Amiloride Hydrochloride Tablets

Total Page:16

File Type:pdf, Size:1020Kb

Amiloride Hydrochloride Tablets AMILORIDE HYDROCHLORIDE- amiloride hydrochloride tablet Par Pharmaceutical, Inc. ---------- Amiloride Hydrochloride Tablets DESCRIPTION Amiloride HCl, an antikaliuretic-diuretic agent, is a pyrazine-carbonyl-guanidine that is unrelated chemically to other known antikaliuretic or diuretic agents. It is the salt of a moderately strong base (pKa 8.7). It is designated chemically as 3,5-diamino-6-chloro-N-(diaminomethylene) pyrazinecarboxamide monohydrochloride, dihydrate and has a molecular weight of 302.12. Its empirical formula is C 6H8CIN7O•HCl•2H2O and its structural formula is: Each tablet for oral administration contains 5 mg of Amiloride HCI, calculated on the anhydrous basis. Each tablet contains the following inactive ingredients: colloidal silicon dioxide, croscarmellose sodium, D&C yellow #10 lake, dibasic calcium phosphate dihydrate, FD&C yellow #6 lake, magnesium stearate, microcrystalline cellulose and silicon dioxide. CLINICAL PHARMACOLOGY Amiloride HCl is a potassium-conserving (antikaliuretic) drug that possesses weak (compared with thiazide diuretics) natriuretic, diuretic, and antihypertensive activity. These effects have been partially additive to the effects of thiazide diuretics in some clinical studies. When administered with a thiazide or loop diuretic, amiloride has been shown to decrease the enhanced urinary excretion of magnesium which occurs when a thiazide or loop diuretic is used alone. Amiloride has potassium-conserving activity in patients receiving kaliureticdiuretic agents. Amiloride HCl is not an aldosterone antagonist and its effects are seen even in the absence of aldosterone. Amiloride exerts its potassium sparing effect through the inhibition of sodium reabsorption at the distal convoluted tubule, cortical collecting tubule and collecting duct; this decreases the net negative potential of the tubular lumen and reduces both potassium and hydrogen secretion and their subsequent excretion. This mechanism accounts in large part for the potassium sparing action of amiloride. Amiloride usually begins to act within 2 hours after an oral dose. Its effect on electrolyte excretion reaches a peak between 6 and 10 hours and lasts about 24 hours. Peak plasma levels are obtained in 3 to 4 hours and the plasma half-life varies from 6 to 9 hours. Effects on electrolytes increase with single doses of amiloride HCl up to approximately 15 mg. Amiloride HCl is not metabolized by the liver but is excreted unchanged by the kidneys. About 50 percent of a 20 mg dose of amiloride HCl is excreted in the urine and 40 percent in the stool within 72 hours. Amiloride has little effect on glomerular filtration rate or renal blood flow. Because amiloride HCl is not metabolized by the liver, drug accumulation is not anticipated in patients with hepatic dysfunction, but accumulation can occur if the hepatorenal syndrome develops. INDICATIONS AND USAGE Amiloride HCl is indicated as adjunctive treatment with thiazide diuretics or other kaliureticdiuretic agents in congestive heart failure or hypertension to: help restore normal serum potassium levels in patients who develop hypokalemia on the kaliuretic diuretic. prevent development of hypokalemia in patients who would be exposed to particular risk if hypokalemia were to develop, e.g., digitalized patients or patients with significant cardiac arrhythmias. The use of potassium-conserving agents is often unnecessary in patients receiving diuretics for uncomplicated essential hypertension when such patients have a normal diet. Amiloride HCl has little additive diuretic or antihypertensive effect when added to a thiazide diuretic. Amiloride HCl should rarely be used alone. It has weak (compared with thiazides) diuretic and antihypertensive effects. Used as single agents, potassium sparing diuretics, including amiloride HCl, result in an increased risk of hyperkalemia (approximately 10% with amiloride). Amiloride HCl should be used alone only when persistent hypokalemia has been documented and only with careful titration of the dose and close monitoring of serum electrolytes. CONTRAINDICATIONS Hyperkalemia Amiloride HCl should not be used in the presence of elevated serum potassium levels (greater than 5.5 mEq per liter). Antikaliuretic Therapy or Potassium Supplementation Amiloride HCl should not be given to patients receiving other potassium-conserving agents, such as spironolactone or triamterene. Potassium supplementation in the form of medication, potassium- containing salt substitutes or a potassium-rich diet should not be used with amiloride HCl except in severe and/or refractory cases of hypokalemia. Such concomitant therapy can be associated with rapid increases in serum potassium levels. If potassium supplementation is used, careful monitoring of the serum potassium level is necessary. Impaired Renal Function Anuria, acute or chronic renal insufficiency, and evidence of diabetic nephropathy are contraindications to the use of amiloride HCl. Patients with evidence of renal functional impairment (blood urea nitrogen [BUN] levels over 30 mg per 100 mL or serum creatinine levels over 1.5 mg per 100 mL) or diabetes mellitus should not receive the drug without careful, frequent and continuing monitoring of serum electrolytes, creatinine, and BUN levels. Potassium retention associated with the use of an antikaliuretic agent is accentuated in the presence of renal impairment and may result in the rapid development of hyperkalemia. Hypersensitivity Amiloride HCl is contraindicated in patients who are hypersensitive to this product. WARNINGS Hyperkalemia Like other potassium-conserving agents, amiloride may cause hyperkalemia (serum potassium levels greater than 5.5 mEq per liter) which, if uncorrected, is potentially fatal. Hyperkalemia occurs commonly (about 10%) when amiloride is used without a kaliuretic diuretic. This incidence is greater in patients with renal impairment, diabetes mellitus (with or without recognized renal insufficiency), and in the elderly. When amiloride is used concomitantly with a thiazide diuretic in patients without these complications, the risk of hyperkalemia is reduced to about 1-2%. It is thus essential to monitor serum potassium levels carefully in any patient receiving amiloride, particularly when it is first introduced, at the time of diuretic dosage adjustments, and during any illness that could affect renal function. The risk of hyperkalemia may be increased when potassium-conserving agents, including amiloride HCl, are administered concomitantly with an angiotensin-converting enzyme inhibitor, an angiotensin II receptor antagonist, cyclosporine or tacrolimus. (See PRECAUTIONS, Drug Interactions.) Warning signs or symptoms of hyperkalemia include paresthesias, muscular weakness, fatigue, flaccid paralysis of the extremities, bradycardia, shock, and ECG abnormalities. Monitoring of the serum potassium level is essential because mild hyperkalemia is not usually associated with an abnormal ECG. When abnormal, the ECG in hyperkalemia is characterized primarily by tall, peaked T waves or elevations from previous tracings. There may also be lowering of the R wave and increased depth of the S wave, widening and even disappearance of the P wave, progressive widening of the QRS complex, prolongation of the PR interval, and ST depression. Treatment of hyperkalemia:If hyperkalemia occurs in patients taking amiloride HCl, the drug should be discontinued immediately. If the serum potassium level exceeds 6.5 mEq per liter, active measures should be taken to reduce it. Such measures include the intravenous administration of sodium bicarbonate solution or oral or parenteral glucose with a rapid-acting insulin preparation. If needed, a cation exchange resin such as sodium polystyrene sulfonate may be given orally or by enema. Patients with persistent hyperkalemia may require dialysis. Diabetes Mellitus In diabetic patients, hyperkalemia has been reported with the use of all potassium-conserving diuretics, including amiloride HCl, even in patients without evidence of diabetic nephropathy. Therefore, amiloride HCl should be avoided, if possible, in diabetic patients and, if it is used, serum electrolytes and renal function must be monitored frequently. Amiloride HCl should be discontinued at least 3 days before glucose tolerance testing. Metabolic or Respiratory Acidosis Antikaliuretic therapy should be instituted only with caution in severely ill patients in whom respiratory or metabolic acidosis may occur, such as patients with cardiopulmonary disease or poorly controlled diabetes. If amiloride HCl is given to these patients, frequent monitoring of acid-base balance is necessary. Shifts in acid-base balance alter the ratio of extracellular/intracellular potassium, and the development of acidosis may be associated with rapid increases in serum potassium levels. GENERAL PRECAUTIONS Electrolyte Imbalance and BUN Increases Hyponatremia and hypochloremia may occur when amiloride HCl is used with other diuretics and increases in BUN levels have been reported. These increases usually have accompanied vigorous fluid elimination, especially when diuretic therapy was used in seriously ill patients, such as those who had hepatic cirrhosis with ascites and metabolic alkalosis, or those with resistant edema. Therefore, when amiloride HCl is given with other diuretics to such patients, careful monitoring of serum electrolytes and BUN levels is important. In patients with pre-existing severe liver disease, hepatic encephalopathy, manifested by tremors, confusion, and
Recommended publications
  • Association of Hypertensive Status and Its Drug Treatment with Lipid and Haemostatic Factors in Middle-Aged Men: the PRIME Study
    Journal of Human Hypertension (2000) 14, 511–518 2000 Macmillan Publishers Ltd All rights reserved 0950-9240/00 $15.00 www.nature.com/jhh ORIGINAL ARTICLE Association of hypertensive status and its drug treatment with lipid and haemostatic factors in middle-aged men: the PRIME Study P Marques-Vidal1, M Montaye2, B Haas3, A Bingham4, A Evans5, I Juhan-Vague6, J Ferrie`res1, G Luc2, P Amouyel2, D Arveiler3, D McMaster5, JB Ruidavets1, J-M Bard2, PY Scarabin4 and P Ducimetie`re4 1INSERM U518, Faculte´ de Me´decine Purpan, Toulouse, France; 2MONICA-Lille, Institut Pasteur de Lille, Lille, France; 3MONICA-Strasbourg, Laboratoire d’Epide´miologie et de Sante´ Publique, Strasbourg, France; 4INSERM U258, Hoˆ pital Broussais, Paris, France; 5Belfast-MONICA, Department of Epidemiology, The Queen’s University of Belfast, UK; 6Laboratory of Haematology, La Timone Hospital, Marseille, France Aims: To assess the association of hypertensive status this effect remained after multivariate adjustment. Cal- and antihypertensive drug treatment with lipid and hae- cium channel blockers decreased total cholesterol and mostatic levels in middle-aged men. apoproteins A-I and B; those differences remained sig- Methods and results: Hypertensive status, antihyperten- nificant after multivariate adjustment. ACE inhibitors sive drug treatment, total and high-density lipoprotein decreased total cholesterol, triglycerides, apoprotein B (HDL) cholesterol, triglyceride, apoproteins A-I and B, and LpE:B; and this effect remained after multivariate lipoparticles LpA-I,
    [Show full text]
  • The Role of Intercalated Cell Nedd4–2 in BP Regulation, Ion Transport, and Transporter Expression
    BASIC RESEARCH www.jasn.org The Role of Intercalated Cell Nedd4–2 in BP Regulation, Ion Transport, and Transporter Expression Masayoshi Nanami,1 Truyen D. Pham,1 Young Hee Kim,1 Baoli Yang,2 Roy L. Sutliff,3 Olivier Staub,4,5 Janet D. Klein,1 Karen I. Lopez-Cayuqueo,6,7 Regine Chambrey,8 Annie Y. Park,1 Xiaonan Wang,1 Vladimir Pech,1 Jill W. Verlander,9 and Susan M. Wall1,10 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Nedd4–2 is an E3 ubiquitin-protein ligase that associates with transport proteins, causing their ubiquitylation, and then internalization and degradation. Previous research has suggested a corre- lation between Nedd4–2 and BP. In this study, we explored the effect of intercalated cell (IC) Nedd4–2 gene ablation on IC transporter abundance and function and on BP. Methods We generated IC Nedd4–2 knockout mice using Cre-lox technology and produced global pen- 2/2 drin/Nedd4–2 null mice by breeding global Nedd4–2 null (Nedd4–2 ) mice with global pendrin null 2/2 (Slc26a4 ) mice. Mice ate a diet with 1%–4% NaCl; BP was measured by tail cuff and radiotelemetry. We 2 measured transepithelial transport of Cl and total CO2 and transepithelial voltage in cortical collecting ducts perfused in vitro. Transporter abundance was detected with immunoblots, immunohistochemistry, and immunogold cytochemistry. 2 2 Results IC Nedd4–2 gene ablation markedly increased electroneutral Cl /HCO3 exchange in the cortical col- lecting duct, although benzamil-, thiazide-, and bafilomycin-sensitive ion flux changed very little.
    [Show full text]
  • Comparing the Efficacy of Angiotensin Converting Enzyme In- Hibitors with Calcium Channel Blockers on the Treatment of Di- Abetic Nephropathy: a Meta-Analysis
    Iran J Public Health, Vol. 48, No.2, Feb 2019, pp.189-197 Review Article Comparing the Efficacy of Angiotensin Converting Enzyme In- hibitors with Calcium Channel Blockers on the Treatment of Di- abetic Nephropathy: A Meta-Analysis *Zhaowei ZHANG 1, Chunlin CHEN 2, Shiwen LV 1, Yalan ZHU 1, Tianzi FANG 1 1. Department of Pharmacy, Jin Hua Municipal Central Hospital, Jin Hua 32100, China 2. College of Chemistry and Bio-Engineering, Yi Chun University, Yi Chun 336000, China *Corresponding Author: Email: [email protected] (Received 21 Mar 2018; accepted 11 Jun 2018) Abstract Background: The angiotensin-converting enzyme inhibitors (ACEIs) could improve the symptoms of diabetic nephropathy. Whether the calcium channel blockers (CCBs) could be as effective as ACEIs on treating diabetic nephropathy is controversial. Here, we aimed to compare the efficacy of ACEIs with CCBs on the treatment of diabetic nephropathy by performing a meta-analysis of randomized controlled trials (RCTs). Methods: The Pubmed, Medline, Embase and The Cochrane Database were searched up to July 2017 for eli- gible randomized clinical trials studies. Effect sizes were summarized as mean difference (MD) or standardized mean difference (SMD) with 95% confidence intervals (P-value<0.05). Results: Seven RCTs involving 430 participants comparing ACEIs with CCBs were included. No benefit was seen in comparative group of ACEIs on systolic blood pressure(SBP) (MD=1.05 mmHg; 95% CI: -0.97 to 3.08, P=0.31), diastolic blood pressure (DBP) (MD= -0.34 mmHg; 95% CI: -1.2 to 0.51, P=0.43), urinary al- bumin excretion rates (UAER) (MD=1.91μg/min; 95% CI: -10.3 to 14.12, P=0.76), 24-h urine protein (24-UP) (SMD=-0.26; 95%CI: -0.55 to 0.03, P=0.08), glomerular filtration rate (GFR) (SMD=0.01; 95% CI: -0.38 to 0.41, P=0.95).
    [Show full text]
  • Actual Place of Diuretics in Hypertension Treatment
    Mini Review J Cardiol & Cardiovasc Ther Volume 3 Issue 4 - March 2017 Copyright © All rights are reserved by Farouk Abcha DOI: 10.19080/JOCCT.2017.03.555616 Actual Place of Diuretics in Hypertension Treatment Farouk Abcha, Marouane Boukhris*, Zied Ibn Elhadj, Lobna Laroussi, Faouzi Addad, Afef Ben Halima and Salem Kachboura Cardiology Department of Abderrahmen Mami Hospital, University of Tunis El Manar, Tunisia Submission: February 03, 2017; Published: March 07, 2017 *Corresponding author: Marouane Boukhris, Cardiology Department of Abderrahmen Mami Hospital, Ariana, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia, Tel: ; Email: Abstract Diuretics represent a large and heterogeneous class of drugs, differing from each other by structure, site and mechanism of action. Diuretics are widely used, and have several indications in different cardiovascular disorders, particularly in hypertension and heart failure. Despite the large number of available anti-hypertensive drugs, diuretics remained a cornerstone of hypertension treatment. In the current editorial, we assessed the actual place of different diuretics in the hypertension guidelines focusing on the concept of tailored approach in prescribing them for hypertensive patients. Keywords: Diuretics; Hypertension; Hydrochlorothiazide; Indapamide; Guidelines Introduction Diuretics represent a large and heterogeneous class of drugs, differing from each other by structure, site and mechanism of action. Diuretics are widely used, and have several indications in different cardiovascular disorders, particularly in hypertension and heart failure. Despite the large number of available anti-hypertensive drugs, diuretics remained a cornerstone of hypertension treatment [1]. Indeed, they are the second most commonly prescribed class of antihypertensive medication. For instance, 12% of US adults were prescribed a diuretic, and the relative increase in prescriptions from 1999 through 2012 was 1.4 [2].
    [Show full text]
  • The Role of Intercalated Cell Nedd4–2 in BP Regulation, Ion Transport, and Transporter Expression
    BASIC RESEARCH www.jasn.org The Role of Intercalated Cell Nedd4–2 in BP Regulation, Ion Transport, and Transporter Expression Masayoshi Nanami,1 Truyen D. Pham,1 Young Hee Kim,1 Baoli Yang,2 Roy L. Sutliff,3 Olivier Staub,4,5 Janet D. Klein,1 Karen I. Lopez-Cayuqueo,6,7 Regine Chambrey,8 Annie Y. Park,1 Xiaonan Wang,1 Vladimir Pech,1 Jill W. Verlander,9 and Susan M. Wall1,10 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Nedd4–2 is an E3 ubiquitin-protein ligase that associates with transport proteins, causing their ubiquitylation, and then internalization and degradation. Previous research has suggested a corre- lation between Nedd4–2 and BP. In this study, we explored the effect of intercalated cell (IC) Nedd4–2 gene ablation on IC transporter abundance and function and on BP. Methods We generated IC Nedd4–2 knockout mice using Cre-lox technology and produced global pen- 2/2 drin/Nedd4–2 null mice by breeding global Nedd4–2 null (Nedd4–2 ) mice with global pendrin null 2/2 (Slc26a4 ) mice. Mice ate a diet with 1%–4% NaCl; BP was measured by tail cuff and radiotelemetry. We 2 measured transepithelial transport of Cl and total CO2 and transepithelial voltage in cortical collecting ducts perfused in vitro. Transporter abundance was detected with immunoblots, immunohistochemistry, and immunogold cytochemistry. 2 2 Results IC Nedd4–2 gene ablation markedly increased electroneutral Cl /HCO3 exchange in the cortical col- lecting duct, although benzamil-, thiazide-, and bafilomycin-sensitive ion flux changed very little.
    [Show full text]
  • Initial Medication Selection for Treatment of Hypertension in an Open-Panel HMO
    J Am Board Fam Pract: first published as 10.3122/jabfm.8.1.1 on 1 January 1995. Downloaded from Initial Medication Selection For Treatment Of Hypertension In An Open-Panel HMO Micky jerome, PharmD, MBA, George C. Xakellis, MD, Greg Angstman, MD, and Wayne Patchin, MBA Background: During the past 25 years recommendations for treating hypertension have evolved from a stepped-care approach to monotherapy or sequential monotherapy as experience has been gained and new antihypertensive agents have been introduced. In an effort to develop a disease management strategy for hypertension, we investigated the prescribing patterns of initial medication therapy for newly treated hypertensive patients. Methods: We examined paid claims data of an open-panel HMO located in the midwest. Charts from 377 patients with newly treated hypertension from a group of 12,242 hypertenSive patients in a health insurance population of 85,066 persons were studied. The type of medication regimen received by patients newly treated for hypertension during an 18-month period was categorized into monotherapy, sequential monotherapy, stepped care, and initial treatment with multiple agents. With monotherapy, the class of medication was also reported. Associations between use of angiotensin-converting enzyme (ACE) inhibitors, calcium channel blockers, or (3-blockers and presence of comorbid conditions were reported. Results: Fifty-five percent of patients received monotherapy, 22 percent received stepped care, and 18 percent received sequential monotherapy. Of those 208 patients receiving monotherapy, 30 percent were prescribed a calcium channel blocker, 22 percent an ACE inhibitor, and 14 percent a f3-blocker. No customization of treatment for comorbid conditions was noted.
    [Show full text]
  • Drugs for Primary Prevention of Atherosclerotic Cardiovascular Disease: an Overview of Systematic Reviews
    Supplementary Online Content Karmali KN, Lloyd-Jones DM, Berendsen MA, et al. Drugs for primary prevention of atherosclerotic cardiovascular disease: an overview of systematic reviews. JAMA Cardiol. Published online April 27, 2016. doi:10.1001/jamacardio.2016.0218. eAppendix 1. Search Documentation Details eAppendix 2. Background, Methods, and Results of Systematic Review of Combination Drug Therapy to Evaluate for Potential Interaction of Effects eAppendix 3. PRISMA Flow Charts for Each Drug Class and Detailed Systematic Review Characteristics and Summary of Included Systematic Reviews and Meta-analyses eAppendix 4. List of Excluded Studies and Reasons for Exclusion This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. 1 Downloaded From: https://jamanetwork.com/ on 09/28/2021 eAppendix 1. Search Documentation Details. Database Organizing body Purpose Pros Cons Cochrane Cochrane Library in Database of all available -Curated by the Cochrane -Content is limited to Database of the United Kingdom systematic reviews and Collaboration reviews completed Systematic (UK) protocols published by by the Cochrane Reviews the Cochrane -Only systematic reviews Collaboration Collaboration and systematic review protocols Database of National Health Collection of structured -Curated by Centre for -Only provides Abstracts of Services (NHS) abstracts and Reviews and Dissemination structured abstracts Reviews of Centre for Reviews bibliographic
    [Show full text]
  • RESEARCH UPDATES (Cont.)
    RESEARCH UPDATES (cont.) RESEARCH UPDATES Resident Editors: David Bunch, Pharm.D., Ally Kingsbury, Pharm.D., Monika Tawfik, Pharm.D. Faculty Editors: Sarah Schweiss, Pharm.D., BCACP RESEARCH UPDATES Volume 18, Issue 1 – First The HUNT Study: Proton Pump Inhibitors and Fracture Risk1 Quarter 2020 Kaylin Maddy, PharmD Park Nicollet Health Services Research Updates The HUNT Study: Proton Pump Background: Proton pump inhibitors (PPIs) are broadly prescribed for gastrointestinal conditions. These medications have been correlated with an increased risk of fractures Inhibitors and Fracture Risk in multiple previous studies, however a definite causative link is not well understood. A Comparison of Two LDL The FDA requires PPI packaging information to include a warning about increased hip, Cholesterol Targets after Ischemic wrist, or spine fracture risk with long term and high dose PPI use. Many mechanisms for this risk have been proposed including reduced calcium and magnesium absorption, Stroke though these have not been adequately demonstrated in humans. Therapeutic Thoughts Purpose: The Nord-Trøndelag Health Study (HUNT) study aimed to examine a possible Migraine Pharmacotherapy and association between the use of PPIs and risk of fracture in a large group of Norwegian individuals. Novel Agents Study Design: A total of 15,017 women and 13,241 men aged 50 to 85, with a mean age Antihypertensive Treatment of 65 years old were analyzed. Data was retrospectively reviewed from a large Update Norwegian Health Study (HUNT3), the Norwegian Fracture Registry, and the Norwegian Prescription Database. The fracture registry collects information on hip and Who Should Receive PCV13? forearm fractures. History of exposure to PPIs, anti-osteoporotic drugs (AODs), and oral glucocorticoids (GCs) were pulled from the prescription database.
    [Show full text]
  • Pharmacy Précis
    Samford University Global Drug Information Service PHARMACY RÉCIS P Précis: a concise summary of essential points, statements or facts Volume 30 (Issue 1) January 2012 NEW MOLECULAR ENTITIES OF 2011 New molecular entities, biologic agents, and drug formulations/combinations approved during 2011 (including indication, approval date, and comments) are presented in this issue of Pharmacy Précis. An explanation of the FDA classification of the new drugs also is included. If you need any additional information regarding these agents, please call the Samford University Global Drug Information Service at (205) 726-2659. FDA classifications for newly approved drugs are based on chemical classification and are outlined below. FDA CLASSIFICATIONS CHEMICAL CLASSIFICATION THERAPEUTIC CLASSIFICATION 1. New molecular entity - drug S = Standard review - assigned not marketed in U.S. by any to drugs that appear to have manufacturer therapeutic qualities similar to 2. New salt - active moiety is drugs already approved marketed in the U.S., but this P = Priority review - assigned particular salt, ester, or to drugs that appear to have derivative is not therapeutic gain over drugs 3. New formulation - drug currently available marketed in the U.S., but this O = Orphan designation - particular formulation is not Pursuant to Section 526 of the 4. New combination - two or Orphan Drug Act (Public Law more ingredients in 97-414 as amended). combination not marketed in 1. Providing effective therapy the U.S. or diagnosis for a disease 5. New manufacturer - already not adequately treated or marketed by another firm; diagnosed by any marketed duplicated salt, formulation or drug combination 2. Providing improved 6.
    [Show full text]
  • Self-Measured Compared to Office
    Systematic Review for the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Supplemental Tables and Figures Part 1: Self-Measured Compared to Office-Based Measurement of Blood Pressure in the Management of Adults With Hypertension Table 1.1 Electronic search terms used for the current meta-analysis (Part 1 – Self-Measured Compared to Office-Based Measurement of Blood Pressure in the Management of Adults With Hypertension). PubMed Search (Blood Pressure Monitoring, Ambulatory [mesh] OR self care [mesh] OR telemedicine [mesh] OR patient participation [tiab] OR ambulatory [tiab] OR kiosk [tiab] OR kiosks [tiab] OR self-monitor* [tiab] OR self-measure* [tiab] OR self-care* [tiab] OR self-report* [tiab] OR telemonitor* [tiab] OR tele-monitor* [tiab] OR home monitor* [tiab] OR telehealth [tiab] OR tele-health [tiab] OR telemonitor* [tiab] OR tele-monitor* [tiab] OR telemedicine [tiab] OR patient-directed [tiab] OR Blood pressure monitoring “patient directed” [tiab] OR HMBP [tiab] OR SMBP [tiab] OR home [tiab] OR white coat [tiab] OR concept + Self Care concept ((patient participation [ot] OR ambulatory [ot] OR kiosk [ot] OR kiosks [ot] OR self-monitor* [ot] OR self-measure* [ot] OR self-care* [ot] OR self-report* [ot] OR telemonitor* [ot] OR tele-monitor* [ot] OR home monitor* [ot] OR telehealth [ot] OR tele-health [ot] OR telemonitor* [ot] OR tele- monitor* [ot] OR telemedicine [ot] OR patient-directed [tiab] OR “patient directed” [tiab]
    [Show full text]
  • Australian Public Assessment Report for Aliskiren, Amlodipine and Hydrochlorothiazide Proprietary Product Name: Rasilamlo HCT
    Australian Public Assessment Report for Aliskiren, Amlodipine and Hydrochlorothiazide Proprietary Product Name: Rasilamlo HCT Sponsor: Novartis Pharmaceuticals Australia Pty Ltd June 2012 Therapeutic Goods Administration About the Therapeutic Goods Administration (TGA) · The Therapeutic Goods Administration (TGA) is a division of the Australian Government Department of Health and Ageing, and is responsible for regulating medicines and medical devices. · TGA administers the Therapeutic Goods Act 1989 (the Act), applying a risk management approach designed to ensure therapeutic goods supplied in Australia meet acceptable standards of quality, safety and efficacy (performance), when necessary. · The work of the TGA is based on applying scientific and clinical expertise to decision- making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines and medical devices. · The TGA relies on the public, healthcare professionals and industry to report problems with medicines or medical devices. TGA investigates reports received by it to determine any necessary regulatory action. · To report a problem with a medicine or medical device, please see the information on the TGA website. About AusPARs · An Australian Public Assessment Record (AusPAR) provides information about the evaluation of a prescription medicine and the considerations that led the TGA to approve or not approve a prescription medicine submission. · AusPARs are prepared and published by the TGA. · An AusPAR is prepared for submissions that relate to new chemical entities, generic medicines, major variations, and extensions of indications. · An AusPAR is a static document, in that it will provide information that relates to a submission at a particular point in time. · A new AusPAR will be developed to reflect changes to indications and/or major variations to a prescription medicine subject to evaluation by the TGA.
    [Show full text]
  • Systematic Evidence Review from the Blood Pressure Expert Panel, 2013
    Managing Blood Pressure in Adults Systematic Evidence Review From the Blood Pressure Expert Panel, 2013 Contents Foreword ............................................................................................................................................ vi Blood Pressure Expert Panel ..............................................................................................................vii Section 1: Background and Description of the NHLBI Cardiovascular Risk Reduction Project ............ 1 A. Background .............................................................................................................................. 1 Section 2: Process and Methods Overview ......................................................................................... 3 A. Evidence-Based Approach ....................................................................................................... 3 i. Overview of the Evidence-Based Methodology ................................................................. 3 ii. System for Grading the Body of Evidence ......................................................................... 4 iii. Peer-Review Process ....................................................................................................... 5 B. Critical Question–Based Approach ........................................................................................... 5 i. How the Questions Were Selected ................................................................................... 5 ii. Rationale for the Questions
    [Show full text]