Isogenies Between K3 Surfaces Over ¯ Fp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Positivity of Hodge Bundles of Abelian Varieties Over Some Function Fields
Positivity of Hodge bundles of abelian varieties over some function fields Xinyi Yuan August 31, 2018 Contents 1 Introduction2 1.1 Positivity of Hodge bundle....................2 1.2 Purely inseparable points.....................4 1.3 Partial finiteness of Tate{Shafarevich group..........5 1.4 Reduction of Tate conjecture...................6 1.5 Idea of proofs...........................7 1.6 Notation and terminology.................... 10 2 Positivity of Hodge bundle 13 2.1 Group schemes of constant type................. 13 2.2 The quotient process....................... 18 2.3 Control by heights........................ 23 2.4 Lifting p-divisible groups..................... 27 3 Purely inseparable points on torsors 31 3.1 Preliminary results on torsors.................. 31 3.2 Purely inseparable points..................... 34 4 Reduction of the Tate conjecture 40 4.1 Preliminary results........................ 41 4.2 Reduction of the Tate conjecture................ 44 1 1 Introduction Given an abelian variety A over the rational function field K = k(t) of a finite field k, we prove the following results: (1) A is isogenous to the product of a constant abelian variety over K and 1 an abelian variety over K whose N´eronmodel over Pk has an ample Hodge bundle. (2) finite generation of the abelian group A(Kper) if A has semi-abelian 1 reduction over Pk, as part of the \full" Mordell{Lang conjecture for A over K; (3) finiteness of the abelian group X(A)[F 1], the subgroup of elements of the Tate{Shafarevich group X(A) annihilated by iterations of the relative Frobenius homomorphisms, if A has semi-abelian reduction 1 over Pk; (4) the Tate conjecture for all projective and smooth surfaces X over finite 1 fields with H (X; OX ) = 0 implies the Tate conjecture for all projective and smooth surfaces over finite fields. -
Compact Complex Manifolds with Numerically Effective Tangent Bundles
COMPACT COMPLEX MANIFOLDS WITH NUMERICALLY EFFECTIVE TANGENT BUNDLES Jean-Pierre Demailly⋆, Thomas Peternell⋆⋆, Michael Schneider⋆⋆ ⋆ Universit´ede Grenoble I ⋆⋆ Universit¨at Bayreuth Institut Fourier, BP 74 Mathematisches Institut U.R.A.188duC.N.R.S. Postfach101251 38402 Saint-Martin d’H`eres, France D-8580 Bayreuth, Deutschland Contents 0. Introduction................................................... ........................p. 2 1. Basic properties of nef line bundles ................................................... p. 5 1.A. Nef line bundles ................................................... ............... p. 5 1.B. Nef vector bundles................................................... ............p. 11 2. Inequalities for Chern classes ................................................... ...... p. 18 3. Compact manifolds with nef tangent bundles. Structure of the Albanese map..........p. 22 3.A. Some examples ................................................... ............... p. 22 3.B. General properties ................................................... ............ p. 23 3.C. Structure of the Albanese map (K¨ahler case) .................................... p. 25 3.D. Numerical flatness of the Albanese map ......................................... p. 32 4. Moishezon manifolds with nef tangent bundles ........................................ p. 36 5. Two structure theorems ................................................... ........... p. 37 6. Surfaces with nef tangent bundles .................................................. -
Positivity in Algebraic Geometry I
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 48 Positivity in Algebraic Geometry I Classical Setting: Line Bundles and Linear Series Bearbeitet von R.K. Lazarsfeld 1. Auflage 2004. Buch. xviii, 387 S. Hardcover ISBN 978 3 540 22533 1 Format (B x L): 15,5 x 23,5 cm Gewicht: 1650 g Weitere Fachgebiete > Mathematik > Geometrie > Elementare Geometrie: Allgemeines Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Introduction to Part One Linear series have long stood at the center of algebraic geometry. Systems of divisors were employed classically to study and define invariants of pro- jective varieties, and it was recognized that varieties share many properties with their hyperplane sections. The classical picture was greatly clarified by the revolutionary new ideas that entered the field starting in the 1950s. To begin with, Serre’s great paper [530], along with the work of Kodaira (e.g. [353]), brought into focus the importance of amplitude for line bundles. By the mid 1960s a very beautiful theory was in place, showing that one could recognize positivity geometrically, cohomologically, or numerically. During the same years, Zariski and others began to investigate the more complicated be- havior of linear series defined by line bundles that may not be ample. -
Moving Codimension-One Subvarieties Over Finite Fields
Moving codimension-one subvarieties over finite fields Burt Totaro In topology, the normal bundle of a submanifold determines a neighborhood of the submanifold up to isomorphism. In particular, the normal bundle of a codimension-one submanifold is trivial if and only if the submanifold can be moved in a family of disjoint submanifolds. In algebraic geometry, however, there are higher-order obstructions to moving a given subvariety. In this paper, we develop an obstruction theory, in the spirit of homotopy theory, which gives some control over when a codimension-one subvariety moves in a family of disjoint subvarieties. Even if a subvariety does not move in a family, some positive multiple of it may. We find a pattern linking the infinitely many obstructions to moving higher and higher multiples of a given subvariety. As an application, we find the first examples of line bundles L on smooth projective varieties over finite fields which are nef (L has nonnegative degree on every curve) but not semi-ample (no positive power of L is spanned by its global sections). This answers questions by Keel and Mumford. Determining which line bundles are spanned by their global sections, or more generally are semi-ample, is a fundamental issue in algebraic geometry. If a line bundle L is semi-ample, then the powers of L determine a morphism from the given variety onto some projective variety. One of the main problems of the minimal model program, the abundance conjecture, predicts that a variety with nef canonical bundle should have semi-ample canonical bundle [15, Conjecture 3.12]. -
Algebraic Surfaces and Hyperbolic Geometry
Current Developments in Algebraic Geometry MSRI Publications Volume 59, 2011 Algebraic surfaces and hyperbolic geometry BURT TOTARO We describe the Kawamata–Morrison cone conjecture on the structure of Calabi–Yau varieties and more generally klt Calabi–Yau pairs. The conjecture is true in dimension 2. We also show that the automorphism group of a K3 surface need not be commensurable with an arithmetic group, which answers a question by Mazur. 1. Introduction Many properties of a projective algebraic variety can be encoded by convex cones, such as the ample cone and the cone of curves. This is especially useful when these cones have only finitely many edges, as happens for Fano varieties. For a broader class of varieties which includes Calabi–Yau varieties and many rationally connected varieties, the Kawamata–Morrison cone conjecture predicts the structure of these cones. I like to think of this conjecture as what comes after the abundance conjecture. Roughly speaking, the cone theorem of Mori, Kawamata, Shokurov, Kollár, and Reid describes the structure of the curves on a projective variety X on which the canonical bundle K X has negative degree; the abundance conjecture would give strong information about the curves on which K X has degree zero; and the cone conjecture fully describes the structure of the curves on which K X has degree zero. We give a gentle summary of the proof of the cone conjecture for algebraic surfaces, with plenty of examples [Totaro 2010]. For algebraic surfaces, these cones are naturally described using hyperbolic geometry, and the proof can also be formulated in those terms. -
Automorphisms of Minimal Entropy on Supersingular K3 Surfaces
AUTOMORPHISMS OF MINIMAL ENTROPY ON SUPERSINGULAR K3 SURFACES SIMON BRANDHORST, VÍCTOR GONZÁLEZ-ALONSO Abstract. In this article we give a strategy to decide whether the logarithm of a given Salem number is realized as entropy of an automorphism of a su- persingular K3 surface in positive characteristic. As test case it is proved that log λd, where λd is the minimal Salem number of degree d, is realized in char- acteristic 5 if and only if d ≤ 22 is even and d 6= 18. In the complex projective setting we settle the case of entropy log λ12, left open by McMullen, by giv- ing the construction. A necessary and sufficient test is developed to decide whether a given isometry of a hyperbolic lattice, with spectral radius bigger than one, is positive, i.e. preserves a chamber of the positive cone. Contents 1. Introduction 1 Notation 4 Acknowledgements 4 2. Lattices 4 3. Torelli theorems for supersingular K3 surfaces 5 4. Positivity 8 5. Lattices in number fields 11 6. Gluing lattices and isometries 12 7. Realizability Conditions 14 8. Realized Salem numbers 18 Appendix A. Realizing λ12 over C 25 References 25 arXiv:1609.02716v2 [math.AG] 20 Jul 2017 1. Introduction A Salem number is a real algebraic integer λ > 1 which is conjugate to 1/λ and whose other conjugates lie on the unit circle. In each even degree d there is a unique smallest Salem number λd. Conjecturally the smallest Salem number is λ10, found by Lehmer in 1933 [17]. Date: September, 2016. 2010 Mathematics Subject Classification. -
Strictly Nef Vector Bundles and Characterizations of P
Complex Manifolds 2021; 8:148–159 Research Article Open Access Jie Liu, Wenhao Ou, and Xiaokui Yang* Strictly nef vector bundles and characterizations of Pn https://doi.org/10.1515/coma-2020-0109 Received September 8, 2020; accepted February 10, 2021 Abstract: In this note, we give a brief exposition on the dierences and similarities between strictly nef and ample vector bundles, with particular focus on the circle of problems surrounding the geometry of projective manifolds with strictly nef bundles. Keywords: strictly nef, ample, hyperbolicity MSC: 14H30, 14J40, 14J60, 32Q57 1 Introduction Let X be a complex projective manifold. A line bundle L over X is said to be strictly nef if L · C > 0 for each irreducible curve C ⊂ X. This notion is also called "numerically positive" in literatures (e.g. [25]). The Nakai-Moishezon-Kleiman criterion asserts that L is ample if and only if Ldim Y · Y > 0 for every positive-dimensional irreducible subvariety Y in X. Hence, ample line bundles are strictly nef. In 1960s, Mumford constructed a number of strictly nef but non-ample line bundles over ruled surfaces (e.g. [25]), and they are tautological line bundles of stable vector bundles of degree zero over smooth curves of genus g ≥ 2. By using the terminology of Hartshorne ([24]), a vector bundle E ! X is called strictly nef (resp. ample) if its tautological line bundle OE(1) is strictly nef (resp. ample). One can see immediately that the strictly nef vector bundles constructed by Mumford are actually Hermitian-at. Therefore, some functorial properties for ample bundles ([24]) are not valid for strictly nef bundles. -
TOWARDS the AMPLE CONE of Mg,N §0. Introduction and Statement of Results the Moduli Space of Stable Curves Is Among the Most St
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 15, Number 2, Pages 273{294 S 0894-0347(01)00384-8 Article electronically published on December 20, 2001 TOWARDS THE AMPLE CONE OF M g;n ANGELA GIBNEY, SEAN KEEL, AND IAN MORRISON To Bill Fulton on his sixtieth birthday x0. Introduction and statement of results The moduli space of stable curves is among the most studied objects in algebraic geometry. Nonetheless, its birational geometry remains largely a mystery and most Mori theoretic problems in the area are entirely open. Here we consider one of the most basic: (0.1) Question (Mumford). What are the ample divisors on M g;n? There is a stratification of M g;n by topological type where the codimension k strata are the irreducible components of the locus parameterizing pointed curves with at least k singular points. An ample divisor must intersect any one dimensional stratum positively. It is thus natural to consider the following conjecture. (0.2) Conjecture: F1(M g;n). A divisor on M g;n is ample iff it has positive inter- section with all 1-dimensional strata. In other words, any effective curve in M g;n is numerically equivalent to an effective combination of 1-strata. Said differently still, every extremal ray of the Mori cone of effective curves NE1(M g;n) is generated by a one dimensional stratum. F1(M 0;n) was previously conjectured by Fulton, whence our choice of notation. Special cases of F1(M 0;n) are known (see [KeelMcKernan96], x7) but the general case remains open. -
Mathematisches Forschungsinstitut Oberwolfach Moduli Spaces And
Mathematisches Forschungsinstitut Oberwolfach Report No. 23/2016 DOI: 10.4171/OWR/2016/23 Moduli spaces and Modular forms Organised by Jan Hendrik Bruinier, Darmstadt Gerard van der Geer, Amsterdam Valery Gritsenko, Villeneuve d’Ascq 24 April – 30 April 2016 Abstract. The roots of both moduli spaces and modular forms go back to the theory of elliptic curves in the 19th century. Both topics have seen an enormous growth in the second half of the 20th century, but the interaction between the two remained limited. Recently there have been new develop- ments that led to new points of contact between the two topics. One is the theory of K3 surfaces that is rapidly gaining a lot of new interest. Here the link with modular forms on orthogonal groups has led to progress on the Kodaira dimension of the moduli spaces of K3 surfaces. Another new devel- opment has been the use of moduli spaces of curves to gather new information about Siegel modular forms. The workshop intended to bring representatives from both the theory of moduli and the theory of modular forms together to further the interaction between the two topics as the time seemed ripe to do this. Mathematics Subject Classification (2010): 11xx, 14xx. Introduction by the Organisers The workshop Moduli Spaces and Modular Forms, organized by Jan Bruinier (Darmstadt), Gerard van der Geer (Amsterdam) and Val´ery Gritsenko (Lille) was held 25-29 April, 2016 and was attended by 52 participants from all over the world. The attendance ranged from senior leaders in the field to young postdocs and advanced Ph.D. -
Supersingular K3 Crystals Astérisque, Tome 64 (1979), P
Astérisque ARTHUR OGUS Supersingular K3 crystals Astérisque, tome 64 (1979), p. 3-86 <http://www.numdam.org/item?id=AST_1979__64__3_0> © Société mathématique de France, 1979, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ SUPERSINGULAR K3 CRYSTALS by Arthur OGUS (Berkeley) §0. INTRODUCTION. This paper is intented as propaganda for the machinery of crystalline cohomolo- gy, and in particular for the philosophy that F-crystals are a partial analogue, in characteristic p, to Hodge structures in characteristic zero. An extremely rudimen tary start along this road, for "abstract" F-crystals and Hodge structures, was made in [15] ; here we turn to crystals arising geometrically, especially from supersingu- lar abelian varieties and K3 surfaces. As we shall see, it is reasonable to hope that the moduli of such varieties are given by the moduli of their F-crystals, which in fact form explicit "period-spaces". Here is a plan of the paper : The first section contains some refinements of gene rally known facts concerning crystalline Chern classes, e.g. an integral version of Bloch's theorem relating flat and crystalline cohomology (1.7), Conditions guaran- teeing that c : Pic <8> 2£/p2£ H,™ is injective (1.4), and a formula for certain second order obstructions to extending invertible sheaves in a family (l. -
Supersingular K3 Surfaces for Large Primes
Supersingular K3 surfaces for large primes The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Maulik, Davesh. “Supersingular K3 Surfaces for Large Primes.” Duke Mathematical Journal, 163, 13 (October 2014): 2357–2425 As Published http://dx.doi.org/10.1215/00127094-2804783 Publisher Duke University Press Version Original manuscript Citable link http://hdl.handle.net/1721.1/115923 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ SUPERSINGULAR K3 SURFACES FOR LARGE PRIMES DAVESH MAULIK WITH AN APPENDIX BY ANDREW SNOWDEN ABSTRACT. Given a K3 surface X over a field of characteristic p, Artin conjectured that if X is supersingular (meaning infinite height) then its Picard rank is 22. Along with work of Nygaard- Ogus, this conjecture implies the Tate conjecture for K3 surfaces over finite fields with p ≥ 5. We prove Artin’s conjecture under the additional assumption that X has a polarization of degree 2d with p> 2d + 4. Assuming semistable reduction for surfaces in characteristic p, we can improve the main result to K3 surfaces which admit a polarization of degree prime-to-p when p ≥ 5. The argument uses Borcherds’ construction of automorphic forms on O(2, n) to construct am- ple divisors on the moduli space. We also establish finite-characteristic versions of the positivity of the Hodge bundle and the Kulikov-Pinkham-Persson classification of K3 degenerations. In the appendix by A. Snowden, a compatibility statement is proven between Clifford constructions and integral p-adic comparison functors. -
ARITHMETICALLY NEF LINE BUNDLES 3 Change of Spec K(S′) → Spec K(S) Also Preserves the Dimension of the fiber [SP2018, Tag 02FY]
ARITHMETICALLY NEF LINE BUNDLES DENNIS KEELER Abstract. Let L be a line bundle on a scheme X, proper over a field. The property of L being nef can sometimes be “thickened,” allowing reductions to positive characteristic. We call such line bundles arithmetically nef. It is known that a line bundle L may be nef, but not arithmetically nef. We show that L is arithmetically nef if and only if its restriction to its stable base locus is arithmetically nef. Consequently, if L is nef and its stable base locus has dimension 1 or less, then L is arithmetically nef. 1. Introduction Algebro-geometric theorems over fields of characteristic zero can sometimes be reduced to theorems over positive characteristic fields. Perhaps most famously, the Kodaira Vanishing Theorem can be proved in this manner, as in [Ill2002, The- orem 6.10]. The main idea of the reduction is to replace the base field k with a finitely generated Z-subalgebra R “sufficiently close” to k. Objects such as schemes, morphisms, and sheaves are replaced with models defined over R. This process is sometimes called “arithmetic thickening.” Some properties of the original objects will be inherited by their thickened versions, such as ampleness of a line bundle. However, nefness is not such a property. Langer gave an example of a nef line bundle that does not have a nef thickening [Lan2015, Section 8]. Thus on a scheme X proper over a field, we call a line bundle L arithmetically nef if L has a nef thickening. (See (2.2) for the exact definition.) Arithmetic nefness of a line bundle was studied briefly in [AK2004], where it was shown, in characteristic zero, that L is arithmetically nef if and only if L is F -semipositive (a cohomological vanishing condition).