesedimentfluxoftheSirbawasbetween500,000and1.3milliontonnesfor thestudyperiod.Thevariabilityinsedimentdischargewaslargelyduetothedifference inwaterdischargedduringawateryearbythetworivers.Thedifferenceinthesediment supplyandtransferbehavioursofthetwoSahelianbasinswashighlighted.

247 • TheSudanianMékrouRiverbasinappearedtosupplylesssedimenttothemiddleNiger Riverduringthestudyperiodaccordingtothesediment balance betweenthe stations upstreamanddownstreamofitsconfluencewiththeNigerRiver.

• The suspended sediment flux along the middle Niger River was quantified from measured sediment concentration and river discharge values to be between 11 and 16milliontonnesperyear,withamaximumfluxoccurringaroundNiamey.

• ThestudyshowedthatothersignificantsedimentsourcesexistbetweenLatakabieyand Niamey even though there are no major tributaries between these two stations. The ephemeral “koris” were advanced as a possible source for this surplus sediment supportingtheresultsobtainedinpartIIofthiswork.

Thedepositiontrendsofsedimentalongthemiddle Niger River, seasonal timescales and the maincontrollingfactorsofsedimentdepositionwerehighlightedinthisstudy.

• Acomparisonofmeasuredsuspendedsedimentconcentrationandcalculatedsediment transport capacity of the middle Niger River provided an indication to the major sedimentdepositionareasandthesedimentsizeclassesthataremostliabletodeposition. TheareaaroundNiameywashighlightedasanareaofsedimentdeposition,ofsandsized sedimentbetween126and630m.

248 CCoonncclluussiioonnssaanndd PPeerrssppeeccttiivveess

249 1. GeneralSummary

Theoverallaimofthisstudywastogainanunderstandingofthesedimentdynamicsofthe middleNigerRiverbasinparticularlyinaperiodofdegradinglandcover.Thestudywascarried outviathreemainaxes:landcoveranalyses,hydrologicalanalyses,sedimentmeasurementand analyses. Inordertoachievetheaimofthisresearch,fiveprincipalobjectiveswereset. • Thefirstobjectivewastodescribeandquantifythelandcoverchangesthathavetaken place over the last three to four decades in the Sahelian part of the study area and contrastitwiththeSudanianpartofthestudyarea.Theworkinghypothesiswerethatin mostofthestudyareaduringthisperiod,woodedvegetationwasreplacedbybaresoil surfaces in the form of cultivated land, human settlements, and depleted vegetation bandsleadingtohighererosion.Thelandcoverchangeanalysisalthoughlimitedbythe availability of images showed that bare soil surfaces in the Sahelian basins increased betweenthe1970’sand1999,from60%to75%fortheGorouolbasinandfrom45%to 71%fortheSirbabasin.However,thestudyshowedthataslightreductioninbaresoil surfacesoccurredbetween1992and1999,fortheGorouolandbetween1989and1999 for the Sirba. The Mékrou basin was affected to a lesser degree by the vegetation removalbetween1973and2000,thepercentageoftreesdecreasedbyonly6%between 1973and2000.Thistrendiscomparablewithlandcoverobservationsparticularlyinthe Sahelregion. Insummary,thelandcoveranalysisshowedthatlandcoverchangeinthestudyareais dynamic,withmorerapidchangeoccurringintheSahelianbasinsincomparisontothe Mékroubasin.ThisstudyattemptedtoincorporateCoronaimagerytothestudyofland coverchangeintheSahel;itwasshownthatwhiletheuseofthistypeofimageryistime andstoragespaceintensive,suchimageryprovideusefulinformationparticularlyinthe absenceofreliabledata. • Thesecondobjectivewastodeterminetheimpactofchanginglandcoveronsediment transportinthestudyarea.Theidealapproachtothisquestionwouldhavebeentocarry outacomparisonofthesedimenttransportcharacteristicsfortwoormoredistinctland cover states of the study area. Although the land cover trend in the study area was describedinpartIIofthiswork,andsuspendedsedimenttransportdata(1976to1982) forpartsofthestudyareawasavailable,thedifficultyofadirectcomparisonofsediment datawasshowninpartVofthisstudy.Becauseitwasnotappropriatetomakeadirect comparisonbetweenprevioussedimentdataanddatafromthepresentstudyinorderto quantifysedimentproductionchange,informationabouttheconsequencesoftheland

250 coverchangehadtobeinferredfromsurrogatesources.Thetrendofincreasingbaresoil surfacesdemonstratedinpartIIIofthisstudyoccurredatthesametimeastheincreasing tributary contribution and decreasing river discharge of the Niger River at Niamey observedinpartIVofthisstudy.Phenomenasuchasincreasingtributarycontributionin combination with increased bare soils can be expected to cause the transfer of more sediment from the basin to the middle Niger River. At the same time, the observed reduction in river discharges of the middle Niger and the dominance of rainy season dischargecanbeexpectedtohaveaneffectontheabilityoftheNigerRivertoefficiently transportsediment.

• Thethirdobjectiveofthisworkwastostudythechangesinchannelformofthemiddle NigerRiverinresponsetoriverdischargeperturbationsbetween1965and1999.Changes inchannelwidthwereobservedtohaveoccurredafteratimelagofabout5yearsfrom theoccurrenceofperturbationsinriverdischargeforthemiddleNigerRiver.Themajor changesinchannelforminthemiddleNigerRiverwereobservedintheSahelianpartof thestudyarea.ThemiddleNigerRiverstretchneartheGorouolRiver(reach1),afteran initialincreaseinriverchannelwidthhascontinuedtonarrowbecauseofdecreasingriver discharge.Ontheotherhand,themiddleNigerRiverneartheSirbariver(reach2),in addition to similar fluctuations that occurred in the upstream stretch (reach 1) has exhibitedawideningtrendsince1989.Whiletheslightincreaseintheannualcumulative dischargealongthemiddleNigerRiverhasnothadawideningeffectonreach1ithas causedawideningofthechannelinreach2.Thisis due to the increasing local rainy seasoncomponentofthehydrographforthemiddleNigerRiveratNiamey(inreach2) incomparisontotheupstreamreach1.Thiscomponentofthehydrographinaddition tosupplyingmoreriverdischargealsoappearstosupplymoresedimentthatmayhave causedawideningofreach2between1989and1999.

• Thefourthobjectiveofthisstudywastoquantifythesedimenttransportofthemiddle NigerRiverandsomeofitstributaries.Anappropriatesedimentsamplingprogramwas setuptoachievethisobjective.Measuredsuspendedsedimentconcentrationvalueswere transformedtoinstantaneoussedimentfluxvalues.Annualvaluesofsedimentfluxwere calculatedforthestationsalongthemiddleNigerRiverandtheseasonalsedimentinput oftwoSahelianriverswascalculated.

• Thefifthobjectiveofthisstudywastoidentifysedimentsourceanddepositionareas andthemaincontrollingfactorsofthesephenomena.Theeffectsofvegetationremoval anderosionbyoverlandflowweredemonstratedbythegrowthofalluvialfans.Thearea ofonesuchalluvialfannearNiameyincreasedfromabout0.16km²in1975toabout

251 1.24km²in1999.SedimentdepositsofthisnatureareasedimentsourcetotheNiger Riverduringtherainyseason.Withrespecttothesedimentdepositiondynamicsinthe study area, the working hypothesis was that deposition rates along the middle Niger Riverarecontrolledbyfluidforcesandsedimentparticlerelatedresistanceforces.The sedimenttransferanalysescarriedoutinpartVindicatedthatforallsizeclassesandfor allphasesofriverdischarge,thestretchbetweenLatakabieyandafterNiameyarethe majorareasofsedimentdeposition. Evaluationofmethodologyappliedtothestudy Thisstudyappliedavarietyofmethodsandapproachesinordertoachievethesetobjectives. The use of satellite imagery when available, for the monitoring of river channel form and sedimentdepositionusingaGISplatformprovidedanimportanttoolinthequantificationof historicchangeswithinthelargestudyarea. Althoughsatelliteimagerycanprovideinformationonpastandpresentstatesoflandcover,the mostaccurateuseofthismethodispossiblewhenimages are obtained at the same time as groundtruthdata.ThestudyshowedthatCORONAimagerycouldprovidequalitativeaswell asquantitativeinformationforsimilarstudies. Simple but frequent suspended sediment sampling combined with occasional crosssectional samplingappearstobeacosteffectiveandreasonablyaccuratemethodforthemonitoringofa largeriverliketheNiger. 2. Perspectivesforfurtherwork

The setting up of a mediumterm sedimentsampling program that takes the sediment size compositionintoconsiderationashighlightedinthisstudywouldprovidebasinmanagerswith moreinformationonthesedimentdynamicsofthestudyareathanwaspossibleduringthestudy period.

TheimportanceofriverdischargemeasurementsinthemiddleNigerbasincannotbeoverstated becausetheyareimportantforunderstandingchangesinhydrologyandsedimenttransport.The usefulnessoftoolsforsimulatingriverfloodpropagationwashighlighted,aslongastheresults theyproduceareproperlyverified.Suchtoolsneedtobeupdatedregularlyinordertomaintain theaccuracyofresultsobtainable.

Theresultsofthisresearchhaveshowntheexistenceofsignificantsedimentsourcesotherthan thegaugedtributariesofthemiddleNigerRiver.ThisisparticularlysoaroundNiamey.Inorder toimprovetheknowledgeofthesedimentdynamicsinthestudyarea,itappearsnecessaryto studytheflowandsedimentcharacteristicsoftheephemeralstreamsknownas“koris”thatexist

252 in this area. A further study into the representatitivity of suspended sediment concentration acrossriversectionsinthestudyareamayimprovethereliabilityofsinglesamples.Relationships suchasvelocityandflowdepthwithconcentrationmaybeinvestigated.

Thisresearchhasshownthatthewaterresourcesinthestudyareaarestronglyinfluencedby climaticvariability,andthatriverflowregimesandquantitiesareimportantfactorsthatcontrol the transport and deposition of sediment. Interaction with research programs like AMMA (African Monsoon Multidisciplinary Analyses), that aim to improve the understanding of the WestAfricanMonsoonanditsinfluenceontheenvironmentandwaterresources,couldhelpto predict the possible effects of future climatic variability on sediment transport in the region. Furthermore,theimpactsofproposedhydraulicworksonthesedimenttransportoftheregions watercoursescouldbeinvestigatedintheframeworkofsuchcollaborations. 3. Conclusions

Theresultsoftheresearchpresentedinthisdocumentrepresentsanattemptatgainingabetter understanding of the impacts of a rapidly changing environment due to climatic and anthropogenicfactorsonsedimenttransportinthemiddleNigerRiver.Theeffectsofincreased baresoilsurfacesonsedimenttransfertothemiddleNigerRiverisdemonstratedintermsof increasingtributarycontribution,increasingrainyseasondischargeofthemiddleNigerRiverand theincreasingareaofalluvialdeposits.Thespatialandtemporaldiscontinuityinsedimentflux observedalongthemiddleNigerRiverbetweenLatakabiey,NiameyandBrigambou,isexplained bytheresultsobtainedinthesedimentdepositionanalysesofthemiddleNigerRiver.

Thisresearchworkinadditiontoprovidingbasicinsightonthesedimenttransferfunctioningof themiddleNigerRiver,canbehelpfultobasinmanagersandengineersinplanningforhydraulic worksalongtheriverandasabasisforcomparisonoffuturesedimentstudiesinthearea.

253 BBiibblliiooggrraapphhyy

254 Bibliography

Agnew, C., and A. Warren (1996), A framework for tackling drought and land degradation, JournalofAridEnvironments,33,309320.

Agnew,C.T.,andA.Chappell(1999),DroughtintheSahel,GeoJournal,48,299311.

Albergel,J.(1987),Sécheresse,désertificationetressourceseneaudesurfaceApplicationaux petitsbassinsduBurkinaFaso,inTheinfluenceofClimateChangeandClimateVariabilityon theHydrologicRegimeandWaterResources,editedbyS.I.Solomon,M.BeranandW.Hogg, pp.355365,IAHSPublicationNo168,Wallingford.

Ali, A., and T. Lebel (2008), The Sahelian standardized rainfall index revisited, International JournalofClimatology,DOI10.1002/joc.1832.

Alvarez,A.(2005),Channelplanformdynamicsofanalluvialtropicalriver,185pp,TexasA&M University.

Amani,A.,andM.Nguetora(2002),Evidenced’unemodification du régime hydrologique du fleuveNigeràNiamey,inRegionalHydrology:BridgingtheGapBetweenResearchandPractice, editedbyH.VanLannenandS.Demuth,pp.449–456,IAHS.

Andersen,G.L.(2006),Howtodetectdeserttreesusingcoronaimages:Discoveringhistorical ecologicaldata,JournalofAridEnvironments,65(3),491511.

Andersen,I.,O.Dione,M.JarosewichHolder,andJ.C.Olivry(2005),TheNigerRiverBasin.A VisionforSustainableManagement,144pp.,TheWorldBank,WashingtonD.C.

Anyamba,A.,andC.J.Tucker(2005),AnalysisofSahelianvegetationdynamicsusingNOAA AVHRRNDVIdatafrom1981–2003,JournalofAridEnvironments,63,596614.

ASTM Standard D 39771997 (2007), Standard Test Methods for Determining Sediment Concentration in Water Samples, edited, ASTM International, West Conshohocken, PA DOI 10.1520/D397797R07Section126.

Baban,S.M.J.(1995),TheuseofLandsatimagerytomapfluvialsedimentdischargeintocoastal waters,MarineGeology,123,263270.

Beaudet,G.,R.Coque,P.Michel,andP.Rognon(1977),YatileucaptureduNiger?,Bull.Ass. Géogr.Fr.,445446,215222.

Bellion,Y.,JC.(1987),Histoiregéodynamiquepostpaléozoïquedel'Afriquedel'Ouestd'après quelquesbassinssédimentaires,296pp,Universitéd'AvignonetdespaysdeVaucluse,Avignon.

Bessoles,B.(1977),Géologiedel'Afrique:Lecratonouestafricain,402pp.,BRGM,Paris.

255 Black,R.(1985a),Lepanafricainetsoninfluencesurl'évolutiongéologiqueauphanérozoïque, inEvolutionGéologiquedel'Afrique,editedbyR.Black,pp.115141,CIFEG,Paris.

Black, R. (1985b), Introduction générale sur la structure du continent africain, in Evolution Géologiquedel'Afrique,editedbyR.Black,pp.716,CIFEG,Paris.

Blott,S.J.,andK.Pye(2001),Gradistat:Agrainsizedistributionandstatisticspackageforthe analysisofunconsolidatedsediments,EarthSurfaceProcessesandLandforms,26,12371248.

Bonfiglio,A.,V.Cuomo,M.Lanfredi,andM.Macchiato(2002),InterfacingNOAA/AVHRR NDVIandsoiltruthmapsformonitoringvegetationphenologyatalocalscaleinaheterogenous landscapeofSouthernItaly,InternationalJournalofRemoteSensing,23(20),41814195.

Bricquet,J.P.(1993),LesécoulementsduCongoàBrazzavilleetlaspatialisationdesapports,in GrandsBassinsFluviaux,editedbyJ.C.OlivryandJ.Boulègue,pp.2738,ORSTOMEditions, Paris.

BrunetMoret, Y., P. Chaperon, J. P. Lamagat, and M. Molinier (1986), Monographie hydrologiqueduFleuveNiger.TomeIICuvetteLacustreetNigerMoyen,506pp.,ORSTOM, Paris.

Burkham, D. E. (1985), An Approach for Appraising the Accuracy of Suspendedsediment DataRep.,18pp,USGS,Washington18pp.

Caby, R. (2003), Terrane assembly and geodynamic evolution of centralwestern Hoggar: a synthesis,JournalofAfricanEarthSciences,37,133159.

Cameron, A. D., D. R. Miller, F. Ramsay, I. Nikolaou, and G. C. Clarke (2000), Temporal measurementofthelossofnativepinewoodinScotlandthroughtheanalysisoforthorectified aerialphotographs,JournalofEnvironmentalManagement,58,3343.

Casenave,A.,andC.Valentin(1989),LesétatsdesurfacedelazoneSahélienneInfluencesur l'infiltration,229pp.,ORSTOM,Paris.

Chaperon, P. (1971), Les Etudes d'hydrologie de Surface 19561970Rep., 30 pp, ORSTOM, Paris.

Charney,J.G.(1975),DynamicsofdesertsanddroughtintheSahel,QuarterlyJournalofthe RoyalMeteorologicalSociety,101,193202.

Chinen,T.(1999),Recentacceleratedgullyerosionanditseffectsindrysavanna,southwestof Niger.,inHumanresponsetodrasticchangeofenvironmentsinAfrica,editedbyN.Hori,pp. 67102,TokyoMetropolitanUniversity.

256 Cooley,M.E.,andR.M.Turner(1982),ApplicationofLandsatproductsinrangeandwater managementproblemsintheSahelianzoneofMali,UpperVolta,andNiger,editedbyU.S.D. o.t.Interior,p.52,UnitedStatesGovernmentPrintingOffice,Washington.

Courel, M.F. (1985), Etude de l'évolution récente des milieux sahéliens à partir des mesures fourniesparlessatellites,407pp,UniversitédeParisI,Paris.

Cunge, J. A., F. M. Holly, and A. Verwey (1980), Practical aspects of computational river hydraulics,416pp.,PitmanPublishingLtd.,London.

Davis,T.(2003),AgriculturalwateruseandriverbasinconservationRep.,40pp,WWFWorld WideFundForNature,Gland.

Desconnets,J.C.,J.D.Taupin,T.Lebel,andC.Leduc(1997),HydrologyoftheHAPEXSahel CentralSuperSite:surfacewaterdrainageandaquiferrechargethroughthepoolsystems,Journal ofHydrology,188189,155178.

Descroix,L.(2003),Lesconséquenceshydrologiquesdel'évolutiondesusagesdessols,78pp, UniversitéJosephFourier,GrenobleMémoired'HabilitationàDirigerdesRecherches(HDR).

Descroix,L.,E.Gautier,A.L.Besnier,O.Amogu,D.Viramontes,andJ.L.G.Barrios(2005), Sedimentbudgetasevidenceoflandusechangesinmountainousareas:twostagesofevolution, in Sediment Budgets 2, edited by A. J. Horowitz and D. E. Walling, pp. 262270, IAHS Publicationno.292,FozdoIguaçu.

Descroix, L., et al. (2009), Spatiotemporal variability of hydrological regimes around the boundaries between Sahelian and Sudianian areas of West Africa: A synthesis, Journal of Hydrology,doi:10.1016/J.jhydrol.2008.1012.1012.

Diallo,D.(2000),ErosiondessolsenzonesoudanienneduMali:Transfertdesmatériauxérodés danslebassinversantdeDjitiko(HautNiger),202pp,UniversitéJosephFourier,Grenoble.

Diello,P.,G.Mahé,J.E.Paturel,A.Dezetter,F.Delclaux,E.Servat,andF.Ouattara(2005), Relations indices de végétationpluie au Burkina Faso: cas du bassin versant du Nakambé, HydrologicalSciencesJournal,50(2),207221.

Dinehart,R.L.,andJ.R.Burau(2005),RepeatedsurveysbyacousticDopplercurrentprofilerfor flowandsedimentdynamicsinatidalriver,JournalofHydrology,314,121.

Diouf,A.,andE.F.Lambin(2001),Monitoringlandcoverchangesinsemiaridregions:remote sensingdataandfieldobservationsintheFerlo,Senegal.,JournalofAridEnvironments,48,129 148.

257 Dolman,A.J.,J.H.C.Gash,J.P.Goutorbe,Y.Kerr,T.Lebel,S.D.Prince,andJ.N.M.Sricker (1997), The role of the land surface in Sahelian Climate: HAPEXSahel results and future researchneeds.,JournalofHydrology,188189,10671079.

Doxoran,D.,J.M.Froidefond,S.Lavender,andP.Castaing(2002),Spectralsignatureofhighly turbid waters Application with SPOT data to quantify suspended particulate matter concentrations,RemoteSensingofEnvironment,81,149161.

Dracup, J. A., K. S. Lee, and E. G. Paulson (1980), On the definition of droughts, Water ResourcesResearch,16(2),297302.

Dregne,H.E.(1986),Desertificationofaridlands,inPhysicsofdesertification,editedbyF.El Baz and M. H. A. Hassan, Martinus, Nijhoff, Dordrecht, The Netherlands http://www.ciesin.org/docs/002193/002193.html(1December2005).

Driessen,P.,J.Deckers,O.Spaargaren,andF.Nachtergaele(Eds.)(2001),Lecturenotesonthe majorsoilsoftheworld,334pp.,FAO,Rome.

ElRaey,M.,S.H.SharafElDin,A.A.Khafagy,andA.I.AboZed(1999),Remotesensingof beach erosion/accretion patterns along DamiettaPort Said shoreline, Egypt, International JournalofRemoteSensing,20(6),10871106.

Ennih,N.,andJ.P.Liégeois(2008),TheboundariesoftheWestAfricancraton,withspecial referencetothebasementoftheMoroccanmetacratonicAntiAtlasbelt,inTheBoundariesof theWestAfricanCraton,editedbyN.EnnihandJ.P. Liégeois, pp. 117,Geological Society London,London.

FAO (1997), Irrigation potential in Africa: A basin approach, edited, FAO Land and Water Development Division, Rome http://www.fao.org/docrep/W4347E/W4347E00.htm (5 December2005).

FAO(2003),Thedigitalsoilmapoftheworld,edited,LandandWaterdevelopmentdivision, Rome.

FAO (2008a), FAOSTAT, edited, http://faostat.fao.org/site/567/default.aspx#ancor (5 October2008).

FAO(2008b),WebLocClim,edited,http://faostat.fao.org/default.aspx(3September2008).

Filizola,N.(2003),Transfertsédimentaireactuelparlesfleuvesamazoniens,292pp,Université P.Sabatier,Toulouse.

Foley,G.,W.Floor,G.Madon,E.M.Lawali,P.Montagne,andK.Tounao(1997),TheNiger HouseholdEnergyProject:Promotingruralfuelwoodmarketsandvillagemanagementofnatural woodlands,edited,TheWorldBank,WashingtonD.C.103pp.

258 Foster,I.D.L.,R.Millington,andR.G.Grew(1992),Theimpactofparticlesizecontrolson stream turbidity measurement; some implications for suspended sediment yield estimation, in ErosionandSedimentTransportMonitoringProgrammesinRiverBasins,editedbyJ.Bogen,D. E.WallingandT.J.Day,pp.5162,IAHS,Oslo,Norway.

Fowler,M.J.F.(2004),DeclassifiedCORONAKH4Bsatellitephotographyofremainsfrom Rome'sdesertfrontier,InternationalJournalofRemoteSensing,25(18),35493554.

Frihy,O.E.,K.M.Dewidar,S.M.Nasr,andM.M.ElRaey(1998),Changedetectionofthe northeasternNileDeltaofEgypt:shorelinechanges,Spitevolution,marginchangesofManzala lagoonanditsislands,InternationalJournalofRemoteSensing,19(10),19011912.

Fu,B.J.,W.W.Zhao,L.D.Chen,Z.F.Liu,andY.H.Lu(2005),Ecohydrologicaleffectsof landscapepatternchange,LandscapeandEcologicalEngineering,1,2532.

Gallaire,R.(1986),LeNigeràKandadji:SynthèsedesEtudesRep.,ORSTOM,Paris152pp.

Gallaire,R.(1995),Donnéessurlestransportsdu NigermoyenentreKandadjietNiamey,in GrandsBassinsFluviauxPériatlantiques:Congo,Niger,Amazone,editedbyJ.C.OlivryandJ. Boulègue,pp.317332,ORSTOMEditions,Paris.

Gallaire, R., and R. Gathelier (1982), Le Niger à Kandadji: Etude Hydrologique 1981Rep., ORSTOM,Niamey56pp.

Gallaire, R., P. Harang, and R. Gathelier (1981), Le Niger à Kandadji: Etude Hydrologique 1980Rep.,ORSTOM,Niamey57pp.

Gallaire, R., H. El Harmouchi, P. Ribstein, Y. Sardouk, and R. Gathelier (1982), Le Niger à Kandadji:EtudeHydrologique1981(Campagne19811982)Rep.,ORSTOM,Niamey69pp.

Galle,S.,M.Ehrmann,andC.Peugeot(1999),Waterbalanceinabandedvegetationpattern:A casestudyoftigerbushinwesternNiger,Catena,37,197216.

Gilvear,D.,S.Winterbottom,andH.Sichingabula(2000),Characterofchannelplanformchange andmeanderdevelopment:LuangwaRiver,Zambia,EarthSurfaceProcessesandLandforms,25, 421436.

Gomez,B.,L.A.K.Mertes,J.D.Phillips,F.J.Magilligan,andL.A.James(1995),Sediment characteristicsofanextremeflood:1993upperMississippiRivervalley,Geology,23(11),963 966.

Goosens,R.,A.DeWulf,J.Bourgeois,W.Gheyle,andT.Willems(2006),Satelliteimageryand archaeology: the example of CORONA in the Altai Mountains, Journal of Archaeological Science,33,745755.

Goudie,A.S.(2005),ThedrainageofAfricasincetheCretaceous,Geomorphology,67,437456.

259 Grosse, G., L. Schirrmeister, V. V. Kunitsky, and H. W. Hubberten (2005), The use of CORONAimagesinremotesensingofperiglacialgeomorphology:AnillustrationfromtheNE Siberiancoast,PermafrostandPeriglacialProcesses,16,163172.

Grove,A.T.(1972),TheloadcarriedbysomeWestAfricanrivers,JournalofHydrology,16, 277300.

Grove,A.T.(1978),GeographicalIntroductiontotheSahel,TheGeographicalJournal,144(3), 407415.

Gupta,A.,andH.Fox(1974),Effectsofhighmagnitudefloodsonchannelform:Acasestudy inMarylandpiedmont,WaterResourcesResearch,10(3),499509.

Hagerty, D. J. (1991a), Piping/sapping erosion. I: Basic considerations, Journal of Hydraulic Engineering,117(8),9911008.

Hagerty,D.J.(1991b),Piping/sappingerosion.II:IdentificationDiagnosis,JournalofHydraulic Engineering,117(8),10091025.

Harang,P.,andR.Gathelier(1979),LeNigeràKandadji:EtudeHydrologique1978et1979Rep., ORSTOM,Niamey17pp.

Hein,L.,andN.DeRidder(2006),DesertificationintheSahel:areinterpretation,GlobalChange Biology,12,751758.

Hicks,D.M.,andB.Gomez(2003),SedimentTransport,inToolsinFluvialGeomorphology, editedbyG.M.KondolfandH.Piégay,pp.426461,JohnWiley&SonsLtd.,Chichester.

Hoepffner,M.(1978),LeNigeràKandadjiEtudeHydrologique19761977Rep.,ORSTOM, Niamey64pp.

Holly,F.M.,andJ.B.Parrish(1993),DescriptionandevaluationofProgram:CARIMA,Journal ofIrrigationanddrainageEngineering,119(4),703713.

Hooke,J.(2003),Coarsesedimentconnectivityinriverchannelsystems:aconceptualframework andmethodology,Geomorphology,56,7994.

Hountondji, Y., P. Ozer, and J. Nicolas (2004), Mise en évidence des zones touchées par la désertification par télédétection à basse résolution au Niger, Cybergeo: Revu européenne de géographie,291,118.

Huang, H. Q., and G. C. Nanson (2007),Why some alluvial rivers develop an anabranching pattern,WaterResourcesResearch,43W07441DOI10.1029/2006WR005223.

Hulme, M. (2001), Climatic perspectives on Sahelian desiccation: 19731998, Global EnvironmentalChange,11,1929.

260 Hulme,M.,R.Doherty,T.Ngara,M.New,andD.Lister(2001),Africanclimatechange:1900– 2100,ClimateResearch,17,145168.

IGN(1979),EtudedufleuveNiger:Réalisationcartographiquepréliminaireàl'établissementdu MODELE MATHEMATIQUE DU FLEUVE NIGER, PLANCHE 115, Institut GéographiqueNational,Paris.

Jacobberger,P.A.(1988),DroughtrelatedchangestogeomorphologicprocessesincentralMali, GeologicalSocietyofAmericaBulletin,100,351361.

Khan,N.I.,andA.Islam(2003),QuantificationoferosionpatternsintheBrahmaputraJamuna River using geographical information system and remote sensing techniques, Hydrological Processes,17,959966.

Kondolf,G.M.,T.E.Lisle,andG.M.Wolman(2003),BedSedimentMeasurement,inToolsin FluvialGeomorphology,editedbyG.M.Kondolfand H.Piégay,pp.347395,JohnWiley& SonsLtd.,Chichester.

Kuper,M.,J.C.Olivry,andA.Hassane(2002),Lefleuve Niger: Une ressource à partager, in L'OfficeduNiger,grenieràrizduMali,editedbyP.Bonneval,M.KuperandJ.P.Tonneau,pp. 7596,CiradKarthala,Montpellier.

L'Hôte,Y.,P.Dubreuil,andJ.Lerique(1996),Cartedestypesdeclimats"enAfriqueNoireà l'ouestduCongo".Rappels,etextensionsauxrégimeshydrologiques.,inL'hydrologietropicale: géoscienceetoutilpourledéveloppement,editedbyP.ChevallierandB.Pouyaud,pp.5565, IAHSPublicationno.238.

L'Hôte,Y.,G.Mahé,andB.Somé(2003),The1990srainfallintheSahel:thethirddriestdecade sincethebeginningofthecentury,HydrologicalSciencesJournal,,48(3),493496.

L'Hôte,Y.,G.Mahé,B.Somé,andJ.P.Triboulet(2002),AnalysisofaSahelianannualrainfall indexfrom1896to2000;thedroughtcontinues,HydrologicalSciencesJournal,47(4),563572.

Lane, A. (2004), Bathymetric evolution of the Mersey Estuary, UK, 19061997: causes and effects,Estuarine,CoastalandShelfScience,59,249263.

Laraque, A., G. Mahé, D. Orange, and B. Marieu (2001), Spatiotemporal variations in hydrological regimes within Central Africa during the XXth Century, Journal of Hydrology, 245(14),104117.

Lauer,D.T.,S.A.Morain,andV.V.Salomonson(1997),The Landsat Program: Its Origins, Evolution,andImpacts,PhotogrammetricEngeering&RemoteSensing,63(7),831838.

LeHouerou,H.N.(1980),TherangelandsoftheSahel,JournalofRangeManagement,33,41 46.

261 Leblanc,M.J.,G.Favreau,S.Massuel,S.O.Tweed,M.Loireau,andB.Cappelaere(2008),Land clearanceandhydrologicalchangeintheSahel:SWNiger,GlobalandPlanetaryChange,61,135 150.

Lienou,G.(2007),Impactsdelavariabilitéclimatiquesurlesressourceseneauetlestransports de matières en suspension de quelques bassins versants représentatifs au Cameroun, 405 pp, UniversitédeYaounde1,Yaounde.

Liu,J.,M.Linderman,Z.Ouyang,L.An,J.Yang,andH.Zhang(2001),Ecologicaldegradation inprotectedareas:ThecaseofWolongNaturereserveforGiantPandas,Science,292,98101.

Loireau,M.(1998),EspacesRessourcesUsages:Spatialisationdesinteractionsdynamiquesentre lessystèmessociauxetlessystèmesécologiquesauSahelnigérien,414pp,UniversitéMontpellier IIIPaulValery,Montpellier.

Lorenz, H. (2004), Integration of Corona and Landsat Thematic Mapper data for bedrock geologicalstudiesinthehigh,InternationalJournalofRemoteSensing,25(22),51435162.

Lu, D., P. Mausel, E. Brondizio, and E. Moran (2004), Change detection techniques, InternationalJournalofRemoteSensing,25(12),23652407.

LubèsNiel,H.,L.Séguis,andR.Sabatier(2001),Etudedestationnaritédescaractéristiquesdes événementspluvieuxdelastationdeNiameysurlapériode19561998,SciencesdelaTerreet desplanètes,333,645650.

Ludwig, W., and J.L. Probst (1998), River sediment discharge to the Oceans: Presentday controlsandglobalbudgets,AmericanJournalofScience,298(4),265295.

Mahé, G., J. C. Olivry, and E. Servat (2005a), Sensibilité des cours d’eau ouestafricains aux changementsclimatiquesetenvironnementaux:extrêmesetparadoxes,inRegionalHydrological Impacts of Climatic Change—Hydroclimatic Variability, edited by S. Frank, T. Wagener, E. Bøgh,H.V.Gupta,L.Bastidas,C.NobreandC.deOliveiraGalvão,pp.169177,IAHSPubl. no296.

Mahé,G.,J.E.Paturel,E.Servat,D.Conway,andA.Dezetter(2005b),Theimpactoflanduse changeonsoilwaterholdingcapacityandriverflowmodellingintheNakambeRiver,Burkina Faso,JournalofHydrology,300,3343.

Mahé, G., C. Leduc, A. Amani, J. E. Paturel, S. Girard, E. Servat, and A. Dezetter (2003), Augmentationrécenteduruissellementdesurfaceenrégionsoudanosahélienneetimpactsurles ressourceseneau,inHydrologyoftheMediterraneanandsemiaridregions,editedbyE.Servat, W.Najem,C.LeducandS.Ahmed,pp.215222,IAHSPublicationno278.

262 Mahé,G.,F.Bamba,D.Orange,L.Fofana,M.Kuper,B.Marieu,A.Soumagel,andN.Cissé (2002), Dynamique hydrologique du delta intérieur du Niger (Mali), in Gestion intégrée des ressourcesnaturellesenzonesinondablestropicales,editedbyD.Orange,R.Arfi,M.Kuper,P. Morand,Y.PoncetandB.Témé,pp.179195,IRD/CNRST.

Mariko,A.,G.Mahé,D.Orange,A.Royer,A.Nonguierma,A.Amani,andE.Servat(2002), Suivideszonesd'inondationdudeltaintérieurduNiger:perspectivesaveclesdonnéesdebasse résolutionNOAA/AVHRR,inGestionintégréedesressourcesnaturellesenzonesinondables tropicales,editedbyD.Orange,R.Arfi,M.Kuper,P.Morand,Y.PoncetandB.Témé,pp.231 244,IRD/CNRST.

Mas,J.F.(1999),Monitoringlandcoverchanges:acomparisonofchangedetectiontechniques, InternationalJournalofRemoteSensing,20(1),139152.

Mertes, L. A. K., T. Dunne, and L. A. Martinelli (1996), Channelfloodplain geomorphology alongtheSolimõesAmazonRiver,Brazil,GeologicalSocietyofAmericaBulletin,108(9),1089 1107.

Mohamed,Y.A.,B.J.J.M.vandenHurk,H.H.G.Savenije,andW.G.M.Bastiaanssen(2005), Hydroclimatology of the Nile: results from a regional climate model, Hydrology and Earth SystemSciencesDiscussions,2,319364.

Montgomery, D. R., and J. M. Buffington (1997), Channelreach morphology in mountain drainagebasins,GSABulletin,109(5),596611.

Moreau, C., D. Demaiffe, Y. Bellion, and A.M. Boullier (1994), A tectonic model for the locationofPalaeozoicringcomplexesinAïr(Niger,WestAfrica),Tectonophysics,234,129146.

Nachtergaele,J.,andJ.Poesen(1999),Assessmentofsoillossesbyephemeralgullyerosionusing highaltitude(stereo)aerialphotographs,EarthSurfaceProcessesandLandforms,24,693706.

Nathan,R.J.,andT.A.McMahon(1990),Evaluationofautomatedtechniquesforbaseflowand recessionanalyses,WaterResourcesResearch,26(7),14651473.

National Reconnaissance Office NRO Corona Fact Sheet, edited, National Reconnaissance Office,http://www.nro.gov/corona/facts.html(19June2008).

NEDECO (1959), River Studies and recommendations on improvement of Niger and BenueRep.,NetherlandsEngineeringConsultantsTheHague.,Amsterdam1000pp.

Nellis, M. D., J. A. Harrington, and J. Wu (1998), Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir:1993,Geomorphology,21,281293.

263 Nicholson,S.(2005),Onthequestionofthe‘‘recovery’’oftherainsintheWestAfricanSahel, JournalofAridEnvironments,63,615641.

Nicholson,S.E.(1995),Sahel,WestAfrica,inEncyclopediaofEnvironmentalBiology,edited, pp.261275,AcademicPress,Inc.

Nicholson,S.E.,M.L. Davenport,andA.R.Malo(1990), A comparison of the vegetation responsetorainfallintheSahelandEastAfrica,usingNormalizedDifferenceVegetationIndex fromNOAAAVHRR,ClimaticChange,17,209241.

Olivry,J.C.,J.P.Bricquet,andG.Mahé(1993),Versunappauvrissementdurabledesressources en eau de l'Afrique humide?, in Hydrology of Warm Humid Regions (Proceedings of the YokohamaSymposium),editedbyJ.S.Gladwell,pp.6778,IAHSPublicationno.216.

Olivry,J.C.,J.P.Bricquet,J.P.Thiebaux,andN.Sigha(1988),Transportdematièresurles grandsfleuvesdesrégionsintertropicales:lespremierrésultatsdesmesuresdefluxparticulaires surlebassindufleuveCongo,inSedimentBudgets,editedbyM.P.BordasandD.E.Walling, pp.509521,IAHSPublicatiionno.174,PortoAlegre.

ORSTOM(1970),MonographieHydrologiquedubassinduNiger3émepartieLeNigerMoyen, 160 pp., ORSTOM Secrétariat d’état aux affaires étrangères, comité interafricain d’études hydrauliques,Paris.

Ozer,P.,M.Erpicum,G.Demarée,andM.Vandiepenbeeck(2003),TheSaheliandroughtmay haveendedduringthe1990s,HydrologicalSciencesJournal,48(3),489492.

Park,M.(1815),TheJournalofaMissiontotheInteriorofAfrica,intheYear1805,373pp., London.

Paturel, J. E., E. Servat, H. LubèsNiel, and M. O. Delattre (1997), Variabilité climatique et analyse de séries pluviométriques de longue durée en Afrique de l'Ouest et centrale non sahélienne,SciencesdelaTerreetdesplanètes,325,779782.

Phillips,J.M.,B.W.Webb,D.E.Walling,andG.I.L.Leeks(1999),Estimatingthesuspended sediment loads of rivers in the LOIS study area using infrequent samples, Hydrological Processes,13,10351050.

Picouet, C. (1999), Géodynamique d’un hydrosysteme tropical peu anthropisé : Le bassin supérieurduNigeretsondeltaintérieur,386pp,UniversitédeMontpellierII,Montpellier.

Pizzuto,J.E.(1995),Downstreamfininginanetworkofgravelbeddedrivers,WaterResources Research,31(3),753759.

Porada,H.(1989),PanAfricanriftingandorogenesisinsouthernequatorialAfricaandeastern Brazil,PrecambrianResearch,44(2),103136.

264 Quensière, J., J.C. Olivry, Y. Poncet, and J. Wuillot (1994), Environnement deltaïque, in La pêchedansledeltacentralduNiger,editedbyJ.Quensière,pp.2980,ORSTOM/Karthala/IER, Paris.

Rasmussen,K.,andB.Fog,.Madsen,J.E.(2001),Desertificationinreverse?Observationsfrom northernBurkinaFaso,GlobalEnvironmentalChange,11,271282.

Richard,G.A.,P.Y.Julien,andD.C.Baird(2005),Statisticalanalysisoflateralmigrationofthe RioGrande,NewMexico,Geomorphology,71,139155.

Rigina,O.(2003),Detectionofborealforestdeclinewithhighresolutionpanchromaticsatellite imagery,InternationalJournalofRemoteSensing,24(9),18951912.

Rodier, J. (1964), Régimes hydrologiques de l'Afrique noire à l'ouest du Congo, 137 pp., ORSTOM,Paris.

Rodier, J., and M. Roche (1978), River Flow inArid Regions, in Hydrometry: principles and practices,edited,pp.453472,J.Wiley,Chichester.

Rodier, J. A., and M. Roche (1984), Worldcatalogue of maximum observed floods, 354 pp., IAHSPublicationno.143.

Rogan,J.,J.Franklin,andD.A.Roberts(2002),Acomparisonofmethodsformonitoringmulti temporalvegetationchangeusingThematicMapperimagery,RemoteSensingofEnvironment, 80,143156.

Roose,E.(1996),LandHusbandryComponentsandStrategy,397pp.,FoodandAgriculture OrganizationoftheUnitedNations,Rome.

Rooseboom,A.,andG.W.Annandale(1981),Techniquesappliedindeterminingsedimentloads inSouthAfricanrivers,inErosionandSedimentTransportMeasurement,editedbyD.Walling andP.Tacconni,pp.219224,IAHSPublicationno.133.

Ruelland,D.,A.Dezetter,C.Puech,andS.ArdoinBardin(2008),Longtermmonitoringofland cover changes based on Landsat imagery to improve hydrological modelling in West Africa, InternationalJournalofRemoteSensing,29(12),35333551.

Schlüter,T.(2006),GeologicalAtlasofAfrica,edited,SpringerBerlinHeidelberg,Berlin272pp.

Schumm,S.A.(1977),Thefluvialsystem,338pp.,JohnWileyandSonsInc.

Seguis,L.,B.Cappelaere,G.Milési,C.Peugeot,S.Massuel,andG.Favreau(2004),Simulated impacts of climate change and landclearing on runoff from a small Sahelian catchment, HydrologicalProcesses,18,34013413.

265 Shaw,E.M.(1994),HydrologyinPractice,ThirdEdition ed., 569 pp., Routledge,Abingdon, Oxon.

Smith, L. C. (1997), Satellite remote sensing of river inundation area, stage, and discharge: A review,HydrologicalProcesses,11,14271439.

Song,C.,C.E.Woodcock,K.C.Seto,M.P.Lenney,andS.A.Macomber(2001),Classification andchangedetectionusingLandsatTMdata:Whenand how to correctatmospheric effects?, RemoteSensingofEnvironment,75,230244.

Syvitski,J.P.M.,C.J.Vörösmarty,A.J.Kettner,andP.Green(2005),Impactofhumansonthe fluxofterrestialsedimenttotheglobalcoastalocean,Science,308,376380.

Tappan,G.G.,A.Hadj,E.C.Wood,andR.W.Lietzow(2000),UseofArgon,Corona,and Landsat imagery to assess 30 year of land resource changes in WestCentral Senegal, PhotogrammetricEngeering&RemoteSensing,66(6),727735.

Tarhule,A.(2005),Damagingrainfallandflooding:TheotherSahelhazards,ClimaticChange, 72,355377.

The ASCE Task Committee on Hydraulics Bank Mechanics and Modeling of River Width Adjustment(1998),RiverWidthAdjustment.I:ProcessesandMechanisms,JournalofHydraulic Engineering,124(9),881902.

Thorne,P.D.,P.J.Hardcastle,andR.L.Soulsby(1993),AnalysisofAcousticMeasurementsof SuspendedSediments,JournalofGeophysicalResearch,98(C1),899910.

Tucker,C.J.,H.E.Dregne,andW.W.Newcomb(1991),ExpansionandContractionofthe SaharaDesertfrom1980to1990,Science,253(5017),299301.

UNEP (2002), Atlas of International Freshwater Agreements, edited by A. T. Wolf, United Nations Environment Programme (UNEP), http://www.transboundarywaters.orst.edu/publications/atlas/(5June2007).

United Nations (2007), World Population prospects: The 2006 Revision, Highlights, Working Paper No. ESAP/P/WP202Rep., Department of Economic and Social Affairs, Population Division,NewYork96pp.

United Nations Population Division (2006), World Population prospects: The 2006 Revision, edited,PopulationDivisionoftheDepartmentofEconomicandSocialAffairsoftheUnited NationsSecretariat,http://esa.un.org/unpp/(6October2008).

USGS(1996),DeclassifiedSatelliteImagery1,edited,http://edc.usgs.gov/guides/disp1.html(19 June2008).

266 USGS (2005), Landsat:A Global LandObservation ProjectFactSheet20053130,editedby U.SGeologicalSurvey,p.4,U.SGeologicalSurvey,.

USGS(2006),BandDesignations,edited,http://eros.usgs.gov/products/satellite/band.html(19 June2008).

USGS,andNOAA(1984),Landsat4DataUsersHandbook,editedbyU.S.G.SandN.O.A.A,p. 200,U.SGeologicalSurvey,NationalOceanicandAtmosphericAdministration,Alexandria,VA.

VanRijn,L.C.(1993),Principlesofsedimenttransportinrivers,estuariesandcoastalseas,650 pp.,AquaPublications,Amsterdam.

Vanacker,V.,A.Molina,G.Govers,J.Poesen,G.Dercon,andS.Deckers(2005),Riverchannel responsetoshorttermhumaninducedchangeinlandscapeconnectivityinAndeanecosystems, Geomorphology,72,340353.

Visser, S. M., G. Sterk, and D. Karssenberg (2005), Modelling water erosion in the Sahel: application of a physically based soil erosion model in a gentle sloping environment, Earth SurfaceProcessesandLandforms,30,15471566.

Walling, D. E. (1999), Linking land use, erosion and sediment yields in river basins, Hydrobiologia,410(1),223240.

Weaver,A.V.(1991),Thedistributionofsoilerosionasafunctionofslopeaspectandparent materialinCiskei,SouthernAfrica,GeoJournal,23(1),2934.

Wende, R., and G. C. Nanson (1998), Anabranching rivers: ridgeform alluvial channels in tropicalnorthern,Geomorphology,22,205224.

White, F. (1983), The Vegetation of Africa; a descriptive memoir to accompany the Unesco/AETFAT/UNSOvegetationmapofAfrica;Unesco/AETFAT/UNSOvegetationmap ofAfrica;Unesco/AETFAT/UNSOcartedel'Afrique,inNaturalresourcesresearch,edited,p. 356.

White, K., and H. M. El Asmar (1999), Monitoring changing position of coastlines using ThematicMapperimagery,anexamplefromtheNileDelta,Geomorphology,29,93105.

Wilkinson,B.H.,andB.J.McElroy(2007),Theimpactofhumansoncontinentalerosionand sedimentation,GeologicalSocietyofAmericaBulletin,119(1/2),140156.

Winterbottom, S. J., and D. J. Gilvear (1997), Quantification of channel bed morphology in gravelbedriversusingairbornemultispectralimageryandaerialphotography,RegulatedRivers: ResearchandManagement,13,489499.

Wolman,M.G.(1954),Amethodofsamplingcoarseriverbedmaterial,TransactionsAmerican GeophysicalUnion,35,951956.

267 Wren,D.G.,B.D.Barkdoll,R.A.Kuhnle,andR.W. Derrow (2000), Field techniques for suspendedsedimentmeasurement,JournalofHydraulicEngineering,126(2),97104.

Wright,A.,W.A.Marcus,andR.Aspinall(2000),Evaluationofmultispectral,finescaledigital imageryasatoolformappingstreammorphology,Geomorphology,33,107120.

Yero,K.(2008),L'évolutiondel'occupationdessolsàl'échelledesbassinsversantsdeWankama et Tondi Kiboro: Quelles conséquences sur les débits et l'évapotranspiration réelle, 74 pp, UniversitéAbdouMoumouniNiamey,Niamey.

Zhou,W.,S.Wang,Y.Zhou,andA.Troy(2006),Mappingtheconcentrationsoftotalsuspended matterinLakeTaihu,China,usingLandsat5TMdata,InternationalJournalofRemoteSensing, 27(6),11771191.

268

AAPPPPEENNDDIICCEESS

269 APPENDIXA

TableA1:Estimatedandprojectedagriculturalpopulationlongtermseries(decennial) forBénin,BurkinaFaso,MaliandNiger(19502010)fromtheFAOSTATdatabase

Year Agricultural Totalpopulation %Agricultural Population(thousand) (thousand) population BENIN 1950 1776 2005 88.6 1960 1972 2316 85.1 1970 2292 2828 81.0 1980 2498 3709 67.3 1990 3289 5178 63.5 2000 3886 7197 54.0 2010 4329 9793 44.2 BURKINAFASO 1950 3547 3860 91.9 1960 4093 4455 91.9 1970 4902 5329 92.0 1980 6070 6587 92.2 1990 7882 8532 92.4 2000 10412 11292 92.2 2010 14093 15315 92.0 MALI 1950 3274 3450 94.9 1960 4048 4317 93.8 1970 5031 5431 92.6 1980 6204 6975 88.9 1990 7628 8893 85.8 2000 9433 11647 81.0 2010 11676 15617 74.8 NIGER 1950 2498 2613 95.6 1960 3247 3446 94.2 1970 4254 4586 92.8 1980 5662 6206 91.2 1990 7601 8472 89.7

270 2000 10326 11783 87.6 2010 14010 16430 85.3 TableA2:MilletcultivationdataforNiger(19612007)fromtheFAOSTATdatabase

Year AreaHarvested Yield Year AreaHarvested Yield (Hectares) (Hectogram/hectare) (Hectares) (Hectogram/hectare) 1961 1640100 4731 1985 3168705 4577 1962 1840000 5076 1986 3239487 4270 1963 1887000 5145 1987 3016720 3304 1964 1777000 5702 1988 3518003 5020 1965 1810000 4361 1989 3565738 3737 1966 1743000 4829 1990 4606093 3833 1967 1865200 5361 1991 4389733 4175 1968 1895200 3865 1992 4988796 3583 1969 2271900 4821 1993 4675272 3547 1970 2309800 3770 1994 4920056 4000 1971 2355800 4070 1995 5229430* 3383ª 1972 2194500 4186 1996 5021190* 3507ª 1973 2007700 3122 1997 4503635 3001 1974 2230000 3957 1998 5366055 4456 1975 1692900 3433 1999 5351201 4291 1976 2526900 4033 2000 5151395 3259 1977 2728500 4142 2001 5231937 4614 1978 2726700 4117 2002 5576500 4490 1979 2922085 4295 2003 5771300 4756 1980 3072360 4438 2004 5604400 3635 1981 3038000 4324 2005 5893900 4500ª 1982 3083800 4191 2006 6229948 4829ª 1983 3135550 4181 2007 6170179 4508ª 1984 3025695 2548 * Unofficial figure; ª FAO estimate

271 TableA3:EstimatedagriculturalareaforBénin,BurkinaFaso,MaliandNiger(1950 2005)fromtheFAOSTATdatabase

Year Benin B.Faso Mali Niger 1961 1442 8139 31668 31500 1962 1462 8149 31673 31500 1963 1482 8159 31678 31500 1964 1502 8169 31683 31500 1965 1522 8179 31688 31500 1966 1552 8190 31693 31500 1967 1592 8200 31700 31500 1968 1622 8210 31700 32177 1969 1707 8222 31700 32176 1970 1727 8236 31750 31200 1971 1777 8220 31750 31230 1972 1807 8302 31750 31177 1973 1827 8373 31750 30814 1974 1857 8453 31800 29780 1975 1897 8536 31850 29780 1976 1927 8585 32050 29780 1977 1957 8635 32050 29780 1978 1977 8685 32050 29780 1979 1997 8735 32050 29958 1980 2027 8785 32050 30720 1981 2057 8835 32053 30280 1982 2090 8885 32053 30360 1983 2100 8935 32053 31010 1984 2110 8985 32053 30780 1985 2130 9035 32073 30780 1986 2190 9085 32076 31280 1987 2200 9140 32076 31012 1988 2210 9564 32093 31300 1989 2220 9600 32093 31405 1990 2270 9575 32093 33047 1991 2280 9550 32103 34105 1992 2295 9525 32203 35500 1993 2320 9500 33100 35500 1994 2400 9431 35200 35500 1995 2520 9450 35419 36500 1996 2710 9550 36650 36500 1997 2890 9800 37650 36500 1998 3050 9950 37650 36500 1999 3110 10000 37650 37500 2000 3195 10100 38674 37500 2001 3265 10600 39339 38500 2002 3365 10700 39379 38500 2003 3467 10900 39479 38500 2004 3567 10900 39479 38500 2005 3567 10900 39479 38500 Agriculturalarearefersto: (a)arableland,(b)permanentcropsand(c)permanentpastures Dataareexpressedin1000hectares.SourcesFAOAnnualProductionQuestionnaireNational StatisticalYearbookOfficial/GovernmentalwebsitesDatain(1000ha)

272 APPENDIXB

FigureB1:Reach1

273 FigureB2A:ChannelchangeinReach1(19791999)

274 FigureB3A:ChannelchangeinReach1(19841999)

275 FigureB4A:ChannelchangeinReach1(19921999)

276

FigureB5B:ChannelchangeinReach1(19791999)

277

FigureB6B:ChannelchangeinReach1(19841999)

278

FigureB7B:ChannelchangeinReach1(19921999)

279 FigureB8C:ChannelchangeinReach1(19791999)

280 FigureB9C:ChannelchangeinReach1(19841999)

281 FigureB10C:ChannelchangeinReach1(19921999)

282

FigureB11:Reach1

283 FigureB12A:Rivercentrelinechangeinreach1(1979–1999)

284 FigureB13A:Rivercentrelinechangeinreach1(1984–1999)

285

FigureB14A:Rivercentrelinechangeinreach1(1992–1999)

286

FigureB15B:Rivercentrelinechangeinreach1(1979–1999)

287

FigureB16B:Rivercentrelinechangeinreach1(1984–1999)

288

FigureB17B:Rivercentrelinechangeinreach1(1992–1999)

289

FigureB18C:Rivercentrelinechangeinreach1(1979–1999)

290

FigureB19C:Rivercentrelinechangeinreach1(1984–1999)

291 FigureB20C:Rivercentrelinechangeinreach1(1992–1999)

292 FigureB21A:Reach1channelbankandislandextentsin1979

293 FigureB22A:Reach1channelbankandislandextentsin1984

294 FigureB23A:Reach1channelbankandislandextentsin1992

295 FigureB24A:Reach1channelbankandislandextentsin1999

296 FigureB25B:Reach1channelbankandislandextentsin1979

297 FigureB26B:Reach1channelbankandislandextentsin1984

298 FigureB27B:Reach1channelbankandislandextentsin1992

299 FigureB28B:Reach1channelbankandislandextentsin1999

300 FigureB29C:Reach1channelbankandislandextentsin1979

301 FigureB30C:Reach1channelbankandislandextentsin1984

302 FigureB31C:Reach1channelbankandislandextentsin1992

303 FigureB32C:Reach1channelbankandislandextentsin1999

304

FigureB33:Reach2

305 FigureB34A:ChannelchangeinReach2(19751999)

306 FigureB35A:ChannelchangeinReach2(19841999)

307 FigureB36A:ChannelchangeinReach2(19891999)

308 FigureB37B:ChannelchangeinReach2(19751999)

309 FigureB38B:ChannelchangeinReach2(19841999)

310 FigureB39B:ChannelchangeinReach2(19891999)

311 FigureB40C:ChannelchangeinReach2(19751999)

312

FigureB41C:ChannelchangeinReach2(19841999)

313 FigureB42C:ChannelchangeinReach2(19891999)

314 FigureB43:Reach2

315 FigureB44A:Rivercentrelinechangeinreach2(1975–1999)

316 FigureB45A:Rivercentrelinechangeinreach2(1984–1999)

317 FigureB46A:Rivercentrelinechangeinreach2(1989–1999)

318 FigureB47B:Rivercentrelinechangeinreach2(1975–1999)

319 FigureB48B:Rivercentrelinechangeinreach2(1984–1999)

320 FigureB49B:Rivercentrelinechangeinreach2(1989–1999)

321 FigureB50C:Rivercentrelinechangeinreach2(1975–1999)

322 FigureB51C:Rivercentrelinechangeinreach2(1984–1999)

323 FigureB52C:Rivercentrelinechangeinreach2(1989–1999)

324 FigureB53A:Reach2channelbankandislandextentsin1975

325 FigureB54A:Reach2channelbankandislandextentsin1984

326 FigureB55A:Reach2channelbankandislandextentsin1989

327 FigureB56A:Reach2channelbankandislandextentsin1999

328 FigureB57B:Reach2channelbankandislandextentsin1975

329 FigureB58B:Reach2channelbankandislandextentsin1984

330 FigureB59B:Reach2channelbankandislandextentsin1989

331 FigureB60B:Reach2channelbankandislandextentsin1999

332 FigureB61C:Reach2channelbankandislandextentsin1975

333 FigureB62C:Reach2channelbankandislandextentsin1984

334 FigureB63C:Reach2channelbankandislandextentsin1989

335 FigureB64C:Reach2channelbankandislandextentsin1999

336 FigureB65:Positionofthe1965Coronaimageryinreach2

337

FigureB66:ChannelchangeinastretchofReach2(19651975)

338 FigureB67:ChannelchangeinastretchofReach2(19651999)

339 FigureB68:Rivercentrelinechangeinreach2(1965–1975)

340 FigureB69:Rivercentrelinechangeinreach2(1965–1999)

341 FigureB70:Reach2channelbankandislandextentsin1965

342 FigureB71:Reach2channelbankandislandextentsin1975

343 FigureB72:Reach2channelbankandislandextentsin1999

344 FigureB73:Reach3

345 FigureB74A:ChannelchangeinReach3(19731999)

346 FigureB75A:ChannelchangeinReach3(19841999)

347 FigureB76B:ChannelchangeinReach3(19731999)

348 FigureB77B:ChannelchangeinReach3(19841999)

349 FigureB78A:Rivercentrelinechangeinreach3(1973–1999)

350

FigureB79A:Rivercentrelinechangeinreach3(1984–1999)

351 FigureB80B:Rivercentrelinechangeinreach3(1973–1999)

352 FigureB81B:Rivercentrelinechangeinreach3(1984–1999)

353 FigureB82A:Reach3channelbankandislandextentsin1973

354 FigureB83A:Reach3channelbankandislandextentsin1984

355 FigureB84A:Reach3channelbankandislandextentsin1999

356 FigureB85B:Reach3channelbankandislandextentsin1973

357 FigureB86B:Reach3channelbankandislandextentsin1984

358 FigureB87B:Reach3channelbankandislandextentsin1999

359 COMPARING1984AND1999

FigureB88:Extentofadditionalimagedata(1984and1999)overlaidbydatausedfor reach3

360 FigureB89:Channelchange(19841999)

361 FigureB90:Rivercentrelinechange(1984–1999)

362 FigureB91:Channelbankandislandextentsin1984

363 FigureB92:Channelbankandislandextentsin1999

364 TableB1:Reach1

KM 19791984 19841992 19921999 0 73.32499 68.63963 37.65697 10 451.65971 508.50797 31.73437 20 47.17535 54.87828 76.52297 30 107.73281 159.29192 42.28044 40 170.81356 97.38798 12.15495 50 34.17144 22.31122 95.82385 60 23.06358 159.70448 60.75399 70 538.59981 28.32841 130.49057 80 55.38323 42.21761 101.68499 90 102.60619 4.05394 4.45598 100 304.64561 105.12886 98.33704 110 159.45074 62.24519 43.34941 117 639.13859 235.82726 362.03854 MEAN 208.28966 119.11713 84.40647 TableB2:Reach2

KM 19751984 19841989 19891999 0 121.39057 164.27960 24.02157 10 83.31583 7.65894 23.48117 20 23.45300 33.77922 55.65012 30 153.07795 124.00769 102.70341 40 35.63463 6.09415 69.97706 50 38.81491 58.60131 84.53913 60 3.41351 33.38837 7.68138 70 64.08248 46.18348 33.89292 80 44.90308 1.32734 16.99819 90 162.39981 93.73366 27.99191 100 12.92346 120.95807 106.89794 110 45.13623 63.03976 44.90799 120 11.27263 36.33891 51.18479 130 39.02835 3.56525 12.15924 140 783.84066 23.95807 80.19247 150 28.45404 7.72748 36.89705 MEAN 103.19632 51.54008 48.69852

365 TableB3:Reach3

KM 19731984 19841999 0 20.15869 22.44857 10 100.32833 58.67460 20 48.35374 64.72050 30 28.41252 3.31476 40 13.79618 20.19822 50 41.86069 20.42645 60 26.89000 44.18578 70 30.70741 6.31353 80 72.55697 20.97125 90 20.89340 9.71145 100 377.98296 30.68554 MEAN 71.08554 27.42279

366 4000

3500

3000

2500 /s) 3

2000 Discharge(m 1500 Data (Weibull)

Gumbel EV TYPE1 1000 95% confidence limit

95% confidence limit 500

0 -3 -2 -1 0 1 2 3 4 5 6 Frequency factor

FigureB93:AnnualmaximumflowsfortheNigerRiveratNiamey19292006

TableB4:Maximumdischargeanalysis,RiverNigeratNiamey19292006

F(X) T(years) K(T)frequencyfactor Q(m3/s) 0.000999 1.001 1.95703072 1195.31538 0.00990099 1.01 1.64246093 1281.19176 0.5 2 0.16427204 1684.73181 0.8 5 0.71945742 1925.98665 0.9 10 1.30456321 2085.71835 0.93333333 15 1.63467496 2175.83763 0.95 20 1.86581074 2238.93683 0.96 25 2.04384594 2287.53978 0.96666667 30 2.1886826 2327.07964 0.975 40 2.41631723 2389.22305 0.98 50 2.5922881 2437.26244 0.98333333 60 2.73576331 2476.43064 0.98571429 70 2.85689446 2509.49899 0.99 100 3.13668064 2585.87957 0.995 200 3.67908679 2733.95443 0.999 1000 4.93552369 3076.95701

367 APPENDIXC

Table C 1 lists the key characteristics of the Landsat program. Adapted from [USGS , 2006; USGS and NOAA ,1984] TableC1:Landsatinstrumentdata

System Launch Instrument(s) Altitude Revisitinterval (Endofservice) (km) (days) Landsat1 23/7/1972 RBV 920 18 (6/1/1978) MSS Landsat2 22/1/1975 RBV 920 18 (25/2/1982) MSS Landsat3 5/3/1978 RBV 920 18 (31/3/1983) MSS Landsat4* 16/7/1982 MSS 705 16 (15/6/2001) TM Landsat5 1/3/1984 MSS 705 16 TM Landsat6 5/10/1993 ETM 705 16 (5/10/1993) Landsat7 15/4/1999 ETM+ 705 16 *TMdatatransmissionfailedinAugust,1993 TableC2:LandsatMSSresolution Multispectral Landsats13 Landsats45 Wavelength(m) Resolution(Meters) scanner(MSS) Band4 Band1 0.5–0.6 80 Band5 Band2 0.6–0.7 80 Band6 Band3 0.7–0.8 80 Band7 Band4 0.8–1.1 80

368 TableC3:LandsatTMresolution Thematic Mapper Landsats45 Wavelength(m) Resolution(meters) (TM) Band1 0.45–0.52 30 Band2 0.52–0.60 30 Band3 0.63–0.69 30 Band4 0.76–0.90 30 Band5 1.55–1.75 30 Band6 10.40–12.50 120* Band7 2.08–2.35 30 *Thedeliveredproductisresampledto30meterpixels. TableC4:LandsatETMresolution

Enhanced Thematic Landsats7 Wavelength(m) Resolution(meters) Mapper(ETM+) Band1 0.45–0.52 30 Band2 0.52–0.60 30 Band3 0.63–0.69 30 Band4 0.77–0.90 30 Band5 1.55–1.75 30 Band6 10.40–12.50 60 Band7 2.09–2.35 30 Band8 0.52–0.90 15 TableC5:TechnicalcharacteristicsoftheCORONAKH4Acamerasystem[source: [USGS ,1996]] Periodofoperation August1963October1969 Cameratype Panoramic Flightaltitude 185km Focallength 61cm Frameformat 5.54cmx75.69cm Filmresolution 120lines/mm Filmwidth 70mm Photoscaleofthefilm 1:305000 Groundcoverage 17kmx232km Bestgroundresolution 2.7m

369 CORONA images are captured as parallel strips; the images used for this study are from the CORONAKH4Acamerasystem.

FigureC1:SampleimageofareassembledCoronafilmstrip

370 TableC6:ConfusionmatrixfortheGorouolbasin1999usingfieldobservedgroundtruth

Class Sandy Sediment Tree, Bare bare Paved/rocky laden poor Prod. User soil soil baresoil Water water Shrubs/grass Tree state Total Acc. Acc. Baresoil 98.63 0 0 0 0 0 0 0 34.12 98.63 100 Sandybaresoil 1.37 100 0 0 0 0 0 0 6.64 100 92.86 Paved/rocky baresoil 0 0 100 0 0 0 0 0 9 100 100 Water 0 0 0 100 0 0 0 0 25.59100 100 Sediment ladenwater 0 0 0 0 87.5 0 0 0 3.32 87.5 100 Shrubs/grass 0 0 0 0 0 100 0 22.22 5.69 100 66.67 Tree 0 0 0 0 12.5 0 88.89 0 8.06 88.89 94.12 Tree, poor state 0 0 0 0 0 0 11.11 77.78 7.58 77.78 87.5 Total 100 100 100 100 100 100 100 100 100

371 TableC7:ConfusionmatrixfortheGorouolbasin1992usingfieldobservedgroundtruth

Class Sandy Sediment Tree, Bare bare Paved/rocky laden poor Prod. User soil soil baresoil Water water Shrubs/grass Tree state Total Acc. Acc. Baresoil 100 53.85 42.86 39.34 0 50 11.11 95.24 63.48 100 54.79 Sandybaresoil 0 46.15 0 0 0 0 0 0 2.61 46.15100 Paved/rocky baresoil 0 0 4.76 0 0 0 0 0 0.43 4.76 100 Water 0 0 0 29.51 0 0 0 0 7.83 29.51 100 Sediment ladenwater 0 0 0 0 62.5 0 0 0 2.17 62.5 100 Shrubs/grass 0 0 4.76 11.48 0 37.5 5.56 4.76 5.65 37.5 23.08 Tree 0 0 4.76 0 25 12.5 83.33 0 8.26 83.33 78.95 Tree, poor state 0 0 42.86 19.67 12.5 0 0 0 9.57 0 0 Total 100 100 100 100 100 100 100 100 100

372 TableC8:ConfusionmatrixfortheGorouolbasin1984usingfieldobservedgroundtruth

Class Sandy Sediment Tree, Bare bare Paved/rocky laden poor Prod. User soil soil baresoil Water water Shrubs/grass Tree state Total Acc. Acc. Baresoil 15.38 0 4.55 46.15 62.5 62.5 38.89 0 26.09 15.38 20 Sandybaresoil 6.41 92.31 45.45 0 0 0 0 11.11 12.61 92.31 41.38 Paved/rocky baresoil 0 0 0 0 0 0 0 0 0 0 0 Water 0 0 0 0 0 0 0 0 0 0 0 Sediment ladenwater 3.85 0 36.36 24.62 0 37.5 0 0 13.04 24.62 53.33 Shrubs/grass 74.36 7.69 4.55 23.08 37.5 0 44.44 0 37.39 0 0 Tree 0 0 0 1.54 0 0 11.11 66.67 6.52 11.11 13.33 Tree, poor state 0 0 9.09 4.62 0 0 5.56 22.22 4.35 22.22 40 Total 100 100 100 100 100 100 100 100 100

373 TableC9:ConfusionmatrixfortheGorouolbasin1979using1959mapgroundtruth

Class Tree, Bare poor Prod. User soil Water Tree state Total Acc. Acc. Baresoil 100 0 25.27 0 52.2 100 91.93 Water 0 100 0 0 19.6 100 100 Tree 0 0 74.73 72.09 23.81 74.73 52.31 Tree, poor state 0 0 0 27.91 4.4 27.91 100 Total 100 100 100 100 100

374 TableC10:ConfusionmatrixfortheSirbabasin1999usingfieldobservedgroundtruth

Class Sandy Sediment Tree, Bare bare Paved/rocky laden poor Prod. User soil soil baresoil Water water Shrubs/grass Tree state Total Acc. Acc. Baresoil 87.5 0.58 0 0 0 0 0 0 2.73 87.5 87.5 Sandybaresoil 0 98.83 0 0 0 0 0 0 57.68 98.83 100 Paved/rocky baresoil 0 0 100 0 0 0 0 0 1.37 100 100 Water 0 0 0 100 0 0 0 0 3.75 100 100 Sediment ladenwater 12.5 0 0 0 100 0 0 0 3.75 100 90.91 Shrubs/grass 0 0 0 0 0 66.67 0 0 0.68 66.67100 Tree 0 0.58 0 0 0 33.33 100 7.84 13.99 100 85.37 Tree, poor state 0 0 0 0 0 0 0 92.16 16.04 92.16 100 Total 100 100 100 100 100 100 100 100 100

375 TableC11:ConfusionmatrixfortheSirbabasin1989usingfieldobservedgroundtruth

Class Sandy Sediment Tree, Bare bare Paved/rocky laden poor Prod. User soil soil baresoil Water water Shrubs/grass Tree state Total Acc. Acc. Baresoil 62.5 16.76 75 0 0 100 97.92 0 27.85 62.5 5.68 Sandybaresoil 0 81.01 25 0 0 0 0 0 46.2 81.01 99.32 Paved/rocky baresoil 25 1.68 0 0 20 0 2.08 1.89 2.85 0 0 Water 0 0 0 90.91 10 0 0 0 3.48 90.91 90.91 Sediment ladenwater 12.5 0 0 9.09 50 0 0 0 2.22 50 71.43 Shrubs/grass 0 0 0 0 0 0 0 1.89 0.32 0 0 Tree 0 0 0 0 0 0 0 20.753.48 0 0 Tree, poor state 0 0.56 0 0 20 0 0 75.47 13.61 75.47 93.02 Total 100 100 100 100 100 100 100 100 100

376 TableC12:ConfusionmatrixfortheSirbabasin1984using1980mapgroundtruth

Class Tree, Bare Paved/rocky poor Prod. User soil baresoil Water Shrubs/grass Tree state Total Acc. Acc. Baresoil 100 0 0 22.22 0 0 11.16 100 91.55 Paved/rocky baresoil 0 100 0 0 0 11.54 10.53 100 95.52 Water 0 0 100 0 0 0 67.3 100 100 Shrubs/grass 0 0 0 77.78 0 0 3.3 77.78 100 Tree 0 0 0 0 50 50 4.09 50 50 Tree, poor state 0 0 0 0 50 38.46 3.62 38.46 43.48 Total 100 100 100 100 100 100 100

TableC13:ConfusionmatrixfortheSirbabasin1975using1980mapgroundtruth

Class Tree, Bare Paved/rocky poor Prod. User soil baresoil Water Shrubs/grass Tree state Total Acc. Acc. Baresoil 0 0 0 0 0 0 0 0 0 Paved/rocky baresoil 0 0 0 0 0 0 0 0 0 Water 0 0 100 0 0 0 65.84 100 100 Shrubs/grass 100 100 0 100 25 0 25.47 100 19.51 Tree 0 0 0 0 50 75 6.21 50 40 Tree, poor state 0 0 0 0 25 25 2.48 25 50 Total 100 100 100 100 100 100 100

TableC14:ConfusionmatrixfortheMékroubasin2000using1959mapgroundtruth

Class Bare Prod. User soil Water Tree Total Acc. Acc. Baresoil 0 0 7.12 6.79 0 0 Water 0 33.33 0 1.36 33.33 100 Tree 100 66.67 92.88 91.85 92.88 96.49 Total 100 100 100 100

377

TableC15:ConfusionmatrixfortheMékroubasin1973using1959mapgroundtruth

Class Bare Prod. User soil Water Tree Total Acc. Acc. Baresoil 100 63.64 7.09 20.59 100 51.43 Water 0 36.36 0 2.35 36.36 100 Tree 0 0 92.91 77.06 92.91 100 Total 100 100 100 100

Bare soil Sandy bare soil 80% Paved/rocky bare soil Tree 70% Tree, poor state Shrubs/Grass

60%

50%

40%

30%

Percent land cover land Percent 20%

10%

0% 1979 1984 1992 1999 Year FigureC2:PercentagelandcoverGorouol19791999

378 0.35% Water 0.30% Sediment-laden water

0.25%

0.20%

0.15%

0.10% Percent land cover land Percent

0.05%

0.00% 1979 1984 1992 1999 Year

FigureC3:Water/sedimentladenwatersurfaceareaintheGorouolbasin(19791999)

379 FigureC4:Gorouolbasinlandcoverin1984(14888km²)

380 FigureC5:Gorouolbasinlandcoverin1992(14888km²)

381 FigureC6:Gorouolbasinlandcoverin1999(14888km²)

382

Bare soil 80% Sandy bare soil 70% Paved/rocky bare soil Tree 60% Tree, poor state 50% Shrubs/Grass

40%

30%

Percent land cover landPercent 20%

10%

0% 1984 1992 1999 Year FigureC7:PercentagelandcoverGorouol19841999

0.60% Water 0.50% Sediment-laden water

0.40%

0.30%

0.20% Percent land cover land Percent 0.10%

0.00% 1984 1992 1999 Year FigureC8:Water/sedimentladenwatersurfaceareaintheGorouolbasin(19841999)

383 TableC16:Gorouolbetween1984and1999Area(14888km²)

Class 1984 1992 1999

Water 0.33 0.14 0.47

Sedimentladen 0.29 0.21 0.26 water

Baresoil 65.38 69.04 31.14

Baresandysoil 13.23 12.12 24.30

Bare 0.65 1.78 0.55 paved/rockysoil

Tree 2.39 3.16 3.76

Tree(poorstate) 1.98 5.09 9.28

Shrubs/Grass 15.76 8.46 27.75

Bare soil 70% Sandy bare soil 60% Paved/rocky bare soil Tree 50% Tree, poor state 40% Shrubs/Grass

30%

20% Percent land cover land Percent 10%

0% 1975 1984 1989 1999 Year

FigureC9:PercentagelandcoverSirba19751999

384 0.45% Water 0.40% Sediment-laden water 0.35% 0.30% 0.25% 0.20% 0.15%

Percent land cover land Percent 0.10% 0.05% 0.00% 1975 1984 1989 1999 Year

FigureC10Water/sedimentladenwatersurfaceareaintheSirbabasin(19751999)

b)ComparisonofthelandcoverintheSirbabasinfor1984,1989and1999(Area:5104km²)

385 FigureC11:Sirbabasinlandcoverin1984(5104km²)

386 FigureC12:Sirbabasinlandcoverin1989(5104km²)

387 FigureC13:Sirbabasinlandcoverin1999(5104km²)

388 TableC17:Sirbapercentagelandcover19841999Area(5104km²)

Class 1984 1989 1999

Water 0.01 0.01 0.01

Sedimentladen 0.13 0.06 0.19 water

Baresoil 19.25 48.37 28.22

Baresandysoil 10.00 7.67 19.74

Bare 36.51 23.59 16.56 paved/rockysoil

Tree 6.44 0.95 2.15

Tree(poorstate) 10.02 6.63 23.70

Shrubs/Grass 17.64 12.73 9.43

Bare soil 60% Sandy bare soil Paved/rocky bare soil 50% Tree

40% Tree, poor state Shrubs/Grass

30%

20% Percent land cover landPercent

10%

0% 1984 1989 1999 Year FigureC14:PercentagelandcoverSirba19841999

389 0.20% Water Sediment-laden water 0.15%

0.10%

Percent land cover land Percent 0.05%

0.00% 1984 1989 1999 Year FigureC15:Water/sedimentladenwatersurfaceareaintheSirbabasin(19841999)

60% Bare soil Paved/rocky bare soil Tree Shrubs/Grass 50%

40%

30%

20% Percent land cover land Percent 10%

0% 1973 2000 Year FigureC16:PercentagelandcoverMekrou19731999(7690km²)

390 0.18% Water 0.16% Sediment-laden water 0.14% 0.12% 0.10% 0.08% 0.06%

Percent land cover land Percent 0.04% 0.02% 0.00% 1973 2000 Year FigureC17:Water/sedimentladenwatersurfaceareaintheMékroubasin(19732000) (7690km²)

FigureC18:ThemiddleNigerbasinshowing1965Coronaimagemosaic(2840km²)

391 100% BARE SOIL VEGETATION 90% 80% 70% 60% 50% 40% 30% Percent land cover land Percent 20% 10% 0% 1965 1975 1984 1989 1999 Year FigureC19:PercentagelandcoveroftheareacoveredbytheCoronamosaic19651999 (2840km²)

1.30% 1.20% WATER 1.10% 1.00% 0.90% 0.80% 0.70% 0.60% 0.50% 0.40% Percent land cover landPercent 0.30% 0.20% 0.10% 0.00% 1965 1975 1984 1989 1999 Year FigureC20WatersurfaceareaintheCoronamosaicarea19651999(2840km²)

392 TableC18:Percentagelandcoverchangeofthe1965Coronamosaicarea(2840km²) Class 1965 1975 1984 1989 1999

Water 1.20 1.07 1.19 1.03 0.99

Baresoil 12.51 36.99 34.12 54.89 15.32

Baresandysoil 13.46 8.26 32.49 24.94 46.17

Bare paved/rocky 11.73 11.74 15.27 10.86 6.67 soil

Tree 27.49 6.19 1.13 1.20 1.03

Tree(poorstate) 22.21 4.22 2.27 2.19 28.06

Shrubs/Grass 11.41 31.54 13.52 4.89 1.77

393

APPENDIXD

Flow duration curve(log intervals) for River Niger at Niamey(1929-2006)

10000

1000

100 /s)

3 10

1 Discharge(m

0.1

0.01

0.001 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Percent of time that indicated discharge was equalled or exceeded FigureD1:Flowdurationcurve,NigeratNiamey(19292006)

Flow duration curve(log intervals)for River Niger at Niamey 1950/51-1969/70

10000

1000

100 /s)

3 10

1 Discharge(m

0.1

0.01

0.001 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 % of time that indicated discharge was equalled or exceeded FigureD2:Flowdurationcurve,NigeratNiamey(Wetspell)

394

Flow duration curve(log intervals) for River Niger at Niamey (1956/57)

10000

1000

100 /s)

3 10

1 Discharge(m

0.1

0.01

0.001 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 % of time that indicated discharge was equalled or exceeded FigureD3:Flowdurationcurve,NigeratNiamey(Wettestyear)

Flow duration curve(log intervals) for River Niger at Niamey(1969/70)

10000

1000

100 /s)

3 10

1 Discharge(m

0.1

0.01

0.001 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Percent of time that indicated value was equalled or exceeded FigureD4:Flowdurationcurve,NigeratNiamey(Maximumdailydischarge)

395

Flow duration curve(log intervals) for River Niger at Niamey 1970/71-1989/90

10000

1000

100 /s)

3 10

1 Discharge(m

0.1

0.01

0.001 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Percent of time that indicated discharge was equalled or exceeded FigureD5:Flowdurationcurve,NigeratNiamey(Dryspell)

Flow duration curve(log intervals) for River Niger at Niamey(1984/85)

10000

1000

100 /s)

3 10

1 Discharge(m

0.1

0.01

0.001 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Percent of time that indicated discharge was equalled or exceeded FigureD6:Flowdurationcurve,NigeratNiamey(Driestyear)

396 Flow duration curve(log interval) for River Niger at Niamey(1985/86)

10000

1000

100 /s)

3 10

1 Discharge(m

0.1

0.01

0.001 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Percent of time that indicated value is equalled or exceeded FigureD7:Flowdurationcurve,NigeratNiamey(Minimumdailydischarge)

397 TableD1:MonthlyPanEvaporation(mm)fromFAOwebLocClimestimator

Farie Garbe Kandadji Diamballa Tillabery Kourani haoussa kourou Niamey January 214 225 226 224 221 221 220 February 222 231 232 231 230 230 234 March 274 281 282 280 275 274 272 April 271 278 279 277 271 270 266 May 281 282 282 281 277 276 275 June 243 240 240 239 233 233 225 July 218 214 214 213 207 207 199 August 183 180 180 178 173 173 165 September 189 191 192 190 182 182 172 October 221 228 229 226 218 217 208 November 214 226 228 225 218 218 213 December 215 228 229 227 222 221 219 Total 2745 2804 2813 2791 2727 2722 2668 MeanannualevaporationbetweenKandadjiandNiamey=2752.86mm CorrectionfactorforclassApanrates=0.75 2752.86x0.75=2064.64mm=0.002064km EstimatedriversurfaceareabetweenKandadjiandNiamey=370km² Evaporationlosses=0.002064/370=7.64*10 8 m3

398 EExxtteennddeeddRRééssuumméé((eenn ffrraannççaaiiss))

399 IInnttrroodduuccttiioonn:: LL''eennssaabblleemmeennttdduufflleeuuvvee NNiiggeerr,,mmyytthheeoouurrééaalliittéé??

400 1. Contexte

Durantcesdernièresdécennies,lavégétationnaturellementéparseduSahel,régionsemiarideen Afrique de l'Ouest, a été sérieusement affectée par une réduction de 25 à 30 pour cent des précipitations,coupléeàunepressioncroissantedubétailetdeshommesdufaitdusurpâturage etdel'augmentationdesbesoinsenboisdechauffe[M-F Courel ,1985; L Descroix ,2003].Ilaété observéqueladiminutiondesprécipitationsaeuuneffetamplifiésurlesdébitsdufleuveNiger.

Pendantlamêmepériode,dufaitdel'augmentationdessurfacesdesolsnus,lessédimentsont étéplusfacilementtransportésdubassinversantverslefleuveNiger.Deplus,ladiminutiondu débitdufleuveNigeracontribuéàcequ’onappellel'ensablementdubassinduNigermoyen.

2. Intérêtdel'étude

Lesconséquencesdelacombinaisondel'augmentationdustockdesédimentsdisponiblesetdela diminutiondesdébitsdufleuveNigersontcertainementnombreusesetvariées,allantdesétiages plussévères,àdescaractéristiquesdecruesvariablesetàunprobableensablementdesprojets d'aménagements hydrauliques le long du fleuve Niger. Les impacts négatifs potentiels de l'augmentation des apports de sédiments sur la vie aquatique, la navigabilité du fleuve et le traitement de l'eau ne sont pas négligeables et ont engendré débats et spéculations entre les scientifiquesetlesgestionnairesdubassinàproposdescausesetdelasévéritédesphénomènes observés,etgénérantlesquestionssuivantes:cet «ensablement», s’il existe, estil le fait d’un dépôtdesédimentsouseulementd’unlitmineurplusexposé?,engros:yatilmoinsd'eauou plusdesédiments?

Lesfaitssontdifficilesàséparerdesperceptionsdufaitquelesmesuresdirectesdesdynamiques sédimentairesdanslazoned'étudesontlimitéesouinexistantes.

Laprésenteétudeestainsinécessaireencequ'ellecontribueàcomprendrel'évolutiondubassin entermesdeproductionettransfertdesédimentsetleursprincipauxfacteursdecontrôle,sur unepériodeayantconnuderapideschangementsd'usagedessols.Ellepeutaussis'avérerutile auxgestionnairesdebassindanslaconceptiondemesuresdecontrôledessédimentsaussibien quedanslaprogrammationd'aménagementshydrauliquesdanslebassinpouvantêtreaffectéspar lasédimentation.

401 3. Objectifsdel'étude

Leprésenttravailapourbutd'étudierlechangementdecouverturedessolsetsarelationavecla production,letransportetledépôtdesédimentsdanslebassindufleuveNigermoyen.

Plusspécifiquement,lesobjectifsserontde:

• Quantifierleschangementsdecouverturedessolssurlapériode1965–2000;

• Analyser le transport de sédiments dans le bassin du fleuve Niger moyen (afin de comprendrelesprincipauxmécanismes,contraintes,...);

• Evaluerl'influenceduchangementdecouverturedessolssur: - LetransportdesédimentdanslefleuveNigermoyen, - Lasédimentationcroissantedanslefleuve; • Determiner: - lesmodesdetransportdesédimentsprédominants, - lessourcesdesédiments, - lesfacteurscontrôlantledépôtdesédiments, - leszonesdesédimentation. 4. Approchederecherche

Lebutdel'étudeétantdecomprendrelarelationentrelechangementdecouverturedessolsetla productiondesédimentsainsiqued'étudierletransportdesédimentsdanslebassindufleuve Nigermoyen,letravailderechercheaétémenéedelafaçonsuivante:

• Premièrement, des techniques de télédétection ont été utilisées pour obtenir une compréhensionsynoptiqueetuneévaluationduchangementdecouverturedessolsqui aeulieudanslazoned'étudeaucoursdecesdernièresdécennies.

• Ensecondlieu,lesfacteursclimatiques,enparticulierlesprécipitationsetleursimpacts surlesdébits,ontétéétudiésdanslazoned'étude.

• Troisièmement,descampagnesdemesuredescaractéristiquesdessédimentsetdulit desrivières(commelaconcentrationensédimentsetlagranulométrie)ontétémenées en différents sites le long du fleuve Niger moyen et de ses affluents. Une attention particulièreaétéportéeaudroitdesconfluencesdetroisaffluentsdufleuveNiger(deux rivières sahéliennes et une rivière soudanienne). Ceci avait pour but de quantifier la contributiondesaffluentsàlachargesédimentairedufleuveNiger.Deplus,lesmesures

402 ont été réalisées dans le but de comprendre et de quantifier les mouvements de sédimentslelongdufleuveNigermoyen,endistinguantleszonesd'érosionetdedépôt. Lesinformationsobtenuesàpartirdel'application des méthodes présentées cidessus ont été utiliséespourévaluerlarelationentrelaproductiondesédimentsdufleuveNigermoyenetle changement de couverture des sols et ses effets associés, comme les ruissellements locaux croissants.

Lesprincipauxrésultatssontregroupéssuivantlesaxesderecherchequesontlesformesdela rivièreetl'évolutiondulit(partieII),l'analyseduchangementdecouverturedessols(partieIII), l'hydrologie(partieIV)etl'analysedutransportsédimentaire(partieV).

5. Financementsetcollaborations

Danslebutd'améliorerlagestiondesressourcesdubassindufleuveNiger,l'AutoritéduBassin duNiger(ABN)aexprimélebesoind'obtenirunemeilleurecompréhensiondesdynamiquesde transfertdesédimentsnotammentauregarddeschangementsenvironnementscontinus.

L'étudeaétéfinancéeàlafoisparl'ambassadedeFranceàAbujaauNigeriaparlebiaisde l'attribution d'une "Bourse du Gouvernement Français", par l'Autorité du Bassin du Niger (ABN), par l'Institut de Recherche pour le Développement (IRD) et par le Laboratoire de TransfertenHydrologieetEnvironnement(LTHE)oùlamajoritédutravailfuteffectué.

L'étudeanécessitéàlafoisdutravailsurleterrain, des analyses en laboratoire ainsi que des analyses de données, ce qui a été rendu possible par les collaborations de ces différentes institutions.

Deplus,afind'acquérirlesdonnéesdedébitsutilisées dans cette étude, l'ABN a complété les moyenslogistiquesfournisparl'IRDpourletravaildeterrain.LecentrerégionalAgrhymeta fourni un appui dans cette étude sous la forme de mise à disposition d'images satellite et de moyens informatiques. L'espace de travail nécessaire à l'analyse des échantillons d'eau et de sédimentsaétéfourniparlesdépartementsdeGéographieetdeGéologiedel'UniversitéAbdou MoumouniàNiameyainsiqueparlelaboratoiredegénétiquedel'IRDàNiamey.

Le Laboratoire de Géographie Physique (LGP) à Paris a fourni un appui sur les Systèmes d'InformationsGéographiques.L'analysegranulométriquedesmatièresensuspension,l'analyse desdonnéesetlabibliographieaétémenéeauLTHEàGrenoble,disposantd'unenvironnement detravailpropiceauxcollaborationsscientifiques.

403

CChhaappiittrreeII––ZZoonnee dd’’ééttuuddeeeettccoonntteexxttee eennvviirroonnnneemmeennttaall

404 Introduction

Afindepouvoircomprendrelesrésultatsobtenusdansleschapitressuivantsdecetteétude,ilest nécessairededécrirelesfacteursenvironnementauxquiinfluencentlazoned’étude.Lesecteur d'étudeestconsidérédanslecontextepluslargedubassindufleuveNiger,undesprincipaux fleuvesdumonde.Lecontexteenvironnementaldelazoned’étudeestdécritparunexamendes facteurstelsquelapluviométrie,l’hydrologie,lagéologie,lapodologie,lacouverturevégétaleetla population.

Lesmodificationsclimatiquesrécentesetcontinuesainsiquelapressiondémographiquerendent nécessairel’étudedecertainsdesfacteursdirects et indirects qui influencent la production, le transportetledépôtdesédimentsdanslazoned’étude.

Lechapitred’introductionapourbutde:

• DécrirelapartiedufleuveNigerquifaitl’objetdecetteétude;

• Décrirelecontexteclimatiquegénéraldusecteurd'étudeainsiquesonétatactuel;

• Faire une synthèse de la façon dont certains facteurs environnementaux tels que la géologie,lestypesdesol,lacouverturevégétaleetladémographiepeuventinfluencerla productionetletransportdesédiments;

• Passerenrevuelesprécédentsprogrammesdesuividessédimentsréaliséssurlefleuve deNiger.

405 Conclusion

Lazoned'étudeetsoncontexteenvironnementalontétédécritsdanscettepartieintroductrice del'étude.

• Lessolsdanslazoned'étudesontessentiellementleproduitdel'histoiregéologiquedela région.L'inventairedessolsdelazonemontreque:

- Lessolsdelazoned'étudesontsensiblesauxérosionséolienneethydrique. De plus, des sols caractéristiques de dépôts géologiquement récents se trouventlelongdufleuveNiger. - LetypeprincipaldesoldanslesbassinsduGorouoletdelaSirba«lessols peu évolués régosoliques d’érosion» ou «sols minéraux bruts d’apport éolienouvolcanique»,esttypiquedessolsérodésetsurlequellescroûtes desurfaceseformentaudébutdelasaisondepluies,freinantl'infiltration etaugmentantpotentiellementleruissellementquandlessolssontnus.Les autres types de sols principaux ont une structure fragile et sensible aux érosionshydriqueetéolienne. - DanslebassinduMékrou,leprincipaltypedesol«solslessivés»estun de ceux qui favorisent le transfert des particules d'argile de l’horizon de surfaceverslescoursd'eau. • Lazoned'étudeconnaitunefortepressiondémographiqueavecuneaugmentationrapide delapopulation,quial'agriculturecommemoyendesubsistance,etleboisdechauffe commesourced'énergie.

• LesprogrammesantérieursdemesuresdesédimentsdufleuveNigermontrentqu’ilya unetendanceal’augmentationenmatièresensuspensionlelongdufleuveNiger,desa sourceverslazoned'étude.

406

CChhaappiittrreeIIII––FFoorrmmeeeett éévvoolluuttiioonndduulliittdduufflleeuuvvee NNiiggeerrmmooyyeenn

407 Introduction

La plupart des fleuves ont un comportement dynamique et s’ajustent en permanence aux changements climatiques naturels ou anthropiques. Ces procédés d'autoajustement sont tout d’abord verticaux et latéraux. Les changements de bandes actives des cours d’eau incluent le lessivageetledépôtdesédiments,ainsiquelamigration,l’élargissementoulacontractiondela bande active. Selon Montgomery et Buffington (1997), ils reflètent principalement les changements d’hydrologie et d’apport en sédiments des cours d’eau. Les changements géomorphologiques extrêmes des bandes actives de certains cours d’eau ont souvent des conséquencesnéfastespourlanavigation,lesécosystèmesaquatiquesetilsaugmententlesrisques d'inondation.

Lesobjectifsdecettepartiesontde:

• Examinerlanaturedeschangementsàmoyenterme(2035ans)delaformeenplan dulitdetroistronçonsdufleuveNigermoyen,enutilisantunesériemultitemporelle d’imagessatellites;

• Etudier le rapport entre les changements de géométrie des chenaux observée et l’hydrologie,lesinfluenceshumainesetd'autresfacteurs;

• Déterminerlessourcesdesédimentspotentiellesetlesformesd'érosiondanslebassin dufleuveNigermoyen;

• Déterminer les changements à long terme des formes d'érosion et d'accrétion en comparant les données de niveau du lit de la rivière fournies par une campagne de mesuresantérieureaveccellesmesuréessurcertainstronçonsdelazoneétudiéedansle cadreduprésenttravail.

408 Conclusion

• SuiteauxanalysesdeschangementsdelaformeduchenaldufleuveNigermoyen,les commentairessuivantspeuventêtreformulés:

- Onn'apasobservédemigrationsignificativedechenaldanslefleuvede Nigermoyen,quiestprochedesesconditionsnaturelles et normales en termesd’endiguement. - On démontre ici l'utilité des systèmes d'information géographique (SIG) pourl'évaluationpréciseduchangementhistoriquedesformesenplande fleuveutilisantdesimagesdesourcesvariées. • Leschangementslesplusimportantsdeformedufleuvedanslesecteurd'étudeentre 1973et1999sontrécapituléscidessous. - Les processus d’«anabranching» puis d’érosion des berges étaient les formesprincipalesderéponseduchenalauxcruesdanslefleuvedeNiger moyen.WendeetNanson(1998)ontpostuléqu’enprincipelesreliefspeu prononcés, les chenaux végétalisés, et un environnement de type semi arideàaridetelquelestronçonssahéliens1et2,avecdesécoulementsen baisseetdesconcentrationsdesédimentsenaugmentation,enavalrendent nécessairedesanabranches. - Pourchacundestroistronçonsétudié,lapériodeautourdel’année1984 correspondant aux débits les plus faibles a été la période au cours de laquelle le chenal du fleuve Niger moyen a subi les plus fortes perturbations. - La transformation du chenal se produit lentement dans le lit du Niger moyen; parfois avec un décalage entre l'occurrence des facteurs causant cettemodificationetlaréponsedechenal. • En plus des affluents du fleuve Niger moyen, les koris, nom donné aux oueds (coursd’eauéphémèresquisontcaractéristiquesdusecteurautourdeNiamey)ont été identifiés comme une source importante de fourniture de sédiment vers le Niger.•

409 CChhaappiittrreeIIIIII–– CChhaannggeemmeennttddee ccoouuvveerrttuurreeddeessssoollssddaannss lleebbaassssiinndduufflleeuuvveeNNiiggeerr MMooyyeenn

410 Introduction

Leschangementsdecouverturedessolspeuventêtrelocalisésouplusétendus,etilssontétudiés àpartird’observationsausoloupartélédétection. Les conséquences sur l'environnement des changementsdecouverturedessolssontvariées,etellespeuventavoirdeseffetsrétroactifssurle climat,commelesuggèreCharney[1975].

Pourcomprendreladynamiquedechangementdecouverturedessolsdanslazoneétudiéeen relationaveclavariabilitéclimatiqueetlesimpactsanthropiques,ilaéténécessaired'évaluerles changementsdecouverturedessolsaveclesdonnéessatellitairesdisponibles.

Lesimagesdetélédétectionpermettentd’observeretdesuivredeszonesétendues,allantde l’échelledutronçonderivièreàl’échelledubassinversant,bienquecelanécessiteuntravail difficileetlongetquecelasoitcoûteux..

Latélédétectionestutiliséepourétudierlechangementdecouverturedusolensebasantsurle principequ’untelchangementengendreunemodificationdesvaleursderayonnement[J F Mas , 1999].Laquantitéetlaqualitéderayonnementréfléchireçuparunecapteurdesatellitedépend delaquantité,delacompositionetdesconditionsàlasurfacedusoltellesquelavégétation,le soloulateneureneau[J Rogan et al. ,2002].

Le but de ce chapitre est de caractériser l’évolution des occupations et couverts des sols (.végétationetsolsdénudés)surunepériodede 30ansenvironenutilisantdesméthodesde télédétectionafind’évaluerleurpropensionàproduireettransporterdessédimentsdanslazone d’étude.

Lesobjectifsdecechapitresontlessuivants:

• Quantifierleschangementsd’usageetdecouvertdessolsquionteulieudanslazone d’étude;

• Comparerleschangementsdecouverturedessolsdetroissousbassinslocalisésdans l’aireétudiée;

• Faireuneétudebibliographiquedeseffetsdeschangementsdecouverturesdessolsau Sahel.

411 CONCLUSION Unedeshypothèsesdecetteétudeétaitquelafortediminutiondelacouverturevégétale due aux facteurs climatiques et humains au Sahel causait une augmentation de la disponibilitéensédimentsdanslescoursd’eausahéliens. •L'étudeamontréqu'ilyavaitundéclinintensedelacouverturevégétaledanslesbassins du Gorouol et de la Sirba entre 1970 et 1999. La disponibilité en sédiments en particulier dans le bassin de Sirba pouvait être prévue à cause de l’augmentation considérabledessolsnusarénacésentre1975et1999. •Enrevanche,lebassinsoudaniendelaMékrou,quiasubiaussilechangementclimatique,, aétéaffectéàunmoindredegréparlereculdelavégétationentre1973et2000. • En plus de l'utilisation des images Landsat à des résolutions spatiales et spectrales variables,l'étudeaprouvéquelorsqu’ellessontdisponibles,lesimagesCoronapeuvent être utilisées pour améliorer la quantité et qualité de l'information recueillie par la télédétectionpourlacouverturedessolsdansleSahel.Tandisquel'utilisationdeces images Corona exigent une capacité de traitement et de stockage informatique important,etsontchronophagespourlatransformationetlaclassification,ellespeuvent fournirdesinformationsd’unegrandevaleurdansdeszonessahéliennesoùlereliefest peumarquéetlesdéformationsgéométriquesfaiblesenconséquence.

412 CChhaappiittrreeIIVVEElléémmeennttss ddeell’’hhyyddrroollooggiieeeett mmeessuurreessddeeddéébbiittss

413 Introduction:LefleuveNigerestilendanger?

Lesbassinsversantsconstituentl’essentieldel’espacedesécosystèmesetfournissentdecefaitde nombreusesressourcesauxriverains,enparticulierdanslespaysenvoiededéveloppement.La nécessitéd’exploiterlesressourcesnaturellesdesbassinsfluviauxpourlesbesoindespopulations metparfoisendangercesmêmespopulationsriverainesainsiquel’équilibredelafauneetdela flore.

Dans le bassin du fleuve Niger, du fait de la forte croissance démographique, les activités humaines telles que les prélèvements en eau, la navigation, les barrages, les rejets d'effluents industrielsetdomestiquesetlasurpêchepourraientconstituerunemenacepourlebonétatdu bassinsicesusagesnesontpascorrectementgérés.

Lechangementoulavariabilitéclimatique,avecsesimpactssurlapluviométrie,l'évaporationet lesdébitsdescoursd’eaudubassindufleuveNigeretenparticulierlebassinsemiarideduNiger moyen,rendencorepluscomplexelagestiondurabledubassin.

La conjugaison du changement climatique et de la pression anthropique croissante sur les ressourcesaquelquesfoisconduitàl'assèchement dufleuveNigeràNiameyaucoursdeces dernièresdécennies.Cettepressionrisquederendreencoreplusdifficilelatacheroutinièrede régulationoucontrôledessédiments,mêmepourunfleuvecommeleNiger.

Cettepartiedel'étudeviseàétudierlebassindufleuveNigerdanslecontextepluslargedes fleuves africains et à essayer de décrire les effets des changements environnementaux sur l'hydrologiedufleuveNigermoyen.

Pouratteindrecesobjectifs,ilseranécessairede:

• CaractériserlerégimehydrologiquedufleuveNigermoyenparrapport: - aurégimehydrologiqueduNigeràl'amontdelazoned'étude; - àl'effetdelavariabilitéclimatiqueetdelaréductiondesprécipitations; • Qualifierl'hydrologiedufleuveNigeràNiameypendantlapériodeétudiéeauregardde l'hydrologiemoyennesurlelongterme.

414 CONCLUSIONS

Lesconclusionssuivantespeuventêtretiréesàlafindelaprésentepartiedel'étude:L’analyse hydrologiqueducoursmoyendufleuveNigermontreque:

• Les débits du fleuve dépendent en grande partie des précipitations et de l'influence de la diminutiondesprécipitationssurledébitdufleuveNigermoyen.Lerôledel'écoulementde baseensoutenantlesdébitsd’étiagedufleuvedeNigermoyenaétédémontré.

•L'hydrogrammemoyenducoursmoyendufleuveNigeradeuxmaxima:unpremiermaximum caractérisé par une montée rapide qui se produit pendant la saison des pluies locale, et un deuxièmemaximumquiseproduitenraisondelavidangedustockagedeladeltaintérieur(en amontdelazoned’étude).LapremièrecrueestplusprononcéedanslefleuveautourdeNiamey etelleestmoinsprononcéeàlafoisversl’amontversl’avaldeNiamey.

•LesaffluentsduNigermoyenn'ontpasrépondudelamêmemanièrequelefleuveluimême auxchangementsclimatiquesetd’usagesdessols.LevolumeécoulétotalàNiameyaugmentepar rapportàceluiécouléàKandadji,unetendancequinepeutpasêtreexpliquéeuniquementpar l'augmentationdesvolumesécoulésdesaffluentsmesurés.Ledébitdescoursd’eauéphémères pourraitégalementêtreentraind’augmenter.Uneétudedecesruisseauxpourraitfournirune meilleure compréhension de ce phénomène, en supposant que les pertes par évaporation, infiltrationetprélèvementsn'ontpassensiblementévoluéentre1998et2008.

• La présente étude a été effectuée au cours d'une période relativement homogène d'augmentation de la contribution locale de l'écoulement aux débits de crue du fleuve Niger moyen.

LasimulationdudébitdufleuveréaliséeenutilisantlemodèleCARIMAdufleuveNiger(dans sonétatactuel)donnedesrésultatsenbonaccordavecdesvaleursmesuréesmaisdevraitêtre vérifiée sur une station hydrométrique contrôlée et jaugée pour qu’elles puissent être validées commefiables.

415 CChhaappiittrreeVVTTrraannssppoorrttddee ssééddiimmeennttssddaannsslleebbaassssiinn dduufflleeuuvveeNNiiggeerrmmooyyeenn

416 Introduction

La compréhension des dynamiques du transport des sédiments du fleuve Niger moyen est crucialecarenplusd'avoirunimpactnégatifsurlaqualitédel'eauetsurleshabitatsaquatiques, les dépôts de sédiments risquent aussi de combler les ouvrages hydrauliques en rivière. Une meilleure connaissance du transport de sédiments dans le fleuve Niger est particulièrement importantepourlagestiondubassinnotammentvisàvisdeladiminutiondesdébits.

Comparées aux études hydrauliques ou hydrologiques, les études de transport de sédiments nécessitent plus de données tout en fournissant en général des résultats moins précis. La principale information que cette partie de l'étude vise à apporter concerne les tendances à l’érosionetaudépôtlelongdufleuveNiger.

Afind'atteindrecebut,ilafallu:

• Mettre au point un programme de prélèvement de sédiments pour mesurer la concentrationdessédimentsensuspensionlelongdufleuveNigeretdecertainsdeses affluents,afindequantifierlessédimentstransportésdanslazoned'étude;

• AnalyserlagranulométriedesmatériauxdulitlelongdufleuveNigeretdecertainsde sesaffluents;

• AnalyserlagranulométriedessédimentstransportésensuspensionparlefleuveNiger moyenetcertainsdesesaffluents;

• Calculer la capacité de transport de sédiments en différents points le long du fleuve Nigeràpartirdedonnéeshydrodynamiquesmesuréesetmodélisées.

CONCLUSION

Cetterecherchedutransportdessédimentseffectuéedanslaprésentepartiedel'étudeaprisen compte la composition des sédiments et la fréquence des prélèvements afin d'atteindre les objectifsdel'étude.

Uneanalysegranulométriquedesparticulesdessédimentstransportésensuspensionparlescours d’eaudanslesecteurd'étudeaucoursdelapérioded'étudeadémontré:

417 • Les rapports complexes entre la taille des particules de sédiment, les débits des cours d’eauetlesprécipitationsaussibienquel'impactdeseffetssaisonnierssurletransportdes sédiments.

Les disponibilités de sédiment aux différentes stations le long le fleuve Niger moyen ont été déterminéesenanalysantl'évolutionsaisonnièredestaillesdesédimenttransportéensuspension aucoursdelapérioded'étude.

• Le transport des sédiments à Ayorou a été noté comme ayant un approvisionnement limité, avec un pourcentage des particulestrèsfines(040m)diminuant avecl'augmentationdudébitdufleuve, mêmeaudébutdelasaisondespluies.

• Les sédiments très fins (040 m) ont été transportés à Kandadji, Farié Haoussa, Latakabiey et DiabouKiria, dansunrapportdirectavecledébitdu fleuveaudébutdelasaisondespluies. Ceciindiqueque,dufaitdel'impactdes gouttesdepluieaudébutdelasaisondespluies,lessédimentstrèsfinssontdisponibles pourêtretransportés.

• Le comportement des particules très fines (040 m) et plus grosses (41630 m) à Niamey et Brigambou, indique qu’il y a deux sources distinctes de sédiments à ces stationspendantlaphasedemontéedel'hydrogrammeaucoursdelasaisondespluies.

L'étudeaidentifiéetamesurélessourcesdesédimentdesaffluents,lesfluxdesédimentsurces affluentsettoutaulongdufleuveNigermoyen.

• LesapportsdematièresensuspensiondesaffluentssahéliensprincipauxdufleuveNiger moyen(leGorouoletlaSirba)ontétémesurés.LefluxcalculédesédimentduGorouol étaitcomprisentre480.000etplusde1millionsdetonnesparanpourlapérioded'étude. LefluxdesédimentmesurépourlaSirbaétaitentre500.000et1.3millionsdetonnespar anpourlapérioded'étude.Lavariabilitédufluxdesédimentétaitengrandepartiedueà ladifférencedevolumetotalécoulépendantuneannéedel'eauparlesdeuxrivières.La différence des comportements d'offre et de transfert de sédiment des deux bassins sahéliensaétéaccentuée.

418 • LebassinSoudaniendelaMékrousemblefournirmoinsdesédimentaufleuveNiger moyenaucoursdelapérioded'étude,selonlebilandesédimentsentrelesstationsen amontetenavaldesonconfluentaveclefleuveNigermoyen.

• LefluxdematièresensuspensionlelongdufleuveNigermoyenaétéquantifiéàpartir desvaleursdeconcentrationdeMESetdesdébitsmesurées;ilreprésenteentre11et16 millionsdetonnesparan,avecunfluxmaximumseproduisantautourdeNiamey.

• L'étudeamontréqued'autressourcessignificativesdesédimentexistententreLatakabiey etNiameyquoiqu'iln'yaitaucunaffluentimportantentrecesdeuxstations.Les«koris» éphémèresontétéavancéscommesourceprobablepourcessédimentsensurplus,cequi confirmentlesrésultatsobtenusdanslapartieIIdecetravail.

Les tendances au dépôt de sédiment le long du fleuve Niger moyen, le fonctionnement saisonnierainsiquelesfacteursdecontrôleprincipaldudépôtdesédimentontétémisen évidencedanscetteétude.

• UnecomparaisondeconcentrationdeMESetlacapacitécalculéedetransportdes sédimentsdufleuveNigermoyenontfourniuneindicationauxsecteursprincipaux dedépôtdesédimentetauxclassesdetailledesédimentquisontlesplusexposésau dépôt.LesecteurautourdeNiameyaétémisenévidencecommeundomainede dépôtdesédiment,enparticulierdusédimentsableuxentrele126et630m.

419 CCoonncclluussiioonnsseett PPeerrssppeeccttiivveess

420 1.RésuméGénéral

LebutdecetterechercheàétédecomprendrelefonctionnementsédimentairedufleuveNiger moyen notamment pendant une période de dégradation des surfaces des bassins versants. L’étudeaétémenéeensuivanttroisaxesprincipaux:l’analysedescouverturesvégétalesetdes sols,l’analyseshydrologique,etlesmesuresetanalysessédimentaires. Pouraccomplircetravailderecherche,cinqobjectifsprincipauxontétépoursuivis. • Lepremierobjectifétaitdedécrireetquantifierleschangementsdecouverturedessols quionteulieupendantlestroisàquatredernièresdécenniesdanslapartiesahéliennede lazoned'étudeetdelesmettreencomparaisonaveclapartieSoudaniennedelazone d'étude. L'hypothèse de fonctionnement était que dans la majeure partie de la zone d'étude,aucoursdecettepériode,lavégétationboiséeaétéremplacéepardessurfaces de sol nues sous forme de terre cultivée, habitations humaines, et des bandes de végétationetdesolépuisésmenantàuneérosionplusélevée.L'analysedeschangements d’usagesdessols,bienquelimitéeparladisponibilitédesimages,enparticulierpourles périodesanciennes,amontréquelessurfacesdesolnuesdanslesbassinssahéliensont augmentéentrelesannées70et1999,de60%à75%pourlebassinduGorouoletde 45 % à 71 % pour le bassin de la Sirba. Cependant, l'étude a montré qu'une légère réductiondessurfacesdesolnuess'estproduiteentre1992et1999,pourleGorouol,et entre 1989 et 1999 pour la Sirba. Le bassin de la Mékrou a été peu affecté par la diminution de la couverture végétale entre 1973 et 2000, le pourcentage d’arbres a diminué seulement de 6 % entre 1973 et 2000. Cette tendance est comparable aux observations de la couverture des sols en particulier dans la région sahélienne. En résumé,l'analysedelacouverturedessolsamontréquel’évolutiondesusagesdessols estdifférented’unbassinàl’autre,lechangementleplusrapideseproduisantdansles bassinssahéliensparoppositionaubassinsoudaniendelaMékrou.Cetteétudeaessayé d'incorporerlesdonnéesdesimagesCoronaàl'étudeduchangementdecouverturedes sols du Sahel ; on a montré que tandis que l'utilisation de ce type de données est chronophage et demande beaucoup de ressources en stockage numérique, elles fournissentdesinformationsutilesenparticulierdansl'absencededonnéesaéroportées oudeterrainfiables. • Le deuxième objectif était de déterminer l'impact de la couverture des sols sur le transportdessédimentsdanslazoned'étude.L'approcheidéaleàcettequestionaurait été d'effectuer une comparaison des caractéristiques de transport des sédiments pour deuxvoireplusdesétatsdistinctsdecouverturesdessolsdanslazoned'étude.Bienque

421 l’évolutiondescouverturesdessolsdanslazoned'étudeaitétédécritedanslapartieII decetravail,etlesdonnéesdeMES(1976à1982)pourdespartiesdelazoned'étude étaientdisponibles,ladifficultéd'unecomparaisondirectedesdonnéesdesédimentaété montrée dans la partie V de cette étude. Puisqu'il n'était pas approprié de faire une comparaisondirecteentrelesdonnéesprécédentesdesédimentsetlesdonnéesacquise pendantlaprésenteétudeafindemesurerlechangementdeproductiondesédiment,des informations surlesconséquencesduchangementde couverturedessols ontdûêtre impliquées pour expliquer les phénomènes liées a ces changements. La tendance à l’augmentationdessurfacesdesolnuesdémontréedanslapartieIIIdecetteétudes'est produite en même temps que les apports croissants des affluents et les débits décroissants du fleuve à Niamey observés dans la partie IV de cette étude. Les phénomènestelsquelacontributioncroissantedes affluentsencombinaisonavecles solsnusenextension,peuventêtreprévuscommedescausespotentiellesdetransfertde plusdesédimentdubassinverslefleuveNigermoyen.Enmêmetemps,ladiminution observéedesdébitsdufleuveNigermoyenetlaprédominancedesdébitsdesaisondes pluies peuvent être vues comme des contraintes qui peuvent exercer un effet sur la capacitédufleuveNigermoyendetransporterefficacementlessédimentsapportés • Letroisièmeobjectifdecetravailétaitd'étudierleschangementsdelaformeduchenal dufleuveNigermoyenenréponseauxperturbationsdedébitsdufleuveentre1965et 1999.Onaobservéqueleschangementsdelalargeur du chenal se produit avec un décalaged'environ5ansparrapportàl'occurrencedesperturbationsdesdébitssurle fleuve Niger moyen. On a observé que les changements importants de la forme du chenaldufleuveNigermoyensesontproduits dans la partie sahélienne de la zone d’étude. Le tronçon du fleuve Niger moyen près du Gorouol (tronçon 1), après une premièreaugmentationdelargeurduchenaldufleuve,s’estaucontrairerétrécienraison du débit décroissant du fleuve. D'une part, le fleuve Niger moyen près de la Sirba (tronçon 2), en plus des fluctuations semblables à celles qui se sont produit dans le tronçonamont(tronçon1)amontréunetendanceàélargissementdepuis1989.Tandis quelalégèreaugmentationdesvolumesécoulésannuelslelongdufleuveNigermoyen n'a pas provoqué d’élargissement sur le tronçon 1, elle a causé un élargissement du chenaldansletronçon2.Ceciestdûàl’apportdelacomposantelocalecroissantede saison des pluies de l'hydrogramme pour le fleuve Niger moyen à Niamey (dans le tronçon 2) par rapport au tronçon amont (tronçon 1). Cette composante de l'hydrogramme, en plus d'assurer une augmentation des débits du fleuve, semble également fournir plus de sédiment, ce qui a pu être la cause de l’élargissement du tronçon2entre1989et1999.

422 • Le quatrième objectif de cette étude était de quantifier le transport des sédiments du fleuve Niger moyen et de certains de ses affluents. Un protocole approprié de prélèvementsdesédimentsaétémisaupointpouratteindrecetobjectif.Desvaleursde concentrations de matières en suspension mesurées ont été transformées en valeurs instantanées de flux de sédiment. Des valeurs annuelles du flux de sédiment ont été calculéespourlesstationslelongdufleuvedeNigermoyenet,enfin,l'entréesaisonnière desfluxdesédimentparlesdeuxaffluentssahéliensaétécalculée. • Lecinquièmeobjectifdecetteétudeétaitd'identifierdeszonesdesourceetdedépôtsde sédimentetlesfacteursprincipauxdecesphénomènes.Leseffetsdedénudationdessols etdel'érosionparécoulementdesurfaceontétédémontrésparlacroissancedesdépôts alluviaux.Atitred’exemple,lasuperficiedel’unedeceszonesdedépôtalluvialprèsde Niameyestpasséed'environ0.16km²en1975àenviron1.24km²en1999.Lesdépôts desédimentsdecettenaturesontunesourcedesédimentpourlefleuveNigerpendant lasaisondespluies.Encequiconcerneladynamiquededépôtdesédimentdanslazone d'étude,l'hypothèsedetravailétaitquelestauxdedépôtlelongdufleuveNigermoyen sontcontrôlésparlesforcesliquidesetdesforcesderésistanceduesauxcaractéristiques desparticulesdesédiment.Lesanalysesdetransfertdesédimenteffectuéesdanslapartie Vontindiquéquepourtouteslesclassesdetailleetpendanttouteslesphasesdedébits dufleuve,letronçonentreLatakabieyetaprèsNiameyestledomaineprincipaldudépôt desédiment. L'évaluationdelaméthodologieappliquéeàl'étude Cette étude a appliqué une série de méthodes et approches afin d'atteindre les objectifs d'ensemble. L'utilisationdesimagessatellitairesquandellesétaientdisponibles,pourlesuividelaforme duchenaldufleuveetdudépôtdesédiment,enutilisantuneplateformedeSIG,afourni unoutilimportantdanslaquantificationdeschangementshistoriquesdanslagrandezone d'étude.Bienquelesdonnéessatellitespuissentfournirdesinformationssurlesétatspassé etprésentdelacouverturedessols,l'utilisationlaplusprécisedecetteméthodeestpossible quanddesdonnéesdevéritéterrainausolsontobtenuesenmêmetempsquelesimages. L'étude a montré que des données de CORONA pourraient fournir des informations qualitativesaussibienquequantitativepourlesétudessemblables.LeprélèvementdeMES simplemaisfréquentcombinéavecleprélèvemententravers(plusieursprélèvementsdansla section)occasionnelsembleêtreuneméthoderentableetraisonnablementprécisepourla surveillanced'ungrandfleuvecommeleNiger.

423 2.Perspectivesdetravail

L'établissement d'un programme de mesure de sédiments qui prend en compte la compositionentailledesédimentcommemisenévidencedanscetteétudefourniraitàdes directeursd’agencedebassinplusd'informationsurladynamiquedesédimentdelazone d'étudequ’iln’aétépossibledelefaireaucoursdelapérioded'étude. L'importancedesmesuresdedébitdufleuvedanslebassinmoyendufleuveNigern’estpas surestimée ici, parce que ces débits sont importants pour des études et pour la compréhensiondechangementsdel'hydrologieetdutransportdessédiments.L'utilitédes outilspoursimulerlapropagationdescruesdufleuveaétémiseenévidence,souscondition quelesrésultatsqu'ilsproduisentsoientcorrectementvérifiés.Detelsoutilsdoiventêtremis àjourrégulièrementafindemaintenirl'exactitudedesrésultatsdisponibles. Lesrésultatsdecetterechercheontmontrél'existencedesourcessignificativesdesédiment autresquelesaffluentsjaugésdufleuveNigermoyen.C'estparticulièrementvraiautourde Niamey.Afind'améliorerlaconnaissancedeladynamiquedesédimentdanslazoned’étude, ilsemblenécessaired'étudierl'écoulementetlescaractéristiquesdesédimentdecescours d’eauéphémèresconnussouslenomde«koris»quiexistentdanscesecteur. Cetterechercheamontréquelesressourceseneau dans la zone d’étudesont fortement influencéesparlavariabilitéclimatique,etquelesrégimesetquantitésdesécoulementssont desfacteursimportantsquicontrôlentletransportetdépôtdesédiments.Unecollaboration avec des programmes de recherche, tel que AMMA (Analyses Multidisciplinaires de la MoussonAfricaine)quiviseàaméliorerlacompréhensiondelamoussondel’Afriquede l’ouestetsesinfluencessurl’environnementetlesressourceseneau,pourraitaideràprévoir leseffetspossiblesdesfuturesvariabilitésclimatiquessurletransportsédimentairedansla région.Deplus,lesimpactsdesprojetsdefutursouvrageshydrauliquespeuventêtreétudiés danslecadred’unetellecollaboration. 3.Conclusions

La recherche présentée dans ce document représente une tentative d’améliorer la compréhension des impacts d'un environnement en plein changement dû aux facteurs climatiquesetanthropogènessurletransportdessédimentsdanslefleuveNigermoyen.Les effetsdel’accroissementdessurfacesdesolnuessurletransfertdesédimentverslefleuve Nigermoyensontdémontrésentermesdecontributioncroissantedesaffluents,augmentant lesdébitsdesaisondespluiesdufleuveNigermoyenetaugmentantlatailledessecteursde dépôtsalluviaux.Ladiscontinuitéspatialeettemporelledanslefluxdesédimentobservéle longdufleuvedeNigermoyenentreLatakabiey,NiameyetBrigambou,estexpliquéeparles

424 résultatsobtenusgrâceauxanalysesdedépôtdesédimentdufleuveNigermoyen.Cetravail derecherches,enplusdefournirlesclésdesconnaissancesdebasesurlefonctionnementdu transfertdesédimentdufleuveNigermoyen,peutêtreutileauxdirecteursdebassinetles ingénieursdanslaplanificationpourlestravauxhydrauliqueslelongdufleuveetcomme basepourlacomparaisonpourlefutursétudessédimentairesdanslesecteur.

425