Introduction to Modular Arithmetic 1 Introduction 2 Number Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints by Mehrdad Sabetzadeh A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2003 by Mehrdad Sabetzadeh Abstract A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints Mehrdad Sabetzadeh Master of Science Graduate Department of Computer Science University of Toronto 2003 Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. This may result in inconsis- tencies between the descriptions provided by stakeholders. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this thesis, we propose a category-theoretic framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is a graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) cocomplete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. Taking advantage of the same category-theoretic techniques used in defining fuzzy viewpoints, we will also introduce a more general graph-based formalism that may find applications in other contexts. ii To my mother and father with love and gratitude. Acknowledgements First of all, I wish to thank my supervisor Steve Easterbrook for his guidance, support, and patience. -
Modular Arithmetic
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 5 Modular Arithmetic One way to think of modular arithmetic is that it limits numbers to a predefined range f0;1;:::;N ¡ 1g, and wraps around whenever you try to leave this range — like the hand of a clock (where N = 12) or the days of the week (where N = 7). Example: Calculating the day of the week. Suppose that you have mapped the sequence of days of the week (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday) to the sequence of numbers (0;1;2;3;4;5;6) so that Sunday is 0, Monday is 1, etc. Suppose that today is Thursday (=4), and you want to calculate what day of the week will be 10 days from now. Intuitively, the answer is the remainder of 4 + 10 = 14 when divided by 7, that is, 0 —Sunday. In fact, it makes little sense to add a number like 10 in this context, you should probably find its remainder modulo 7, namely 3, and then add this to 4, to find 7, which is 0. What if we want to continue this in 10 day jumps? After 5 such jumps, we would have day 4 + 3 ¢ 5 = 19; which gives 5 modulo 7 (Friday). This example shows that in certain circumstances it makes sense to do arithmetic within the confines of a particular number (7 in this example), that is, to do arithmetic by always finding the remainder of each number modulo 7, say, and repeating this for the results, and so on. -
8.6 Modular Arithmetic
“mcs” — 2015/5/18 — 1:43 — page 263 — #271 8.6 Modular Arithmetic On the first page of his masterpiece on number theory, Disquisitiones Arithmeticae, Gauss introduced the notion of “congruence.” Now, Gauss is another guy who managed to cough up a half-decent idea every now and then, so let’s take a look at this one. Gauss said that a is congruent to b modulo n iff n .a b/. This is j written a b.mod n/: ⌘ For example: 29 15 .mod 7/ because 7 .29 15/: ⌘ j It’s not useful to allow a modulus n 1, and so we will assume from now on that moduli are greater than 1. There is a close connection between congruences and remainders: Lemma 8.6.1 (Remainder). a b.mod n/ iff rem.a; n/ rem.b; n/: ⌘ D Proof. By the Division Theorem 8.1.4, there exist unique pairs of integers q1;r1 and q2;r2 such that: a q1n r1 D C b q2n r2; D C “mcs” — 2015/5/18 — 1:43 — page 264 — #272 264 Chapter 8 Number Theory where r1;r2 Œ0::n/. Subtracting the second equation from the first gives: 2 a b .q1 q2/n .r1 r2/; D C where r1 r2 is in the interval . n; n/. Now a b.mod n/ if and only if n ⌘ divides the left side of this equation. This is true if and only if n divides the right side, which holds if and only if r1 r2 is a multiple of n. -
Three Methods of Finding Remainder on the Operation of Modular
Zin Mar Win, Khin Mar Cho; International Journal of Advance Research and Development (Volume 5, Issue 5) Available online at: www.ijarnd.com Three methods of finding remainder on the operation of modular exponentiation by using calculator 1Zin Mar Win, 2Khin Mar Cho 1University of Computer Studies, Myitkyina, Myanmar 2University of Computer Studies, Pyay, Myanmar ABSTRACT The primary purpose of this paper is that the contents of the paper were to become a learning aid for the learners. Learning aids enhance one's learning abilities and help to increase one's learning potential. They may include books, diagram, computer, recordings, notes, strategies, or any other appropriate items. In this paper we would review the types of modulo operations and represent the knowledge which we have been known with the easiest ways. The modulo operation is finding of the remainder when dividing. The modulus operator abbreviated “mod” or “%” in many programming languages is useful in a variety of circumstances. It is commonly used to take a randomly generated number and reduce that number to a random number on a smaller range, and it can also quickly tell us if one number is a factor of another. If we wanted to know if a number was odd or even, we could use modulus to quickly tell us by asking for the remainder of the number when divided by 2. Modular exponentiation is a type of exponentiation performed over a modulus. The operation of modular exponentiation calculates the remainder c when an integer b rose to the eth power, bᵉ, is divided by a positive integer m such as c = be mod m [1]. -
1.3 Division of Polynomials; Remainder and Factor Theorems
1-32 CHAPTER 1. POLYNOMIAL AND RATIONAL FUNCTIONS 1.3 Division of Polynomials; Remainder and Factor Theorems Objectives • Perform long division of polynomials • Perform synthetic division of polynomials • Apply remainder and factor theorems In previous courses, you may have learned how to factor polynomials using various techniques. Many of these techniques apply only to special kinds of polynomial expressions. For example, the the previous two sections of this chapter dealt only with polynomials that could easily be factored to find the zeros and x-intercepts. In order to be able to find zeros and x-intercepts of polynomials which cannot readily be factored, we first introduce long division of polynomials. We will then use the long division algorithm to make a general statement about factors of a polynomial. Long division of polynomials Long division of polynomials is similar to long division of numbers. When divid- ing polynomials, we obtain a quotient and a remainder. Just as with numbers, if a remainder is 0, then the divisor is a factor of the dividend. Example 1 Determining Factors by Division Divide to determine whether x − 1 is a factor of x2 − 3x +2. Solution Here x2 − 3x +2is the dividend and x − 1 is the divisor. Step 1 Set up the division as follows: divisor → x − 1 x2−3x+2 ← dividend Step 2 Divide the leading term of the dividend (x2) by the leading term of the divisor (x). The result (x)is the first term of the quotient, as illustrated below. x ← first term of quotient x − 1 x2 −3x+2 1.3. -
Modulo of a Negative Number1 1 Modular Arithmetic
Algologic Technical Report # 01/2017 Modulo of a negative number1 S. Parthasarathy [email protected] Ref.: negamodulo.tex Ver. code: 20170109e Abstract This short article discusses an enigmatic question in elementary num- ber theory { that of finding the modulo of a negative number. Is this feasible to compute ? If so, how do we compute this value ? 1 Modular arithmetic In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" upon reaching a certain value - the modulus (plural moduli). The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801. Modular arithmetic is a fascinating aspect of mathematics. The \modulo" operation is often called as the fifth arithmetic operation, and comes after + − ∗ and = . It has use in many practical situations, particu- larly in number theory and cryptology [1] [2]. If x and n are integers, n < x and n =6 0 , the operation \ x mod n " is the remainder we get when n divides x. In other words, (x mod n) = r if there exists some integer q such that x = q ∗ n + r 1This is a LATEX document. You can get the LATEX source of this document from [email protected]. Please mention the Reference Code, and Version code, given at the top of this document 1 When r = 0 , n is a factor of x. When n is a factor of x, we say n divides x evenly, and denote it by n j x . The modulo operation can be combined with other arithmetic operators. -
The Development and Understanding of the Concept of Quotient Group
HISTORIA MATHEMATICA 20 (1993), 68-88 The Development and Understanding of the Concept of Quotient Group JULIA NICHOLSON Merton College, Oxford University, Oxford OXI 4JD, United Kingdom This paper describes the way in which the concept of quotient group was discovered and developed during the 19th century, and examines possible reasons for this development. The contributions of seven mathematicians in particular are discussed: Galois, Betti, Jordan, Dedekind, Dyck, Frobenius, and H61der. The important link between the development of this concept and the abstraction of group theory is considered. © 1993 AcademicPress. Inc. Cet article decrit la d6couverte et le d6veloppement du concept du groupe quotient au cours du 19i~me si~cle, et examine les raisons possibles de ce d6veloppement. Les contributions de sept math6maticiens seront discut6es en particulier: Galois, Betti, Jordan, Dedekind, Dyck, Frobenius, et H61der. Le lien important entre le d6veloppement de ce concept et l'abstraction de la th6orie des groupes sera consider6e. © 1993 AcademicPress, Inc. Diese Arbeit stellt die Entdeckung beziehungsweise die Entwicklung des Begriffs der Faktorgruppe wfihrend des 19ten Jahrhunderts dar und untersucht die m/)glichen Griinde for diese Entwicklung. Die Beitrfi.ge von sieben Mathematikern werden vor allem diskutiert: Galois, Betti, Jordan, Dedekind, Dyck, Frobenius und H61der. Die wichtige Verbindung zwischen der Entwicklung dieses Begriffs und der Abstraktion der Gruppentheorie wird betrachtet. © 1993 AcademicPress. Inc. AMS subject classifications: 01A55, 20-03 KEY WORDS: quotient group, group theory, Galois theory I. INTRODUCTION Nowadays one can hardly conceive any more of a group theory without factor groups... B. L. van der Waerden, from his obituary of Otto H61der [1939] Although the concept of quotient group is now considered to be fundamental to the study of groups, it is a concept which was unknown to early group theorists. -
Grade 7/8 Math Circles Modular Arithmetic the Modulus Operator
Faculty of Mathematics Centre for Education in Waterloo, Ontario N2L 3G1 Mathematics and Computing Grade 7/8 Math Circles April 3, 2014 Modular Arithmetic The Modulus Operator The modulo operator has symbol \mod", is written as A mod N, and is read \A modulo N" or "A mod N". • A is our - what is being divided (just like in division) • N is our (the plural is ) When we divide two numbers A and N, we get a quotient and a remainder. • When we ask for A ÷ N, we look for the quotient of the division. • When we ask for A mod N, we are looking for the remainder of the division. • The remainder A mod N is always an integer between 0 and N − 1 (inclusive) Examples 1. 0 mod 4 = 0 since 0 ÷ 4 = 0 remainder 0 2. 1 mod 4 = 1 since 1 ÷ 4 = 0 remainder 1 3. 2 mod 4 = 2 since 2 ÷ 4 = 0 remainder 2 4. 3 mod 4 = 3 since 3 ÷ 4 = 0 remainder 3 5. 4 mod 4 = since 4 ÷ 4 = 1 remainder 6. 5 mod 4 = since 5 ÷ 4 = 1 remainder 7. 6 mod 4 = since 6 ÷ 4 = 1 remainder 8. 15 mod 4 = since 15 ÷ 4 = 3 remainder 9.* −15 mod 4 = since −15 ÷ 4 = −4 remainder Using a Calculator For really large numbers and/or moduli, sometimes we can use calculators to quickly find A mod N. This method only works if A ≥ 0. Example: Find 373 mod 6 1. Divide 373 by 6 ! 2. Round the number you got above down to the nearest integer ! 3. -
Basic Math Quick Reference Ebook
This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference eBOOK Click on The math facts listed in this eBook are explained with Contents or Examples, Notes, Tips, & Illustrations Index in the in the left Basic Math Quick Reference Handbook. panel ISBN: 978-0-615-27390-7 to locate a topic. Peter J. Mitas Quick Reference Handbooks Facts from the Basic Math Quick Reference Handbook Contents Click a CHAPTER TITLE to jump to a page in the Contents: Whole Numbers Probability and Statistics Fractions Geometry and Measurement Decimal Numbers Positive and Negative Numbers Universal Number Concepts Algebra Ratios, Proportions, and Percents … then click a LINE IN THE CONTENTS to jump to a topic. Whole Numbers 7 Natural Numbers and Whole Numbers ............................ 7 Digits and Numerals ........................................................ 7 Place Value Notation ....................................................... 7 Rounding a Whole Number ............................................. 8 Operations and Operators ............................................... 8 Adding Whole Numbers................................................... 9 Subtracting Whole Numbers .......................................... 10 Multiplying Whole Numbers ........................................... 11 Dividing Whole Numbers ............................................... 12 Divisibility Rules ............................................................ 13 Multiples of a Whole Number ....................................... -
RING THEORY 1. Ring Theory a Ring Is a Set a with Two Binary Operations
CHAPTER IV RING THEORY 1. Ring Theory A ring is a set A with two binary operations satisfying the rules given below. Usually one binary operation is denoted `+' and called \addition," and the other is denoted by juxtaposition and is called \multiplication." The rules required of these operations are: 1) A is an abelian group under the operation + (identity denoted 0 and inverse of x denoted x); 2) A is a monoid under the operation of multiplication (i.e., multiplication is associative and there− is a two-sided identity usually denoted 1); 3) the distributive laws (x + y)z = xy + xz x(y + z)=xy + xz hold for all x, y,andz A. Sometimes one does∈ not require that a ring have a multiplicative identity. The word ring may also be used for a system satisfying just conditions (1) and (3) (i.e., where the associative law for multiplication may fail and for which there is no multiplicative identity.) Lie rings are examples of non-associative rings without identities. Almost all interesting associative rings do have identities. If 1 = 0, then the ring consists of one element 0; otherwise 1 = 0. In many theorems, it is necessary to specify that rings under consideration are not trivial, i.e. that 1 6= 0, but often that hypothesis will not be stated explicitly. 6 If the multiplicative operation is commutative, we call the ring commutative. Commutative Algebra is the study of commutative rings and related structures. It is closely related to algebraic number theory and algebraic geometry. If A is a ring, an element x A is called a unit if it has a two-sided inverse y, i.e. -
1. Modular Arithmetic
Modular arithmetic Divisibility Given p ositive numb ers a b if a we can write b aq r 1 for appropriate integers q r such that r a The numb er r is the remainder We say that a divides b or ajb if r and so b aq ie b factors as a times q Primes A numb er is prime if it cant b e factored as a pro duct of two numb ers greater or equal to If a numb er factors ie it is not prime then we say that it is comp osite Exercise Find all prime numb ers smaller than Here are several imp ortant questions How do we determine whether a numb er is prime How do we factor a numb er into primes How can we nd big prime numb ers How many prime numb ers are there Exercise Factor Exercise Show that every numb er is either prime or divisible by a prime numb er Theorem There are innitely many prime numbers Proof Supp ose that there are only nitely many prime numb ers P P 1 n then N P P P is not divisible by any prime hence it do es 1 2 n factor and hence it is a new prime not ˜ Divisibility tricks Recall that a numb er is even if its last digit is divisible by it is divisible by if the sum of its digits is divisible by it is divisible by if its last digit is divisible by etc Why is this Can we nd other divisibility tricks eg for One p ossible explanation Let abc b e a digit numb er so that abc a b c Then abc a b c and this is an integer only if c is an integer abc a b c and this is an integer only if c is an integer abc a b a b c and this is an integer only if a b c is an integer -
Math 371 Lecture #21 §6.1: Ideals and Congruence, Part II §6.2: Quotients and Homomorphisms, Part I
Math 371 Lecture #21 x6.1: Ideals and Congruence, Part II x6.2: Quotients and Homomorphisms, Part I Why ideals? For a commutative ring R with identity, we have for a; b 2 R, that a j b if and only if (b) ⊆ (a), and u 2 R is a unit if and only if (u) = R. Having the established the notion of an ideal, we can now extend the notion of congruence to any ring with respect to any ideal. Definition. Let I be an ideal in a ring R. For a; b 2 R, we say a is congruent to b modulo I, written a ≡ b (mod I), provided that a − b 2 I. Examples. (a) For any integer k ≥ 1, we see that congruence modulo k in Z is the same thing as congruence modulo the principal ideal (k) = kZ of Z. (b) For a field F and any nonconstant polynomial p(x) in F [x], we see that congruence modulo p(x) in F [x] is the same thing as congruence modulo the principal ideal (p(x)) of F [x]. We know that the congruence in each of these examples is an equivalence relation, but is this the case for an arbitrary ideal of an arbitrary ring? Theorem 6.4. For any ideal I of a ring R, the relation of congruence modulo I is an equivalence relation. Proof. Reflexive: Since I is closed under subtraction, we have for any a 2 R that a − a = 0R 2 I; hence a ≡ a (mod I). Symmetric: For a; b 2 R, suppose that a ≡ b (mod I).