10 Extraordinary Papers

Total Page:16

File Type:pdf, Size:1020Kb

10 Extraordinary Papers Highlights from 150 years of Nature 10 extraordinary papers nucleotide bases adenine, guanine, thymine Genetics and cytosine, connected to a backbone of sugars and phosphates — might assemble into fibres. They thought that a helix was a likely option: the US chemist Linus Pauling and his The structure of DNA co-workers had just demonstrated4 that pep- tide chains formed α-helices. Crick himself had Georgina Ferry co-authored a paper on the theory of diffrac- tion of X-rays by helices5. In late 1951, he and In the early 1950s, the identity of genetic material was still Watson combined that theory with what they a matter of debate. The discovery of the helical structure knew about the chemistry of DNA, and what of double-stranded DNA settled the matter — and changed they remembered of talks given by Wilkins and biology forever. Franklin, to build a model of the DNA structure. They got it badly wrong: Wilkins and Franklin quickly demolished it. The head of the Caven- dish, Lawrence Bragg, was furious, and banned On 25 April 1953, James Watson and Francis Watson and Crick from doing any further work Crick announced1 in Nature that they “wish to on DNA. But then, in February 1952, the Caven- suggest” a structure for DNA. In an article of dish team received a manuscript from Pauling just over a page, with one diagram (Fig. 1), they that contained a DNA model. It was wrong, but transformed the future of biology and gave Watson and Crick were alarmed that Pauling the world an icon — the double helix. Recog- was potentially near a solution. nizing at once that their structure suggested a This time, Bragg agreed that they might try “possible copying mechanism for the genetic to get there first. Franklin was soon to move material”, they kick-started a process that, over to Birkbeck College, London, and was leaving the following decade, would lead to the crack- the DNA work to Wilkins. She and her graduate ing of the genetic code and, 50 years later, to student, Raymond Gosling, had given Wilkins the complete sequence of the human genome. a photograph of the X-ray-diffraction pattern Until that time, biologists had still to be produced by the B form of DNA. Watson went to convinced that the genetic material was see Wilkins, who showed him the photograph, indeed DNA; proteins seemed a better bet. Yet without Franklin and Gosling’s knowledge. the evidence for DNA was already available. In The now famous ‘Photograph 51’, together 1944, the Canadian–US medical researcher with other unpublished data of Franklin’s that Oswald Avery and his colleagues had shown2 Perutz had shown Watson and Crick, told the that the transfer of DNA from a virulent to a pair that DNA did indeed form a helix, and that non-virulent strain of bacterium conferred the structure consisted of two chains running virulence on the latter. And in 1952, the biol- in opposite directions. Watson was stumped, ogists Alfred Hershey and Martha Chase had however, over how the bases could pair up published evidence3 that phage viruses infect between the two. He made cardboard cutouts bacteria by injecting viral DNA. of the bases, trying to fit them together, but Watson, a 23-year-old US geneticist, arrived nothing seemed to work. at the Cavendish Laboratory at the University His colleague Jerry Donohue then pointed of Cambridge, UK, in autumn 1951. He was Figure 1 | The DNA double helix. This drawing out that he was using the molecular struc- 1 convinced that the nature of the gene was appeared in Watson and Crick’s report of tures of the enol isomers of the bases, which the key problem in biology, and that the key the structure of DNA, and was produced by cannot form the hydrogen bonds necessary to the gene was DNA. The Cavendish was a phys- Crick’s wife, Odile. for base-pairing. Once Watson had made cut- ics lab, but also housed the Medical Research outs of the alternative keto isomers, he had the Council’s Unit for Research on the Molecular However, DNA was the project of Maurice blinding revelation that when guanine bonded Structure of Biological Systems, headed by Wilkins at King’s College London. Crick was a to cytosine, it made an identical shape to that chemist Max Perutz. Perutz’s group was using friend of Wilkins’s, and it wasn’t the done thing of adenine bonded to thymine, and that the X-ray crystallography to unravel the structures for labs to compete over the same molecule. shapes fitted perfectly into the helical frame of the proteins haemoglobin and myoglobin. Moreover, the experienced X-ray crystallo- provided by the backbones of each DNA chain. His team included a 35-year-old graduate stu- grapher Rosalind Franklin had just taken over This explained biochemist Erwin Chargaff’s dent who had given up physics and retrained experimental work on DNA at King’s. Owing to discovery that the DNA of any species has in biology, and who was much happier working a misunderstanding about their relative roles, the same amount of guanine as of cytosine, out the theoretical implications of other peo- Franklin’s relationship with Wilkins was frosty. and of adenine as of thymine6. It also showed ple’s results than doing experiments of his own: None of this stopped Watson and Crick that each DNA chain in a helix provides a per- Francis Crick. In Crick, Watson found a ready from speculating about how the com- fect template for the other, reading the base ally in his DNA obsession. ponents of the DNA molecule — the four sequence in opposite directions. Nature | Vol 575 | 7 November 2019 | 35 ©2019 Spri nger Nature Li mited. All ri ghts reserved. 10 extraordinary papers Within days, Watson and Crick had built a identify the full set of codons was completed in forensics, and research into more-futuristic new model of DNA from metal parts. Wilkins by 1966, with Har Gobind Khorana contributing applications, such as DNA-based computing, immediately accepted that it was correct. It the sequences of bases in several codons from is well advanced. was agreed between the two groups that they his experiments with synthetic polynucleotides Paradoxically, Watson and Crick’s iconic would publish three papers simultaneously in (see go.nature.com/2hebk3k). structure has also made it possible to recog- Nature, with the King’s researchers comment- With Fred Sanger and colleagues’ publica- nize the shortcomings of the central dogma, ing on the fit of Watson and Crick’s structure tion16 of an efficient method for sequencing with the discovery of small RNAs that can reg- to the experimental data, and Franklin and DNA in 1977, the way was open for the com- ulate gene expression, and of environmental Gosling publishing Photograph 51 for the plete reading of the genetic information in factors that induce heritable epigenetic first time7,8. any species. The task was completed for the change. No doubt, the concept of the double The Cambridge pair acknowledged in their human genome by 2003, another milestone helix will continue to underpin discoveries in paper that they knew of “the general nature in the history of DNA. biology for decades to come. of the unpublished experimental results and Watson devoted most of the rest of his ideas” of the King’s workers, but it wasn’t until career to education and scientific administra- Georgina Ferry is a science writer based in The Double Helix, Watson’s explosive account tion as head of the Cold Spring Harbor Labo- Oxford, UK. A revised edition of her biography of the discovery, was published in 1968 that ratory in Long Island, New York, and serving Dorothy Crowfoot Hodgkin has just been it became clear how they obtained access to (briefly) as the first head of the US National published by Bloomsbury Reader. those results. Franklin had died of cancer a Center for Human Genome Research, now the 1. Watson, J. D. & Crick, F. H. C. Nature 171, 737–738 (1953). decade previously; her death prevented her National Human Genome Research Institute. 2. Avery, O. T., MacLeod, C. M. & McCarty, M. J. Exp. Med. 79, from sharing the Nobel prize awarded to Always outspoken, he was eventually removed 137–158 (1944). Watson, Crick and Wilkins in 1962. from his emeritus position at Cold Spring Har- 3. Hershey, A. D. & Chase, M. J. Gen. Physiol. 36, 39–56 The immediate reception of the double-he- bor when he repeatedly aired controversial (1952). 4. Pauling, L., Corey, R. B. & Branson, H. R. Proc. Natl Acad. 9 lix model was surprisingly muted ,perhaps opinions about genetics, race and intelligence. Sci. USA 37, 205–211 (1951). because there was no obvious mechanism Crick continued to tackle hard problems in 5. Cochran, W., Crick, F. H. & Vand, V. Acta Crystallogr. 5, to explain its role in protein synthesis. In a science, moving in 1977 from Cambridge to the 581–586 (1952). 6. Vischer, E. & Chargaff, E. J. Biol. Chem. 176, 703–714 landmark talk in 1957, Crick proposed that Salk Institute in La Jolla, California, where he (1948). the base sequence encoded the sequence spent the rest of his life working on the neural 7. Wilkins, M. H. F., Stokes, A. R. & Wilson, H. R. Nature 171, of amino acids in a protein, and that protein basis of consciousness17 and, specifically, of 738–740 (1953). 8. Franklin, R. E. & Gosling, R. G. Nature 171, 740–741 (1953). production involved RNA both as a template visual perception. He died in 2004, aged 88.
Recommended publications
  • Discovery of DNA Structure and Function: Watson and Crick By: Leslie A
    01/08/2018 Discovery of DNA Double Helix: Watson and Crick | Learn Science at Scitable NUCLEIC ACID STRUCTURE AND FUNCTION | Lead Editor: Bob Moss Discovery of DNA Structure and Function: Watson and Crick By: Leslie A. Pray, Ph.D. © 2008 Nature Education Citation: Pray, L. (2008) Discovery of DNA structure and function: Watson and Crick. Nature Education 1(1):100 The landmark ideas of Watson and Crick relied heavily on the work of other scientists. What did the duo actually discover? Aa Aa Aa Many people believe that American biologist James Watson and English physicist Francis Crick discovered DNA in the 1950s. In reality, this is not the case. Rather, DNA was first identified in the late 1860s by Swiss chemist Friedrich Miescher. Then, in the decades following Miescher's discovery, other scientists--notably, Phoebus Levene and Erwin Chargaff--carried out a series of research efforts that revealed additional details about the DNA molecule, including its primary chemical components and the ways in which they joined with one another. Without the scientific foundation provided by these pioneers, Watson and Crick may never have reached their groundbreaking conclusion of 1953: that the DNA molecule exists in the form of a three-dimensional double helix. The First Piece of the Puzzle: Miescher Discovers DNA Although few people realize it, 1869 was a landmark year in genetic research, because it was the year in which Swiss physiological chemist Friedrich Miescher first identified what he called "nuclein" inside the nuclei of human white blood cells. (The term "nuclein" was later changed to "nucleic acid" and eventually to "deoxyribonucleic acid," or "DNA.") Miescher's plan was to isolate and characterize not the nuclein (which nobody at that time realized existed) but instead the protein components of leukocytes (white blood cells).
    [Show full text]
  • Biochemistrystanford00kornrich.Pdf
    University of California Berkeley Regional Oral History Office University of California The Bancroft Library Berkeley, California Program in the History of the Biosciences and Biotechnology Arthur Kornberg, M.D. BIOCHEMISTRY AT STANFORD, BIOTECHNOLOGY AT DNAX With an Introduction by Joshua Lederberg Interviews Conducted by Sally Smith Hughes, Ph.D. in 1997 Copyright 1998 by The Regents of the University of California Since 1954 the Regional Oral History Office has been interviewing leading participants in or well-placed witnesses to major events in the development of Northern California, the West, and the Nation. Oral history is a method of collecting historical information through tape-recorded interviews between a narrator with firsthand knowledge of historically significant events and a well- informed interviewer, with the goal of preserving substantive additions to the historical record. The tape recording is transcribed, lightly edited for continuity and clarity, and reviewed by the interviewee. The corrected manuscript is indexed, bound with photographs and illustrative materials, and placed in The Bancroft Library at the University of California, Berkeley, and in other research collections for scholarly use. Because it is primary material, oral history is not intended to present the final, verified, or complete narrative of events. It is a spoken account, offered by the interviewee in response to questioning, and as such it is reflective, partisan, deeply involved, and irreplaceable. ************************************ All uses of this manuscript are covered by a legal agreement between The Regents of the University of California and Arthur Kornberg, M.D., dated June 18, 1997. The manuscript is thereby made available for research purposes. All literary rights in the manuscript, including the right to publish, are reserved to The Bancroft Library of the University of California, Berkeley.
    [Show full text]
  • Science in Action
    SCIENCE IN ACTION How to follow scientists and engineers through society Bruno Latour Harvard UnlvetSHy Press Cambridge, Massachusetts 1987 INTRODUCTION Opening Pandora's Black Box Scene 1: On a cold and sunny morning in October 1985, John Whittaker entered his office in the molecular biology building of the Institut Pasteur in Paris and switched on his Eclipse MV/8000 computer. A few seconds after loading the special programs he had written, a three-dimensional picture of the DNA double helix flashed onto the screen. John, a visiting computer scientist, had been invited by the Institute to write programs that could produce three-dimensional images of the coils of DNA and relate them to the thousands of new nucleic acid sequences pouring out every year into the journals and data banks. 'Nice picture, eh?' said his boss, Pierre, who was just entering the office. 'Yes, good machine too,' answered John. Scene 2: In 1951 in the Cavendish laboratory at Cambridge, England, the X-ray pictures of crystallised deoxyribonucleic acid were not 'nice pictures' on a computer screen. The two young researchers, Jim Watson and Francis Crick1, had a hard time obtaining them from Maurice Wilkins and Rosalind Franklin in London. It was impossible yet to decide if the form of the acid was a triple or a double helix, if the phosphate bonds were at the inside or at the outside of the molecule, or indeed if it was an helix at all. It did not matter much to their boss, Sir Francis Bragg, since the two were not supposed to be working on DNA anyway, but it mattered a lot to them, especially since Linus Pauling, the famous chemist, was said to be about to uncover the structure of DNA in a few months.
    [Show full text]
  • 1 History for Canonical and Non-Canonical Structures of Nucleic Acids
    1 1 History for Canonical and Non-canonical Structures of Nucleic Acids The main points of the learning: Understand canonical and non-canonical structures of nucleic acids and think of historical scientists in the research field of nucleic acids. 1.1 Introduction This book is to interpret the non-canonical structures and their stabilities of nucleic acids from the viewpoint of the chemistry and study their biological significances. There is more than 60 years’ history after the discovery of the double helix DNA structure by James Dewey Watson and Francis Harry Compton Crick in 1953, and chemical biology of nucleic acids is facing a new aspect today. Through this book, I expect that readers understand how the uncommon structure of nucleic acids became one of the common structures that fascinate us now. In this chapter, I introduce the history of nucleic acid structures and the perspective of research for non-canonical nucleic acid structures (see also Chapter 15). 1.2 History of Duplex The opening of the history of genetics was mainly done by three researchers. Charles Robert Darwin, who was a scientist of natural science, pioneered genetics. The proposition of genetic concept is indicated in his book On the Origin of Species published in 1859. He indicated the theory of biological evolution, which is the basic scientific hypothesis of natural diversity. In other words, he proposed biological evolution, which changed among individuals by adapting to the environment and be passed on to the next generation. However, that was still a primitive idea for the genetic concept. After that, Gregor Johann Mendel, who was a priest in Brno, Czech Republic, confirmed the mechanism of gene evolution by using “factor” inherited from parent to children using pea plant in 1865.
    [Show full text]
  • DNA: the Timeline and Evidence of Discovery
    1/19/2017 DNA: The Timeline and Evidence of Discovery Interactive Click and Learn (Ann Brokaw Rocky River High School) Introduction For almost a century, many scientists paved the way to the ultimate discovery of DNA and its double helix structure. Without the work of these pioneering scientists, Watson and Crick may never have made their ground-breaking double helix model, published in 1953. The knowledge of how genetic material is stored and copied in this molecule gave rise to a new way of looking at and manipulating biological processes, called molecular biology. The breakthrough changed the face of biology and our lives forever. Watch The Double Helix short film (approximately 15 minutes) – hyperlinked here. 1 1/19/2017 1865 The Garden Pea 1865 The Garden Pea In 1865, Gregor Mendel established the foundation of genetics by unraveling the basic principles of heredity, though his work would not be recognized as “revolutionary” until after his death. By studying the common garden pea plant, Mendel demonstrated the inheritance of “discrete units” and introduced the idea that the inheritance of these units from generation to generation follows particular patterns. These patterns are now referred to as the “Laws of Mendelian Inheritance.” 2 1/19/2017 1869 The Isolation of “Nuclein” 1869 Isolated Nuclein Friedrich Miescher, a Swiss researcher, noticed an unknown precipitate in his work with white blood cells. Upon isolating the material, he noted that it resisted protein-digesting enzymes. Why is it important that the material was not digested by the enzymes? Further work led him to the discovery that the substance contained carbon, hydrogen, nitrogen and large amounts of phosphorus with no sulfur.
    [Show full text]
  • Physics Today - February 2003
    Physics Today - February 2003 Rosalind Franklin and the Double Helix Although she made essential contributions toward elucidating the structure of DNA, Rosalind Franklin is known to many only as seen through the distorting lens of James Watson's book, The Double Helix. by Lynne Osman Elkin - California State University, Hayward In 1962, James Watson, then at Harvard University, and Cambridge University's Francis Crick stood next to Maurice Wilkins from King's College, London, to receive the Nobel Prize in Physiology or Medicine for their "discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material." Watson and Crick could not have proposed their celebrated structure for DNA as early in 1953 as they did without access to experimental results obtained by King's College scientist Rosalind Franklin. Franklin had died of cancer in 1958 at age 37, and so was ineligible to share the honor. Her conspicuous absence from the awards ceremony--the dramatic culmination of the struggle to determine the structure of DNA--probably contributed to the neglect, for several decades, of Franklin's role in the DNA story. She most likely never knew how significantly her data influenced Watson and Crick's proposal. Franklin was born 25 July 1920 to Muriel Waley Franklin and merchant banker Ellis Franklin, both members of educated and socially conscious Jewish families. They were a close immediate family, prone to lively discussion and vigorous debates at which the politically liberal, logical, and determined Rosalind excelled: She would even argue with her assertive, conservative father. Early in life, Rosalind manifested the creativity and drive characteristic of the Franklin women, and some of the Waley women, who were expected to focus their education, talents, and skills on political, educational, and charitable forms of community service.
    [Show full text]
  • Structure of DNA &
    Structure Of DNA & RNA By Himanshu Dev VMMC & SJH DNA DNA Deoxyribonucleic acid DNA - a polymer of deoxyribo- nucleotides. Usually double stranded. And have double-helix structure. found in chromosomes, mitochondria and chloroplasts. It acts as the genetic material in most of the organisms. Carries the genetic information A Few Key Events Led to the Discovery of the Structure of DNA DNA as an acidic substance present in nucleus was first identified by Friedrich Meischer in 1868. He named it as ‘Nuclein’. Friedrich Meischer In 1953 , James Watson and Francis Crick, described a very simple but famous Double Helix model for the structure of DNA. FRANCIS CRICK AND JAMES WATSON The scientific framework for their breakthrough was provided by other scientists including Linus Pauling Rosalind Franklin and Maurice Wilkins Erwin Chargaff Rosalind Franklin She worked in same laboratory as Maurice Wilkins. She study X-ray diffraction to study wet fibers of DNA. X-ray diffraction of wet DNA fibers The diffraction pattern is interpreted X Ray (using mathematical theory) Crystallography This can ultimately provide Rosalind information concerning the structure Franklin’s photo of the molecule She made marked advances in X-ray diffraction techniques with DNA The diffraction pattern she obtained suggested several structural features of DNA Helical More than one strand 10 base pairs per complete turn Rosalind Franklin Maurice Wilkins DNA Structure DNA structure is often divided into four different levels primary, secondary, tertiary
    [Show full text]
  • Reflections on the Historiography of Molecular Biology
    Reflections on the Historiography of Molecular Biology HORACE FREELAND JUDSON SURELY the time has come to stop applying the word revolution to the rise of new scientific research programmes. Our century has seen many upheavals in scientific ideas--so many and so varied that the notion of scientific revolution has been stretched out of shape and can no longer be made to cover the processes of change characteristic of most sciences these past hundred years. By general consent, two great research pro- grammes arising in this century stand om from the others. The first, of course, was the one in physics that began at the turn of the century with quantum theory and relativity and ran through the working out, by about 1930, of quantum mechanics in its relativistic form. The trans- formation in physics appears to be thoroughly documented. Memoirs and biographies of the physicists have been written. Interviewswith survivors have been recorded and transcribed. The history has been told at every level of detail and difficulty. The second great programme is the one in biology that had its origins in the mid-1930s and that by 1970 had reached, if not a conclusion, a kind of cadence--a pause to regroup. This is the transformation that created molecular biology and latter-day biochemistry. The writing of its history has only recently started and is beset with problems. Accounting for the rise of molecular biology began with brief, partial, fugitive essays by participants. Biographies have been written of two, of the less understood figures in the science, who died even as the field was ripening, Oswald Avery and Rosalind Franklin; other scientists have wri:tten their memoirs.
    [Show full text]
  • Erwin Chargaff 1905–2002
    NATIONAL ACADEMY OF SCIENCES ERWIN CHARGAFF 1 9 0 5 – 2 0 0 2 A Biographical Memoir by SEYMOUR S. COHEN with selected bibliography by ROBERT LEHMAN Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir 2010 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. ERWIN CHARGAFF August 11, 1905–June 20, 2002 BY SEYMOUR S . COHEN 1 AND ROBERT LEHMAN N 1944, AS VARIOUS ARMIES WERE planning to invade central IEurope, the recently naturalized U.S. citizen and Columbia University biochemist had learned of the report of O. T. Avery and his colleagues that the deoxyribonucleic acid (DNA) of a specific strain of pneumococcus constituted the genetically specific hereditary determinant of that bacterium. Almost alone among the scientists of the time, Chargaff accepted the unusual Avery report and concluded that genetic differ- ences among DNAs must be reflected in chemical differences among these substances. He was actually the first biochemist to reorganize his laboratory to test this hypothesis, which he went on to prove by 1949. His results and the subsequent work on the nature of DNA and heredity transformed biomedical research and training for the next fifty years at least, and established potentialities for the development of biology, which have created economic entities and opportunities, as well as major ethical and political controversies. Trained as an analytical chemist, Chargaff had never imagined that he would help to solve a major cytological problem. Reprinted with the permission from Proceedings of the American Philosophical Society (vol.
    [Show full text]
  • Front Matter (PDF)
    COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME XXVI COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY Founded in 1933 by REGINALD G. HARRIS Director o/ the Biological Laboratory 1924 to 1936 The Symposia were organized and managed by Dr. Harris until his death. Their continued use- /ulness is a tribute to the soundness o/ his vision. The Symposium volumes are published by the Long Island Biological Association as a part of the work of the Biological Laboratory Cold Spring Harbor, L.I., New York COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME XXVI Cellular Regulatory Mechanisms THE BIOLOGICAL LABORATORY COLD SPRING HARBOR, L.I., NEW YORK 1961 COPYRIGHT 1962 BY THE BIOLOGICAL LABORATORY LONG ISLAND BIOLOGICAL ASSOCIATION, INC. Library of Congress Catalog Number: 34-8174 All rights reserved. This book may not be reproduced in whole or in part except by reviewers for the public press without written permission from the publisher PRINTED BY WAVERLY PRESS, INC., BALTIMORE,MARYLAND, U.S.A. FOREWORD During the past twenty years, research in genetics and biochemistry, while superficially directed toward an understanding of different aspects of cell behavior, has been moving to a union which appears to have been completed in the presen- tations at this symposium on Cell Regulatory Mechanisms. Sessions were devoted to the role of the genetic material as an information code in protein synthesis and the mechanism of information transfer from DNA to the site of synthesis. Major attention was devoted to cellular mechanisms governing the rates of enzyme ac- tivity and enzyme synthesis. While most of the research presented dealt with microorganisms, the significance of these efforts for questions of normal and ab- normal growth and development in multicellular forms is quite apparent.
    [Show full text]
  • Samuel H. Barondes 1
    EDITORIAL ADVISORY COMMITTEE Giovanni Berlucchi Mary B. Bunge Robert E. Burke Larry E Cahill Stanley Finger Bernice Grafstein Russell A. Johnson Ronald W. Oppenheim Thomas A. Woolsey (Chairperson) The History of Neuroscience in" Autob~ograp" by VOLUME 5 Edited by Larry R. Squire AMSTERDAM 9BOSTON 9HEIDELBERG 9LONDON NEW YORK 9OXFORD ~ PARIS 9SAN DIEGO SAN FRANCISCO 9SINGAPORE 9SYDNEY 9TOKYO ELSEVIER Academic Press is an imprint of Elsevier Elsevier Academic Press 30 Corporate Drive, Suite 400, Burlington, Massachusetts 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK This book is printed on acid-free paper. O Copyright 92006 by the Society for Neuroscience. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: [email protected]. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions." Library of Congress Catalog Card Number: 2003 111249 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 13:978-0-12-370514-3 ISBN 10:0-12-370514-2 For all information on all Elsevier Academic Press publications visit our Web site at www.books.elsevier.com Printed in the United States of America 06 07 08 09 10 11 9 8 7 6 5 4 3 2 1 Working together to grow libraries in developing countries www.elsevier.com ] ww.bookaid.org ] www.sabre.org ER BOOK AID ,~StbFC" " " =LSEVI lnt .....
    [Show full text]
  • Communications-Mathematics and Applied Mathematics/Download/8110
    A Mathematician's Journey to the Edge of the Universe "The only true wisdom is in knowing you know nothing." ― Socrates Manjunath.R #16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India *Corresponding Author Email: [email protected] *Website: http://www.myw3schools.com/ A Mathematician's Journey to the Edge of the Universe What’s the Ultimate Question? Since the dawn of the history of science from Copernicus (who took the details of Ptolemy, and found a way to look at the same construction from a slightly different perspective and discover that the Earth is not the center of the universe) and Galileo to the present, we (a hoard of talking monkeys who's consciousness is from a collection of connected neurons − hammering away on typewriters and by pure chance eventually ranging the values for the (fundamental) numbers that would allow the development of any form of intelligent life) have gazed at the stars and attempted to chart the heavens and still discovering the fundamental laws of nature often get asked: What is Dark Matter? ... What is Dark Energy? ... What Came Before the Big Bang? ... What's Inside a Black Hole? ... Will the universe continue expanding? Will it just stop or even begin to contract? Are We Alone? Beginning at Stonehenge and ending with the current crisis in String Theory, the story of this eternal question to uncover the mysteries of the universe describes a narrative that includes some of the greatest discoveries of all time and leading personalities, including Aristotle, Johannes Kepler, and Isaac Newton, and the rise to the modern era of Einstein, Eddington, and Hawking.
    [Show full text]