A Comparative Performance Assessment of Ensemble Learning for Credit Scoring

Total Page:16

File Type:pdf, Size:1020Kb

A Comparative Performance Assessment of Ensemble Learning for Credit Scoring mathematics Article A Comparative Performance Assessment of Ensemble Learning for Credit Scoring Yiheng Li * and Weidong Chen College of Management and Economics, Tianjin University, Tianjin 300072, China; [email protected] * Correspondence: [email protected] Received: 5 September 2020; Accepted: 29 September 2020; Published: 13 October 2020 Abstract: Extensive research has been performed by organizations and academics on models for credit scoring, an important financial management activity. With novel machine learning models continue to be proposed, ensemble learning has been introduced into the application of credit scoring, several researches have addressed the supremacy of ensemble learning. In this research, we provide a comparative performance evaluation of ensemble algorithms, i.e., random forest, AdaBoost, XGBoost, LightGBM and Stacking, in terms of accuracy (ACC), area under the curve (AUC), Kolmogorov–Smirnov statistic (KS), Brier score (BS), and model operating time in terms of credit scoring. Moreover, five popular baseline classifiers, i.e., neural network (NN), decision tree (DT), logistic regression (LR), Naïve Bayes (NB), and support vector machine (SVM) are considered to be benchmarks. Experimental findings reveal that the performance of ensemble learning is better than individual learners, except for AdaBoost. In addition, random forest has the best performance in terms of five metrics, XGBoost and LightGBM are close challengers. Among five baseline classifiers, logistic regression outperforms the other classifiers over the most of evaluation metrics. Finally, this study also analyzes reasons for the poor performance of some algorithms and give some suggestions on the choice of credit scoring models for financial institutions. Keywords: credit scoring; ensemble learning; baseline classifiers; comparative assessment 1. Introduction Charging interest on loan is the main business income way of financial institutions and in the meanwhile, granting loans has great contribution in socioeconomic operation. However, unreasonable lending will cause a huge loss given default, and hence to large losses at many financial institutions. Emerging and developing economies urgently need to strike a careful balance between promoting growth through lending loan and preventing credit risk caused by excessive releasing according to the Global Economic Prospects [1] from the World Bank in 4 June 2019. Credit scoring has been one of the primary approaches for principal institutions to evaluate credit risk and make rational decisions [2]. The purpose of credit scoring model is to solve problems of classifying loan customers into two categories: good customers (those are predicted to be fully paid within the specified period) and bad customers (those predicted to be default). Good customers are more likely to repay their loans on time, which will bring benefits to financial institutions. On the contrary, bad customers will lead to financial losses. Therefore, banks and financial institutions pay more and more attention to the construction of credit scoring models, because even a 1% increase in the quality of the bad credit applicants would significantly translate into remarkable future savings for financial institutions [3,4]. Since the pioneering work of Beaver [5] and Altman [6], credit scoring has been a major research subject for scholars and financial institutions, and has obtained extensive research in the past 40 years. Subsequently, many types of credit scoring models have been proposed and developed by using statistical methods, such as linear discriminate analysis (LDA) and logistic regression (LR) [7–10]. Mathematics 2020, 8, 1756; doi:10.3390/math8101756 www.mdpi.com/journal/mathematics Mathematics 2020, 8, x FOR PEER REVIEW 2 of 19 Mathematics 2020, 8, 1756 2 of 19 statistical methods, such as linear discriminate analysis (LDA) and logistic regression (LR) [7–10]. However, data is exploding in today's world, when it comes to huge quantities of data, the elastic performanceHowever, data of isclassical exploding statistical in today’s analysis world, models when itis comes not very to huge good. quantities As a result, of data, some the elasticof the assumptionsperformance ofin classicalthese models statistical cannot analysis be established, models is not which very in good. turn Asaffects a result, the accuracy some of the of assumptionspredictions. Within these the modelsbreakthrough cannot of be artificial established, intelligence which (AI) in turn technology, affects the such accuracy as neural of networks predictions. (NN) With [11,12], the supportbreakthrough vector of machines artificial (SVM), intelligence random (AI) forests technology, (RF) [13], such and as neuralNaïve networksBayes (NB) (NN) [14] [can11,12 achieve], support the samevector or machines better results (SVM), compared random with forests the (RF) statistica [13], andl models. Naïve However, Bayes (NB) LDA [14] and can LR achieve still have the same a wide or rangebetter resultsof applications compared due with to thetheir statistical high accuracy models. and However, ease of LDA model and operation. LR still have Machine a wide learning range of belongsapplications to the due category to their of highAI and accuracy is one of and the easemost of efficient model methods operation. in Machinedata mining learning that can belongs provide to analyststhe category with of more AI and productive is one of theinsights most on effi thecient use methods of big indata data [15]. mining Machine that canlearning provide models analysts are withgenerally more subdivided productive into insights individual on the machine use of big learning data [15 (NN]. Machine and LR), learning ensemble models learning are (bagging, generally boosting,subdivided and into randomspace), individual machine and integrated learning ensemb (NN andle LR),machine ensemble learning learning (RS-boosting (bagging, and boosting, multi- boosting)and randomspace), [16]. Ensemble and integrated learning approaches ensemble machine are considered learning to (RS-boostingbe a state-of-the-art and multi-boosting) solution for many [16]. machineEnsemble learning learning tasks approaches [17]. After are Chen considered and Gues to betrin a state-of-the-art[18] proposed XGBoost solution forin 2016, many ensemble machine learning,learning tasksi.e., XGBoost [17]. After and ChenLightG andBM, Guestrin have become [18] proposed a winning XGBoost strategy in to 2016, a wide ensemble range of learning, Kaggle competitionsi.e., XGBoost anddue LightGBM,to its inspiring have success. become Accordingly, a winning strategy more and to a widemore rangescholars of Kaggleintroduce competitions ensemble learningdue to its models inspiring to solve success. credit Accordingly, scoring problems more and[19–22]. more Ensemble scholars learning introduce is ensemblea method learningto make excellentmodels to performance solve credit by scoring building problems and combining [19–22]. Ensemble multiple learningbase learners is a method with certain to make strategies. excellent It canperformance be used to by solve building classification and combining problems, multiple regression base problems, learners feature with certain selection, strategies. outlier detection, It can be etc.used Generally, to solve classificationensemble learning problems, can be regression separated problems, into homogenous feature selection, and heterogeneous, outlier detection, where the etc. formerGenerally, combines ensemble classifiers learning of can the besame separated kind, wherea into homogenouss the latter combines and heterogeneous, classifiers of where different the former kinds [22].combines Boosting classifiers represented of the same by AdaBoost kind, whereas and theBagg lattering combinesrepresented classifiers by random of di ffforesterent kindsbelong [22 to]. homogenousBoosting represented integration by AdaBoost in ensemble and Bagginglearning, representedotherwise, byStacking random belongs forest belongto the toheterogeneous homogenous (Figureintegration 1). in ensemble learning, otherwise, Stacking belongs to the heterogeneous (Figure1). Figure 1. EnsembleEnsemble machine learning framework. Scholars have also conducted comparative studiesstudies on ensembleensemble learninglearning models:models: Bagging, Bagging, Boosting, and Stacking. Wang Wang et al. [4] [4] investigatedinvestigated the performance of ensemble learning-bagging, boosting, stacking-based on on four four individual individual le learnersarners (LR, (LR, DT, DT, NN, and SVM) on credit scoring problems across three real world credit datasets and found that bagging gets better than boosting, stacking, and bagging DT perform the best output.output. Barboza, Kimura, and and Altman [23] [23] conduct the comparison betweenbetween machine machine learning learning methods methods (SVM, (SVM, bagging, bagging, boosting, boosting, and RF) and someRF) and traditional some traditionalmethods (discriminant methods (discriminant analysis, LR, analysis, and NN) LR, to and predict NN) to bankruptcy, predict bankruptcy, showed that showed bagging, that boosting,bagging, boosting,and RF outperform and RF outperform the other algorithms.the other algorithms. Ma et al. Ma [15] et used al. [15] data used cleaning data methodcleaning of method “multiple of “multipleobservation” observation” and “multiple and dimensional”“multiple dimensional” to evaluate to the evaluate performance the performance of XGBoost of and XGBoost LightGBM and Mathematics 2020, 8, 1756 3 of 19 Mathematics
Recommended publications
  • Kitsune: an Ensemble of Autoencoders for Online Network Intrusion Detection
    Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection Yisroel Mirsky, Tomer Doitshman, Yuval Elovici and Asaf Shabtai Ben-Gurion University of the Negev yisroel, tomerdoi @post.bgu.ac.il, elovici, shabtaia @bgu.ac.il { } { } Abstract—Neural networks have become an increasingly popu- Over the last decade many machine learning techniques lar solution for network intrusion detection systems (NIDS). Their have been proposed to improve detection performance [2], [3], capability of learning complex patterns and behaviors make them [4]. One popular approach is to use an artificial neural network a suitable solution for differentiating between normal traffic and (ANN) to perform the network traffic inspection. The benefit network attacks. However, a drawback of neural networks is of using an ANN is that ANNs are good at learning complex the amount of resources needed to train them. Many network non-linear concepts in the input data. This gives ANNs a gateways and routers devices, which could potentially host an NIDS, simply do not have the memory or processing power to great advantage in detection performance with respect to other train and sometimes even execute such models. More importantly, machine learning algorithms [5], [2]. the existing neural network solutions are trained in a supervised The prevalent approach to using an ANN as an NIDS is manner. Meaning that an expert must label the network traffic to train it to classify network traffic as being either normal and update the model manually from time to time. or some class of attack [6], [7], [8]. The following shows the In this paper, we present Kitsune: a plug and play NIDS typical approach to using an ANN-based classifier in a point which can learn to detect attacks on the local network, without deployment strategy: supervision, and in an efficient online manner.
    [Show full text]
  • Ensemble Learning
    Ensemble Learning Martin Sewell Department of Computer Science University College London April 2007 (revised August 2008) 1 Introduction The idea of ensemble learning is to employ multiple learners and combine their predictions. There is no definitive taxonomy. Jain, Duin and Mao (2000) list eighteen classifier combination schemes; Witten and Frank (2000) detail four methods of combining multiple models: bagging, boosting, stacking and error- correcting output codes whilst Alpaydin (2004) covers seven methods of combin- ing multiple learners: voting, error-correcting output codes, bagging, boosting, mixtures of experts, stacked generalization and cascading. Here, the litera- ture in general is reviewed, with, where possible, an emphasis on both theory and practical advice, then the taxonomy from Jain, Duin and Mao (2000) is provided, and finally four ensemble methods are focussed on: bagging, boosting (including AdaBoost), stacked generalization and the random subspace method. 2 Literature Review Wittner and Denker (1988) discussed strategies for teaching layered neural net- works classification tasks. Schapire (1990) introduced boosting (see Section 5 (page 9)). A theoretical paper by Kleinberg (1990) introduced a general method for separating points in multidimensional spaces through the use of stochastic processes called stochastic discrimination (SD). The method basically takes poor solutions as an input and creates good solutions. Stochastic discrimination looks promising, and later led to the random subspace method (Ho 1998). Hansen and Salamon (1990) showed the benefits of invoking ensembles of similar neural networks. Wolpert (1992) introduced stacked generalization, a scheme for minimiz- ing the generalization error rate of one or more generalizers (see Section 6 (page 10)).Xu, Krzy˙zakand Suen (1992) considered methods of combining mul- tiple classifiers and their applications to handwriting recognition.
    [Show full text]
  • Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions
    Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions Synthesis Lectures on Data Mining and Knowledge Discovery Editor Robert Grossman, University of Illinois, Chicago Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions Giovanni Seni and John F. Elder 2010 Modeling and Data Mining in Blogosphere Nitin Agarwal and Huan Liu 2009 Copyright © 2010 by Morgan & Claypool All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in printed reviews, without the prior permission of the publisher. Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions Giovanni Seni and John F. Elder www.morganclaypool.com ISBN: 9781608452842 paperback ISBN: 9781608452859 ebook DOI 10.2200/S00240ED1V01Y200912DMK002 A Publication in the Morgan & Claypool Publishers series SYNTHESIS LECTURES ON DATA MINING AND KNOWLEDGE DISCOVERY Lecture #2 Series Editor: Robert Grossman, University of Illinois, Chicago Series ISSN Synthesis Lectures on Data Mining and Knowledge Discovery Print 2151-0067 Electronic 2151-0075 Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions Giovanni Seni Elder Research, Inc. and Santa Clara University John F. Elder Elder Research, Inc. and University of Virginia SYNTHESIS LECTURES ON DATA MINING AND KNOWLEDGE DISCOVERY #2 M &C Morgan& cLaypool publishers ABSTRACT Ensemble methods have been called the most influential development in Data Mining and Machine Learning in the past decade. They combine multiple models into one usually more accurate than the best of its components. Ensembles can provide a critical boost to industrial challenges – from investment timing to drug discovery, and fraud detection to recommendation systems – where predictive accuracy is more vital than model interpretability.
    [Show full text]
  • (Machine) Learning
    A Practical Tour of Ensemble (Machine) Learning Nima Hejazi 1 Evan Muzzall 2 1Division of Biostatistics, University of California, Berkeley 2D-Lab, University of California, Berkeley slides: https://goo.gl/wWa9QC These are slides from a presentation on practical ensemble learning with the Super Learner and h2oEnsemble packages for the R language, most recently presented at a meeting of The Hacker Within, at the Berkeley Institute for Data Science at UC Berkeley, on 6 December 2016. source: https://github.com/nhejazi/talk-h2oSL-THW-2016 slides: https://goo.gl/CXC2FF with notes: http://goo.gl/wWa9QC Ensemble Learning – What? In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. - Wikipedia, November 2016 2 This rather elementary definition of “ensemble learning” encapsulates quite well the core notions necessary to understand why we might be interested in optimizing such procedures. In particular, we will see that a weighted collection of individual learning algorithms can not only outperform other algorithms in practice but also has been shown to be theoretically optimal. Ensemble Learning – Why? ▶ Ensemble methods outperform individual (base) learning algorithms. ▶ By combining a set of individual learning algorithms using a metalearning algorithm, ensemble methods can approximate complex functional relationships. ▶ When the true functional relationship is not in the set of base learning algorithms, ensemble methods approximate the true function well. ▶ n.b., ensemble methods can, even asymptotically, perform only as well as the best weighted combination of the candidate learners. 3 A variety of techniques exist for ensemble learning, ranging from the classic “random forest” (of Leo Breiman) to “xgboost” to “Super Learner” (van der Laan et al.).
    [Show full text]
  • Ensemble Learning of Named Entity Recognition Algorithms Using Multilayer Perceptron for the Multilingual Web of Data
    Ensemble Learning of Named Entity Recognition Algorithms using Multilayer Perceptron for the Multilingual Web of Data René Speck Axel-Cyrille Ngonga Ngomo Data Science Group, University of Leipzig Data Science Group, University of Paderborn Augustusplatz 10 Pohlweg 51 Leipzig, Germany 04109 Paderborn, Germany 33098 [email protected] [email protected] ABSTRACT FOX’s inner workings. In Section 4, we compare the results achieved Implementing the multilingual Semantic Web vision requires trans- by our evaluation on the silver and gold standard datasets. Finally, forming unstructured data in multiple languages from the Docu- we discuss the insights provided by our evaluation and possible ment Web into structured data for the multilingual Web of Data. We extensions of our approach in Section 5. present the multilingual version of FOX, a knowledge extraction suite which supports this migration by providing named entity 2 RELATED WORK recognition based on ensemble learning for five languages. Our NER tools and frameworks implement a broad spectrum of ap- evaluation results show that our approach goes beyond the per- proaches, which can be subdivided into three main categories: formance of existing named entity recognition systems on all five dictionary-based, rule-based and machine learning approaches languages. In our best run, we outperform the state of the art by a [20]. The first systems for NER implemented dictionary-based ap- gain of 32.38% F1-Score points on a Dutch dataset. More informa- proaches, which relied on a list of named entities (NEs) and tried tion and a demo can be found at http://fox.aksw.org as well as an to identify these in text [1, 38].
    [Show full text]
  • Chapter 7: Ensemble Learning and Random Forest
    Chapter 7: Ensemble Learning and Random Forest Dr. Xudong Liu Assistant Professor School of Computing University of North Florida Monday, 9/23/2019 1 / 23 Notations 1 Voting classifiers: hard and soft 2 Bagging and pasting Random Forests 3 Boosting: AdaBoost, GradientBoost, Stacking Overview 2 / 23 Hard Voting Classifiers In the setting of binary classification, hard voting is a simple way for an ensemble of classifiers to make predictions, that is, to output the majority winner between the two classes. If multi-classes, output the Plurality winner instead, or the winner according another voting rule. Even if each classifier is a weak learner, the ensemble can be a strong learner under hard voting, provided sufficiently many weak yet diverse learners. Voting Classifiers 3 / 23 Training Diverse Classifiers Voting Classifiers 4 / 23 Hard Voting Predictions Voting Classifiers 5 / 23 Ensemble of Weak is Strong? Think of a slightly biased coin with 51% chance of heads and 49% of tails. Law of large numbers: as you keep tossing the coin, assuming every toss is independent of others, the ratio of heads gets closer and closer to the probability of heads 51%. Voting Classifiers 6 / 23 Ensemble of Weak is Strong? Eventually, all 10 series end up consistently above 50%. As a result, the 10,000 tosses as a whole will output heads with close to 100% chance! Even for an ensemble of 1000 classifiers, each correct 51% of the time, using hard voting it can be of up to 75% accuracy. Scikit-Learn: from sklearn.ensemble import VotingClassifier Voting Classifiers 7 / 23 Soft Voting Predictions If the classifiers in the ensemble have class probabilities, we may use soft voting to aggregate.
    [Show full text]
  • Ensemble Learning
    Ensemble Learning Ronald J. Williams CSG220, Spring 2007 Main General Idea • Train several learners (called base learners) L1, L2, ..., Lm to produce different hypotheses h1, h2, ..., hm. • Given a test input x, combine each of these hypotheses h1(x), h2(x), ..., hm(x) in some way. • If the individual hypotheses are different from each other in some way, then the hope is that the overall result is more reliable than that given by any individual hypothesis. CSG220: Machine Learning Ensemble Learning: Slide 2 1 Combining Multiple Hypotheses • One common way to combine hypotheses – weighted “voting”: ⎛ m ⎞ f (x) = σ ⎜∑αihi (x)⎟ ⎝ i=1 ⎠ • Possibilities for σ: • sgn function (for classification) • identity function (for regression) • Possibilities for voting weights α i : • all equal •varying with i, depending on “confidence” • each a function of input x CSG220: Machine Learning Ensemble Learning: Slide 3 Two Different Potential Benefits of an Ensemble • As a way to produce more reliable predictions than any of the individual base learners • As a way to expand the hypothesis class: e.g., hypotheses of the form ⎛ m ⎞ f (x) = σ ⎜∑αihi (x)⎟ ⎝ i=1 ⎠ may be more general than any of the component hypotheses h1, h2, ..., hm. CSG220: Machine Learning Ensemble Learning: Slide 4 2 Expanding the hypothesis class • Suppose our component hypotheses are linear separators in a 2-dimensional space. •Let x = (x1, x2), and consider these three linear separators: h1(x) = sgn(x1 –x2 -0.5) h2(x) = sgn(-x1 + x2 + 0.5) h3(x) = 1 • Then sgn(h1(x)+h2(x)+h3(x)) computes a simple majority classification, and implements the XOR function.
    [Show full text]
  • An Active Learning Approach for Ensemble-Based Data Stream Mining
    An Active Learning Approach for Ensemble-based Data Stream Mining Rabaa Alabdulrahman1, Herna Viktor1 and Eric Paquet1,2 1School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada 2National Research Council of Canada, Ottawa, Canada Keywords: Online Learning, Data Streams, Active Ensemble Learning. Oracle. Abstract: Data streams, where an instance is only seen once and where a limited amount of data can be buffered for processing at a later time, are omnipresent in today’s real-world applications. In this context, adaptive online ensembles that are able to learn incrementally have been developed. However, the issue of handling data that arrives asynchronously has not received enough attention. Often, the true class label arrives after with a time-lag, which is problematic for existing adaptive learning techniques. It is not realistic to require that all class labels be made available at training time. This issue is further complicated by the presence of late-arriving, slowly changing dimensions (i.e., late-arriving descriptive attributes). The aim of active learning is to construct accurate models when few labels are available. Thus, active learning has been proposed as a way to obtain such missing labels in a data stream classification setting. To this end, this paper introduces an active online ensemble (AOE) algorithm that extends online ensembles with an active learning component. Our experimental results demonstrate that our AOE algorithm builds accurate models against much smaller ensemble sizes, when compared to traditional ensemble learning algorithms. Further, our models are constructed against small, incremental data sets, thus reducing the number of examples that are required to build accurate ensembles.
    [Show full text]
  • Visual Integration of Data and Model Space in Ensemble Learning
    Visual Integration of Data and Model Space in Ensemble Learning Bruno Schneider* Dominik Jackle¨ † Florian Stoffel‡ Alexandra Diehl§ Johannes Fuchs¶ Daniel Keim|| University of Konstanz, Germany Figure 1: Overview of our tool for exploring ensembles of classifiers. The user can select regions of the classification outputs (1), see how the ensemble classified these regions (2), interact with a preloaded collection of models adding or removing them to update the ensemble (3), and track the performance while interacting with the models (4). ABSTRACT 1INTRODUCTION Ensembles of classifier models typically deliver superior perfor- Given a set of known categories (classes), Classification is defined mance and can outperform single classifier models given a dataset as the process of identifying to which category a new observation be- and classification task at hand. However, the gain in performance longs. In the context of machine learning, classification is performed comes together with the lack in comprehensibility, posing a chal- on the basis of a training set that contains observations whose cate- lenge to understand how each model affects the classification outputs gories are known. A key challenge in classification is to improve the and where the errors come from. We propose a tight visual integra- performance of the classifiers, hence new observations are correctly tion of the data and the model space for exploring and combining assigned to a category. Classification can be performed with a variety classifier models. We introduce a workflow that builds upon the vi- of different methods tailored to the data or the task at hand. Exam- sual integration and enables the effective exploration of classification ples include, among others, decision trees, support vector machines, outputs and models.
    [Show full text]
  • A Survey of Forex and Stock Price Prediction Using Deep Learning
    Review A Survey of Forex and Stock Price Prediction Using Deep Learning Zexin Hu †, Yiqi Zhao † and Matloob Khushi * School of Computer Science, The University of Sydney, Building J12/1 Cleveland St., Camperdown, NSW 2006, Australia; [email protected] (Z.H.); [email protected] (Y.Z.) * Correspondence: [email protected] † The authors contributed equally; both authors should be considered the first author. Abstract: Predictions of stock and foreign exchange (Forex) have always been a hot and profitable area of study. Deep learning applications have been proven to yield better accuracy and return in the field of financial prediction and forecasting. In this survey, we selected papers from the Digital Bibliography & Library Project (DBLP) database for comparison and analysis. We classified papers according to different deep learning methods, which included Convolutional neural network (CNN); Long Short-Term Memory (LSTM); Deep neural network (DNN); Recurrent Neural Network (RNN); Reinforcement Learning; and other deep learning methods such as Hybrid Attention Networks (HAN), self-paced learning mechanism (NLP), and Wavenet. Furthermore, this paper reviews the dataset, variable, model, and results of each article. The survey used presents the results through the most used performance metrics: Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Mean Square Error (MSE), accuracy, Sharpe ratio, and return rate. We identified that recent models combining LSTM with other methods, for example, DNN, are widely researched. Reinforcement learning and other deep learning methods yielded great returns and performances. We conclude that, in recent years, the trend of using deep-learning-based methods for financial modeling is rising exponentially.
    [Show full text]
  • Regularizing Adaboost with Validation Sets of Increasing Size
    Regularizing AdaBoost with validation sets of increasing size Dirk W.J. Meijer and David M.J. Tax Delft University of Technology Delft, The Netherlands [email protected], [email protected] Abstract—AdaBoost is an iterative algorithm to construct Algorithm 1: AdaBoost classifier ensembles. It quickly achieves high accuracy by focusing x N on objects that are difficult to classify. Because of this, AdaBoost Input: Dataset , consisting of objects tends to overfit when subjected to noisy datasets. We observe hx1; : : : ; xN i 2 X with labels that this can be partially prevented with the use of validation hy1; : : : ; yN i 2 Y = f1; : : : ; cg sets, taken from the same noisy training set. But using less than Input: Weak learning algorithm WeakLearn the full dataset for training hurts the performance of the final classifier ensemble. We introduce ValidBoost, a regularization of Input: Number of iterations T AdaBoost that takes validation sets from the dataset, increasing in 1 1 Initialize: Weight vector wi = N for i = 1;:::;N size with each iteration. ValidBoost achieves performance similar 1 for t = 1 to T do to AdaBoost on noise-free datasets and improved performance on t noisy datasets, as it performs similar at first, but does not start 2 Call WeakLearn, providing it with weights wi ! to overfit when AdaBoost does. 3 Get back hypothesisP ht : X Y N t 6 Keywords: Supervised learning, Ensemble learning, 4 Compute ϵ = i=1 wi [ht(xi) = yi] 1 Regularization, AdaBoost 5 if ϵ > 2 then 6 Set αt = 0 I.
    [Show full text]
  • Adaboost Artificial Neural Network for Stock Market Predicting
    2016 Joint International Conference on Artificial Intelligence and Computer Engineering (AICE 2016) and International Conference on Network and Communication Security (NCS 2016) ISBN: 978-1-60595-362-5 AdaBoost Artificial Neural Network for Stock Market Predicting Xiao-Ming BAI1,a, Cheng-Zhang WANG2,b,* 1Information School, Capital University of Economics and Business, Beijing, China 2School of Statistics and Mathematics, Central University of Finance and Economics, Beijing, China [email protected], [email protected] *Corresponding author Keywords: AdaBoost, Artificial Neural Network, Stock Index Movement. Abstract. In this work, we propose a new direction of stock index movement prediction algorithm, coined the Ada-ANN forecasting model, which exploits AdaBoost theory and ANN to fulfill the predicting task. ANNs are employed as the weak forecasting machines to construct one strong forecaster. Technical indicators from Chinese stock market and international stock markets such as S&P 500, NSADAQ, and DJIA are selected as the predicting independent variables for the period under investigation. Numerical results are compared and analyzed between strong forecasting machine and the weak one. Experimental results show that the Ada-ANN model works better than its rival for predicting direction of stock index movement. Introduction Stock price index movement is a primary factor that investors have to consider during the process of financial decision making. Core of stock index movement prediction is to forecast the close price on the end point of the time period. Research scheme based on technical indicators analysis assumes that behavior of stock has the property of predictability on the basis of its performance in the past and all effective factors are reflected by the stock price.
    [Show full text]