Introductory Topics in Derived Algebraic Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Introductory Topics in Derived Algebraic Geometry Introductory topics in derived algebraic geometry Tony Pantev Gabriele Vezzosi Department of Mathematics DIMAI University of Pennsylvania (US) Università di Firenze (Italy) February 2018 Abstract We give a quick introduction to derived algebraic geometry (DAG) sampling basic constructions and techniques. We discuss affine derived schemes, derived algebraic stacks, and the Artin-Lurie representability theorem. Through the example of deformations of smooth and proper schemes, we explain how DAG sheds light on classical deformation theory. In the last two sections, we introduce differential forms on derived stacks, and then specialize to shifted symplectic forms, giving the main existence theorems proved in [PTVV]. Contents 1 Introduction 1 2 Affine derived geometry 2 3 Étale topology and derived stacks 9 4 Derived algebraic stacks 11 5 Lurie’s Representability Theorem 13 6 DAG “explains” classical deformation theory 15 7 Forms and closed forms 20 8 Shifted symplectic geometry 27 1 Introduction Derived Algebraic Geometry (DAG) starts with the idea of replacing the affine objects of Algebraic Geometry, i.e. commutative rings, by some kind of “derived commutative rings” whose internal homotopy theory is non trivial. This can be achieved over Q by considering commutative differential non-positively graded algebras (cdga’s), while in general one might instead consider simplicial commutative algebras.1 For simplicity, we will stick to the case of cdga’s (i.e. we will assume to work over Q). As in classical 1 Note that DAG based on cdga’s over Q or on simplicial commutative Q-algebras are equivalent theories. 1 Algebraic Geometry, the first step is to develop the local or affine theory, i.e to define and study finiteness conditions, flat, smooth, étale properties for morphisms between cdga’s. This is the content of Section 2. Once this is set up, we will define the analog in DAG of being a sheaf or stack with respect to a derived version of a topology on these derived affine objects (Section 3), and then specify which sheaves or stacks are of geometric type (these will be called derived algebraic or derived Artin stacks). This last step will be done by using atlases and a recursion on the “level of algebraicity” in Section 4 where we will also list the main basic properties of derived algebraic stacks. It’s not always easy to decide whether a given derived stack is algebraic by using only the definition, and a powerful criterion is given by J. Lurie’s DAG version of M. Artin’s representability theorem: this is explained in Section 5, where we also give a simplified but often very useful version of Lurie’s representability. In Section 6 we explain, through the example of deformations of a given smooth proper scheme, how DAG fills some conceptual gaps in classical deformation theory, the idea being that once we allow ourselves to consider also deformations over an affine derived base, then deformation theory becomes completely transparent. The second part of this article describes symplectic geometry in DAG. We start by describing differential forms and closed differential forms on a derived stack (Section 7). These forms have two new features with respect to the classical case: first of all they have a degree (this new degree of freedom comes from the fact that in DAG the module of K´’ahler differentials is replaced by a complex, the so-called cotangent complex), secondly the notion of a closed form in DAG consists of a datum rather than a property. Once these notions are in place, the definition of a derived version of symplectic structure is easy. The final Section 8 reviews some the main examples and existence results in the theory of derived symplectic geometry taken from [PTVV], namely the derived symplectic structure on the mapping derived stack of maps from a O-compact oriented derived stack to a symplectic derived stack, and the derived symplectic structure on a lagrangian intersection. 2 Affine derived geometry 2.1 Homotopical algebra of dg-modules and cdga in characteristic 0 Let k be a commutative Q-algebra. Definition 2.1 We will write ¤0 • dgmodk for the model category of non-positively graded dg-modules over k (with differential in- creasing the degree), with weak equaivalences W = “quasi-isomorphisms” and fibrations F ib= “surjections in deg ă 0 ”, endowed with the usual symmetric b structure compatible with the model structure (i.e. a symmetric monoidal model category, [Hov]). ¤0 • dgmodk for the symmetric monoidal 8-category obtained by inverting (in the 8-categorical 2 ¤0 sense ) quasi-isomorphisms in dgmodk . ¤0 ¤0 • cdgak :“ CAlgpdgmodk q for the model category of commutative unital monoids in ¤0 dgmodk , with W = “quasi-isomorphisms” and F ib= “surjections in deg ă 0 ” (here we need that k is a Q-algebra). These are non-positively graded commutative differential graded k-algebras (cdga’s for short). 2See M. Robalo’s paper in this volume. 2 ¤0 ¤0 • cdgak pkq :“ CAlgpdgmodk q for the 8-category of non-positively graded commutative differ- ential graded k-algebras (derived k-algebras) that can also be obtained by inverting (in the 8- ¤0 categorical sense) quasi-isomorphisms in cdgak . • S will denote the 8-category of spaces. We will use analogous notations for unbounded dg-modules over k, and unbounded cdga’s over k, by simply omitting the p´q¤0 suffix. Same convention for non necessarily commutative algebras (by writing Alg instead of CAlg). There is an 8-adjunction: Symk dgmod¤0 / cdga¤0 k o k U (induced by a Quillen adjunction on the corresponding model categories) where Symk denotes the free cdga functor, and U the forgetful functor. ¤0 ‚ Mapping spaces. We have the following explicit models for mapping spaces in cdgak . Let Ωn be ‚ the algebraic de Rham complex of krt0; t1; ¨ ¨ ¨ ; tns{p i ti ´ 1q over k. Consider rns ÞÑ Ωn as a simplicial ¤0 ‚ object in cdgak. Thus, if B P cdgak , then the assignment rns ÞÑ τ¤0pΩn bk Bq defines a simplicial ¤0 ř object in cdgak . ¤0 For any pair pA; Bq in cdgak , there is an equivalence of of spaces (simplicial sets) ‚ Map ¤0 pA; Bq » prns ÞÑ Hom ¤0 pQkA; τ¤0pΩn bk Bqqq cdgak cdgak ¤0 where QkA is a cofibrant replacement of A in the model category cdgak . Cautionary exercises. The following exercises are meant to make the reader aware of the boundaries of the territory where we will be working. Exercise 2.2 Let charpkq “ p. Show that CAlgpdgmodkq cannot have a model structure with W=“quasi- isomorphisms” and Fib=“ degreewise surjections”. i Hint: 1) Construct a map f : A Ñ B in CAlgpdgmodkq with the following property: Di ; α P H pBq such that αp is not in the image of Hippfq. 2) Prove that no such f can be factored as F ib ˝ pW X Cofq. Exercise 2.3 Let charpkq “ 0. Show that the obvious 8-functor CAlgpdgmodkq Ñ Algpdgmodkq, though conservative, is not fully faithful. ¤0 For A P cdgak we consider dgmodpAq the symmetric monoidal 8-category of (unbounded) dg- modules over A, and we define ¤0 CAlgpdgmodpAqq » A{cdgak : 3 ¤0 Given any map f : A Ñ B P cdgak , there is an induced 8-adjunction ˚ f “p´qbAB dgmod B /dgmod A p qo p q f˚ ¤0 which is an equivalence of 8-categories if f is an equivalence in cdgak . 2.2 Cotangent complex ¤0 ¤0 ¤0 Let f : A Ñ B be a map in cdgak . For any M P dgmod pBq, let B ` M P cdgak be the trivial square zero extension of B by M (i.e. B acts on itself and on M in the obvious way, and M ¨ M “ 0). B ` M is naturally an A-algebra and it has a natural projection map prB : B ` M Ñ B of A-algebras. Definition 2.4 The space of derivations from B to M over A is defined as DerApB; Mq :“ Map ¤0 pB; B ` Mq: A{cdgak {B Equivalently, prB;˚ DerApB; Mq “ fib Map ¤0 pB; B ` Mq /Map ¤0 pB; Bq ; idB : A{cdgak A{cdgak ˆ ˙ ¤0 M Ñ DerApB; Mq can be constructed as an 8 functor dgmod pBq Ñ S, and we have the following derived analog of the classical existence results for Kähler differentials. ¤0 Proposition 2.5 The 8-functor M ÞÑ DerApB; Mq is corepresentable, i.e. D LB{A P dgmod pBq and a canonical equivalence DerApB; ´q » MapdgmodpBqpLB{A; ´q. ¤0 1 Proof. Let QAB » B be a cofibrant replacement of B in A{cdga . Then :“ Ω bQ B B k LB{A QAB{A A does the job. l Let us list the most useful properties of the cotangent complex construction (for details, see [HAG-II]). ¤0 (1) Given a commutative square in cdgak u1 A / A1 1 B u / B there is an induced map 1 LB{A Ñ u˚LB1{A1 ô LB{A bB B Ñ LB1{A1 : 3 In particular, we get a canonical map LB{A Ñ LH0pBq{H0pAq. If B “ S; A “ R are discrete , the 0 1 canonical map H pLS{Rq Ñ ΩS{R is an isomorphism. 3 ¤0 0 An object D P cdgak is discrete if the canonical map D Ñ H pDq is a quasi-isomorphism. 4 1 (2) If the commutative diagram in (1) is a pushout square, then the map LB{A bB B Ñ LB1{A1 is an equivalence. ¤0 (3) If C Ñ A Ñ B are maps in cdgak , then there is an induced cofiber sequence LA{C bA B Ñ LB{C Ñ LB{A 1 in dgmodpBq, where the first map is as in (1) via u “ idC , u : A Ñ B, and the second map is as 1 in (1) with u “ idB and u “ pC Ñ Aq).
Recommended publications
  • Representation Stability, Configuration Spaces, and Deligne
    Representation Stability, Configurations Spaces, and Deligne–Mumford Compactifications by Philip Tosteson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in The University of Michigan 2019 Doctoral Committee: Professor Andrew Snowden, Chair Professor Karen Smith Professor David Speyer Assistant Professor Jennifer Wilson Associate Professor Venky Nagar Philip Tosteson [email protected] orcid.org/0000-0002-8213-7857 © Philip Tosteson 2019 Dedication To Pete Angelos. ii Acknowledgments First and foremost, thanks to Andrew Snowden, for his help and mathematical guidance. Also thanks to my committee members Karen Smith, David Speyer, Jenny Wilson, and Venky Nagar. Thanks to Alyssa Kody, for the support she has given me throughout the past 4 years of graduate school. Thanks also to my family for encouraging me to pursue a PhD, even if it is outside of statistics. I would like to thank John Wiltshire-Gordon and Daniel Barter, whose conversations in the math common room are what got me involved in representation stability. John’s suggestions and point of view have influenced much of the work here. Daniel’s talk of Braids, TQFT’s, and higher categories has helped to expand my mathematical horizons. Thanks also to many other people who have helped me learn over the years, including, but not limited to Chris Fraser, Trevor Hyde, Jeremy Miller, Nir Gadish, Dan Petersen, Steven Sam, Bhargav Bhatt, Montek Gill. iii Table of Contents Dedication . ii Acknowledgements . iii Abstract . .v Chapters v 1 Introduction 1 1.1 Representation Stability . .1 1.2 Main Results . .2 1.2.1 Configuration spaces of non-Manifolds .
    [Show full text]
  • The Nori Fundamental Gerbe of Tame Stacks 3
    THE NORI FUNDAMENTAL GERBE OF TAME STACKS INDRANIL BISWAS AND NIELS BORNE Abstract. Given an algebraic stack, we compare its Nori fundamental group with that of its coarse moduli space. We also study conditions under which the stack can be uniformized by an algebraic space. 1. Introduction The aim here is to show that the results of [Noo04] concerning the ´etale fundamental group of algebraic stacks also hold for the Nori fundamental group. Let us start by recalling Noohi’s approach. Given a connected algebraic stack X, and a geometric point x : Spec Ω −→ X, Noohi generalizes the definition of Grothendieck’s ´etale fundamental group to get a profinite group π1(X, x) which classifies finite ´etale representable morphisms (coverings) to X. He then highlights a new feature specific to the stacky situation: for each geometric point x, there is a morphism ωx : Aut x −→ π1(X, x). Noohi first studies the situation where X admits a moduli space Y , and proceeds to show that if N is the closed normal subgroup of π1(X, x) generated by the images of ωx, for x varying in all geometric points, then π1(X, x) ≃ π1(Y,y) . N Noohi turns next to the issue of uniformizing algebraic stacks: he defines a Noetherian algebraic stack X as uniformizable if it admits a covering, in the above sense, that is an algebraic space. His main result is that this happens precisely when X is a Deligne– Mumford stack and for any geometric point x, the morphism ωx is injective. For our purpose, it turns out to be more convenient to use the Nori fundamental gerbe arXiv:1502.07023v3 [math.AG] 9 Sep 2015 defined in [BV12].
    [Show full text]
  • CHARACTERIZING ALGEBRAIC STACKS 1. Introduction Stacks
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 4, April 2008, Pages 1465–1476 S 0002-9939(07)08832-6 Article electronically published on December 6, 2007 CHARACTERIZING ALGEBRAIC STACKS SHARON HOLLANDER (Communicated by Paul Goerss) Abstract. We extend the notion of algebraic stack to an arbitrary subcanon- ical site C. If the topology on C is local on the target and satisfies descent for morphisms, we show that algebraic stacks are precisely those which are weakly equivalent to representable presheaves of groupoids whose domain map is a cover. This leads naturally to a definition of algebraic n-stacks. We also compare different sites naturally associated to a stack. 1. Introduction Stacks arise naturally in the study of moduli problems in geometry. They were in- troduced by Giraud [Gi] and Grothendieck and were used by Deligne and Mumford [DM] to study the moduli spaces of curves. They have recently become important also in differential geometry [Bry] and homotopy theory [G]. Higher-order general- izations of stacks are also receiving much attention from algebraic geometers and homotopy theorists. In this paper, we continue the study of stacks from the point of view of homotopy theory started in [H, H2]. The aim of these papers is to show that many properties of stacks and classical constructions with stacks are homotopy theoretic in nature. This homotopy-theoretical understanding gives rise to a simpler and more powerful general theory. In [H] we introduced model category structures on different am- bient categories in which stacks are the fibrant objects and showed that they are all Quillen equivalent.
    [Show full text]
  • The Orbifold Chow Ring of Toric Deligne-Mumford Stacks
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 18, Number 1, Pages 193–215 S 0894-0347(04)00471-0 Article electronically published on November 3, 2004 THE ORBIFOLD CHOW RING OF TORIC DELIGNE-MUMFORD STACKS LEVA.BORISOV,LINDACHEN,ANDGREGORYG.SMITH 1. Introduction The orbifold Chow ring of a Deligne-Mumford stack, defined by Abramovich, Graber and Vistoli [2], is the algebraic version of the orbifold cohomology ring in- troduced by W. Chen and Ruan [7], [8]. By design, this ring incorporates numerical invariants, such as the orbifold Euler characteristic and the orbifold Hodge num- bers, of the underlying variety. The product structure is induced by the degree zero part of the quantum product; in particular, it involves Gromov-Witten invariants. Inspired by string theory and results in Batyrev [3] and Yasuda [28], one expects that, in nice situations, the orbifold Chow ring coincides with the Chow ring of a resolution of singularities. Fantechi and G¨ottsche [14] and Uribe [25] verify this conjecture when the orbifold is Symn(S)whereS is a smooth projective surface n with KS = 0 and the resolution is Hilb (S). The initial motivation for this project was to compare the orbifold Chow ring of a simplicial toric variety with the Chow ring of a crepant resolution. To achieve this goal, we first develop the theory of toric Deligne-Mumford stacks. Modeled on simplicial toric varieties, a toric Deligne-Mumford stack corresponds to a combinatorial object called a stacky fan. As a first approximation, this object is a simplicial fan with a distinguished lattice point on each ray in the fan.
    [Show full text]
  • Derived Differential Geometry
    The definition of schemes Different kinds of spaces in algebraic geometry Some basics of category theory What is derived geometry? Moduli spaces and moduli functors Algebraic spaces and (higher) stacks Derived Differential Geometry Lecture 1 of 14: Background material in algebraic geometry and category theory Dominic Joyce, Oxford University Summer 2015 These slides, and references, etc., available at http://people.maths.ox.ac.uk/∼joyce/DDG2015 1 / 48 Dominic Joyce, Oxford University Lecture 1: Algebraic Geometry and Category Theory The definition of schemes Different kinds of spaces in algebraic geometry Some basics of category theory What is derived geometry? Moduli spaces and moduli functors Algebraic spaces and (higher) stacks Plan of talk: 1 Different kinds of spaces in algebraic geometry 1.1 The definition of schemes 1.2 Some basics of category theory 1.3 Moduli spaces and moduli functors 1.4 Algebraic spaces and (higher) stacks 2 / 48 Dominic Joyce, Oxford University Lecture 1: Algebraic Geometry and Category Theory The definition of schemes Different kinds of spaces in algebraic geometry Some basics of category theory What is derived geometry? Moduli spaces and moduli functors Algebraic spaces and (higher) stacks 1. Different kinds of spaces in algebraic geometry Algebraic geometry studies spaces built using algebras of functions. Here are the main classes of spaces studied by algebraic geometers, in order of complexity, and difficulty of definition: Smooth varieties (e.g. Riemann surfaces, or algebraic complex n manifolds such as CP . Smooth means nonsingular.) n n Varieties (at their most basic, algebraic subsets of C or CP . 2 Can have singularities, e.g.
    [Show full text]
  • Handbook of Moduli
    Equivariant geometry and the cohomology of the moduli space of curves Dan Edidin Abstract. In this chapter we give a categorical definition of the integral cohomology ring of a stack. For quotient stacks [X=G] the categorical co- ∗ homology ring may be identified with the equivariant cohomology HG(X). Identifying the stack cohomology ring with equivariant cohomology allows us to prove that the cohomology ring of a quotient Deligne-Mumford stack is rationally isomorphic to the cohomology ring of its coarse moduli space. The theory is presented with a focus on the stacks Mg and Mg of smooth and stable curves respectively. Contents 1 Introduction2 2 Categories fibred in groupoids (CFGs)3 2.1 CFGs of curves4 2.2 Representable CFGs5 2.3 Curves and quotient CFGs6 2.4 Fiber products of CFGs and universal curves 10 3 Cohomology of CFGs and equivariant cohomology 13 3.1 Motivation and definition 14 3.2 Quotient CFGs and equivariant cohomology 16 3.3 Equivariant Chow groups 19 3.4 Equivariant cohomology and the CFG of curves 21 4 Stacks, moduli spaces and cohomology 22 4.1 Deligne-Mumford stacks 23 4.2 Coarse moduli spaces of Deligne-Mumford stacks 27 4.3 Cohomology of Deligne-Mumford stacks and their moduli spaces 29 2000 Mathematics Subject Classification. Primary 14D23, 14H10; Secondary 14C15, 55N91. Key words and phrases. stacks, moduli of curves, equivariant cohomology. The author was supported by NSA grant H98230-08-1-0059 while preparing this article. 2 Cohomology of the moduli space of curves 1. Introduction The study of the cohomology of the moduli space of curves has been a very rich research area for the last 30 years.
    [Show full text]
  • DERIVED ALGEBRAIC GEOMETRY Contents Introduction 1 1. Selected
    DERIVED ALGEBRAIC GEOMETRY BERTRAND TOEN¨ Abstract. This text is a survey of derived algebraic geometry. It covers a variety of general notions and results from the subject with a view on the recent developments at the interface with deformation quantization. Contents Introduction1 1. Selected pieces of history6 2. The notion of a derived scheme 17 2.1. Elements of the language of 1-categories 20 2.2. Derived schemes 30 3. Derived schemes, derived moduli, and derived stacks 35 3.1. Some characteristic properties of derived schemes 35 3.2. Derived moduli problems and derived schemes 40 3.3. Derived moduli problems and derived Artin stacks 43 3.4. Derived geometry in other contexts 48 4. The formal geometry of derived stacks 50 4.1. Cotangent complexes and obstruction theory 50 4.2. The idea of formal descent 52 4.3. Tangent dg-lie algebras 54 4.4. Derived loop spaces and algebraic de Rham theory 55 5. Symplectic, Poisson and Lagrangian structures in the derived setting 59 5.1. Forms and closed forms on derived stacks 59 5.2. Symplectic and Lagrangian structures 63 5.3. Existence results 67 5.4. Polyvectors and shifted Poisson structures 71 References 76 Introduction Derived algebraic geometry is an extension of algebraic geometry whose main purpose is to propose a setting to treat geometrically special situations (typically bad intersections, quotients by bad actions,. ), as opposed to generic situations (transversal intersections, quotients by free and proper actions,. ). In order to present the main flavor of the subject we will start this introduction by focussing on an emblematic situation in the context of algebraic geometry, or in geometry in Bertrand To¨en,Universit´ede Montpellier 2, Case courrier 051, B^at9, Place Eug`eneBataillon, Montpellier Cedex 5, France.
    [Show full text]
  • Introduction to Algebraic Stacks
    Introduction to Algebraic Stacks K. Behrend December 17, 2012 Abstract These are lecture notes based on a short course on stacks given at the Newton Institute in Cambridge in January 2011. They form a self-contained introduction to some of the basic ideas of stack theory. Contents Introduction 3 1 Topological stacks: Triangles 8 1.1 Families and their symmetry groupoids . 8 Various types of symmetry groupoids . 9 1.2 Continuous families . 12 Gluing families . 13 1.3 Classification . 15 Pulling back families . 17 The moduli map of a family . 18 Fine moduli spaces . 18 Coarse moduli spaces . 21 1.4 Scalene triangles . 22 1.5 Isosceles triangles . 23 1.6 Equilateral triangles . 25 1.7 Oriented triangles . 25 Non-equilateral oriented triangles . 30 1.8 Stacks . 31 1.9 Versal families . 33 Generalized moduli maps . 35 Reconstructing a family from its generalized moduli map . 37 Versal families: definition . 38 Isosceles triangles . 40 Equilateral triangles . 40 Oriented triangles . 41 1 1.10 Degenerate triangles . 42 Lengths of sides viewpoint . 43 Embedded viewpoint . 46 Complex viewpoint . 52 Oriented degenerate triangles . 54 1.11 Change of versal family . 57 Oriented triangles by projecting equilateral ones . 57 Comparison . 61 The comparison theorem . 61 1.12 Weierstrass compactification . 64 The j-plane . 69 2 Formalism 73 2.1 Objects in continuous families: Categories fibered in groupoids 73 Fibered products of groupoid fibrations . 77 2.2 Families characterized locally: Prestacks . 78 Versal families . 79 2.3 Families which can be glued: Stacks . 80 2.4 Topological stacks . 81 Topological groupoids . 81 Generalized moduli maps: Groupoid Torsors .
    [Show full text]
  • Algebraic Stacks Many of the Geometric Properties That Are Defined for Schemes (Smoothness, Irreducibility, Separatedness, Properness, Etc...)
    Algebraic stacks Tom´as L. G´omez Tata Institute of Fundamental Research Homi Bhabha road, Mumbai 400 005 (India) [email protected] 9 November 1999 Abstract This is an expository article on the theory of algebraic stacks. After intro- ducing the general theory, we concentrate in the example of the moduli stack of vector budles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory. 1 Introduction The concept of algebraic stack is a generalization of the concept of scheme, in the same sense that the concept of scheme is a generalization of the concept of projective variety. In many moduli problems, the functor that we want to study is not representable by a scheme. In other words, there is no fine moduli space. Usually this is because the objects that we want to parametrize have automorphisms. But if we enlarge the category of schemes (following ideas that go back to Grothendieck and Giraud, and were developed by Deligne, Mumford and Artin) and consider algebraic stacks, then we can construct the “moduli stack”, that captures all the information that we would like in a fine moduli space. The idea of enlarging the category of algebraic varieties to study moduli problems is not new. In fact A. Weil invented the concept of abstract variety to give an algebraic arXiv:math/9911199v1 [math.AG] 25 Nov 1999 construction of the Jacobian of a curve. These notes are an introduction to the theory of algebraic stacks. I have tried to emphasize ideas and concepts through examples instead of detailed proofs (I give references where these can be found).
    [Show full text]
  • The Algebraic Stack Mg
    The algebraic stack Mg Raymond van Bommel 9 October 2015 The author would like to thank Bas Edixhoven, Jinbi Jin, David Holmes and Giulio Orecchia for their valuable contributions. 1 Fibre products and representability Recall from last week ([G]) the definition of categories fibred in groupoids over a category S. Besides objects there are 1-morphisms (functors) between objects and 2-morphisms (natural transformations (that are isomorphisms automatically)) between the 1-morphisms. They form a so-called 2-category, CFG. We also defined the fibre product in CFG. In this chapter we will take a general base category S unless otherwise indicated. However, if wanted, you can think of S as being Sch. Given an object S 2 Ob(S), we can consider it as category fibred in groupoids, which is also called S=S, by taking arrows T ! S in S as objects and arrows over S in S as morphisms. The functor S=S !S is the forgetful functor, forgetting the map to S. Exercise 1. Let S; T 2 Ob(S). Check that the fibre (S=S)(T ) is isomorphic to the set Hom(T;S), i.e. the category whose objects are the elements of Hom(T;S) and whose arrows are the identities. Proposition 2. Let X be a category fibred in groupoids over S. Then X is equivalent to an object of S (i.e. there is an equivalence of categories that commutes with the projection to S) if and only if X has a final object. Proof. Given an object S 2 Ob(S) the associated category fibred in groupoids has final object id: S ! S.
    [Show full text]
  • Geometricity for Derived Categories of Algebraic Stacks 3
    GEOMETRICITY FOR DERIVED CATEGORIES OF ALGEBRAIC STACKS DANIEL BERGH, VALERY A. LUNTS, AND OLAF M. SCHNURER¨ To Joseph Bernstein on the occasion of his 70th birthday Abstract. We prove that the dg category of perfect complexes on a smooth, proper Deligne–Mumford stack over a field of characteristic zero is geometric in the sense of Orlov, and in particular smooth and proper. On the level of trian- gulated categories, this means that the derived category of perfect complexes embeds as an admissible subcategory into the bounded derived category of co- herent sheaves on a smooth, projective variety. The same holds for a smooth, projective, tame Artin stack over an arbitrary field. Contents 1. Introduction 1 2. Preliminaries 4 3. Root constructions 8 4. Semiorthogonal decompositions for root stacks 12 5. Differential graded enhancements and geometricity 20 6. Geometricity for dg enhancements of algebraic stacks 25 Appendix A. Bounded derived category of coherent modules 28 References 29 1. Introduction The derived category of a variety or, more generally, of an algebraic stack, is arXiv:1601.04465v2 [math.AG] 22 Jul 2016 traditionally studied in the context of triangulated categories. Although triangu- lated categories are certainly powerful, they do have some shortcomings. Most notably, the category of triangulated categories seems to have no tensor product, no concept of duals, and categories of triangulated functors have no obvious trian- gulated structure. A remedy to these problems is to work instead with differential graded categories, also called dg categories. We follow this approach and replace the derived category Dpf (X) of perfect complexes on a variety or an algebraic stack dg X by a certain dg category Dpf (X) which enhances Dpf (X) in the sense that its homotopy category is equivalent to Dpf (X).
    [Show full text]
  • Higher Analytic Stacks and Gaga Theorems
    HIGHER ANALYTIC STACKS AND GAGA THEOREMS MAURO PORTA AND TONY YUE YU Abstract. We develop the foundations of higher geometric stacks in complex analytic geometry and in non-archimedean analytic geometry. We study coherent sheaves and prove the analog of Grauert’s theorem for derived direct images under proper morphisms. We define analytification functors and prove the analog of Serre’s GAGA theorems for higher stacks. We use the language of infinity category to simplify the theory. In particular, it enables us to circumvent the functoriality problem of the lisse-étale sites for sheaves on stacks. Our constructions and theorems cover the classical 1-stacks as a special case. Contents 1. Introduction 2 2. Higher geometric stacks 4 2.1. Notations 4 2.2. Geometric contexts 5 2.3. Higher geometric stacks 6 2.4. Functorialities of the category of sheaves 8 2.5. Change of geometric contexts 16 3. Examples of higher geometric stacks 17 3.1. Higher algebraic stacks 17 3.2. Higher complex analytic stacks 17 3.3. Higher non-archimedean analytic stacks 18 3.4. Relative higher algebraic stacks 18 4. Proper morphisms of analytic stacks 19 5. Direct images of coherent sheaves 26 5.1. Sheaves on geometric stacks 26 arXiv:1412.5166v2 [math.AG] 28 Jul 2016 5.2. Coherence of derived direct images for algebraic stacks 32 5.3. Coherence of derived direct images for analytic stacks 34 6. Analytification functors 38 Date: December 16, 2014 (Revised on July 6, 2016). 2010 Mathematics Subject Classification. Primary 14A20; Secondary 14G22 32C35 14F05. Key words and phrases.
    [Show full text]