Why Black Hole Information Loss Is Paradoxical
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Here’S No Speed of Light, So What the Heck Did Michelson Measure?” “What the Humean Should Say About Quantities: a Reply to Bricker”
Hellems Building, Office 282 [email protected] CU Boulder, Dept of Philosophy (215)-262-3126 Boulder, CO 80309 www.zrperry.com Zee R. Perry curriculum vitae Employment 2018–present Center Visiting Scholar Center for the Study of Origins, University of Colorado, Boulder 2018–present Visiting Instructor Department of Philosophy, University of Colorado, Boulder 2016–2018 Andrew W. Mellon Foundation Postdoctoral Associate Department of Philosophy, Rutgers University, New Brunswick Education 2009–2016 Ph.D. in Philosophy, New York University. Dissertation: Physical Quantities: Mereology and Dynamics Committee: Tim Maudlin (chair), Cian Dorr, Hartry Field, Shamik Dasgupta (ex- ternal, Princeton) 2007–2009 B.A. in Philosophy, Rutgers University Summa Cum Laude. 2005–2007 Moravian College Areas of Specialization Metaphysics, Philosophy of Physics Areas of Competence Philosophy of Science, Philosophy of Art, Logic Fellowships and Awards Summer Early Career Researcher Visiting Fellowship, ANU School of Philosophy and Centre 2019 for the Philosophy of the Sciences 2018–present Visiting Scholarship Award (Project: Origins of Measurement), Center for the Study of Origins, CU Boulder 2015–2016 Mellon Dissertation Fellowship, NYU 2015 Student Senator’s Council Conference Funding Travel Award, NYU 2015 Outstanding Teaching Award, NYU 2014 Graduate School of Arts and Sciences Dean’s Student Travel Grant, NYU 2009–2014 MacCracken Fellowship, NYU 1 Publications 2017 “How to be a Substantivalist Without Getting Shifty About It”. Philosophical Issues: Metaphysics. 27, (1). (2017). http://philpapers.org/rec/PERHTB 2017 “What the Humean Should Say about Entanglement” (with Harjit Bhogal). Noûs. 51, (1). (2017). http://philpapers.org/rec/BHOWTH 2015 “Properly Extensive Quantities”. Philosophy of Science. University of Chicago Press. -
A Conceptual Model for the Origin of the Cutoff Parameter in Exotic Compact Objects
S S symmetry Article A Conceptual Model for the Origin of the Cutoff Parameter in Exotic Compact Objects Wilson Alexander Rojas Castillo 1 and Jose Robel Arenas Salazar 2,* 1 Departamento de Física, Universidad Nacional de Colombia, Bogotá UN.11001, Colombia; [email protected] 2 Observatorio Astronómico Nacional, Universidad Nacional de Colombia, Bogotá UN.11001, Colombia * Correspondence: [email protected] Received: 30 October 2020; Accepted: 30 November 2020 ; Published: 14 December 2020 Abstract: A Black Hole (BH) is a spacetime region with a horizon and where geodesics converge to a singularity. At such a point, the gravitational field equations fail. As an alternative to the problem of the singularity arises the existence of Exotic Compact Objects (ECOs) that prevent the problem of the singularity through a transition phase of matter once it has crossed the horizon. ECOs are characterized by a closeness parameter or cutoff, e, which measures the degree of compactness of the object. This parameter is established as the difference between the radius of the ECO’s surface and the gravitational radius. Thus, different values of e correspond to different types of ECOs. If e is very big, the ECO behaves more like a star than a black hole. On the contrary, if e tends to a very small value, the ECO behaves like a black hole. It is considered a conceptual model of the origin of the cutoff for ECOs, when a dust shell contracts gravitationally from an initial position to near the Schwarzschild radius. This allowed us to find that the cutoff makes two types of contributions: a classical one governed by General Relativity and one of a quantum nature, if the ECO is very close to the horizon, when estimating that the maximum entropy is contained within the material that composes the shell. -
Stephen Hawking: 'There Are No Black Holes' Notion of an 'Event Horizon', from Which Nothing Can Escape, Is Incompatible with Quantum Theory, Physicist Claims
NATURE | NEWS Stephen Hawking: 'There are no black holes' Notion of an 'event horizon', from which nothing can escape, is incompatible with quantum theory, physicist claims. Zeeya Merali 24 January 2014 Artist's impression VICTOR HABBICK VISIONS/SPL/Getty The defining characteristic of a black hole may have to give, if the two pillars of modern physics — general relativity and quantum theory — are both correct. Most physicists foolhardy enough to write a paper claiming that “there are no black holes” — at least not in the sense we usually imagine — would probably be dismissed as cranks. But when the call to redefine these cosmic crunchers comes from Stephen Hawking, it’s worth taking notice. In a paper posted online, the physicist, based at the University of Cambridge, UK, and one of the creators of modern black-hole theory, does away with the notion of an event horizon, the invisible boundary thought to shroud every black hole, beyond which nothing, not even light, can escape. In its stead, Hawking’s radical proposal is a much more benign “apparent horizon”, “There is no escape from which only temporarily holds matter and energy prisoner before eventually a black hole in classical releasing them, albeit in a more garbled form. theory, but quantum theory enables energy “There is no escape from a black hole in classical theory,” Hawking told Nature. Peter van den Berg/Photoshot and information to Quantum theory, however, “enables energy and information to escape from a escape.” black hole”. A full explanation of the process, the physicist admits, would require a theory that successfully merges gravity with the other fundamental forces of nature. -
Paradox Regained? a Brief Comment on Maudlin on Black Hole Information Loss
(Information) Paradox Regained? A Brief Comment on Maudlin on Black Hole Information Loss JB Manchak, James Owen Weatherall Department of Logic and Philosophy of Science University of California, Irvine Abstract We discuss some recent work by Tim Maudlin concerning Black Hole Information Loss. We argue, contra Maudlin, that there is a paradox, in the straightforward sense that there are propositions that appear true, but which are incompatible with one another. We discuss the significance of the paradox and Maudlin's response to it. Keywords: Black holes; Information loss paradox; Kodama-Wald theorem; evaporation event; Global hyperbolicity The black hole information loss paradox (Hawking, 1976) is a widely discussed (putative) puzzle that arises when one attempts to make sense of physicists' expectation that global quantum dynamics will be unitary in light of the postulated phenomenon of black hole evaporation (Hawking, 1974, 1975; Unruh, 1976), which is apparently a consequence of Hawking radiation.1 In a provocative recent manuscript, Tim Maudlin (2017) forcefully argues that \There is no `information loss' paradox." The \solution" to the \paradox", he claims, requires no new physics and indeed, was already available, though not appreciated, in 1975. The appearance of paradox arises only because of persistent errors, both mathematical and conceptual in character, by prominent members of the physics community. There is much to admire in Maudlin's treatment of the subject. We agree, for instance, with his discussion of the (non-)role of \information" in the putative paradox. What is really at issue is predictability, or even better, retrodictability, and not information (at least in the sense of information theory): as we will describe in more detail below, the puzzle concerns whether any specification of data on a particular surface is sufficient to retrodict the physical process by which that data came about. -
Fender12 BHB.Pdf
Stellar-Mass Black Holes and Ultraluminous X-ray Sources Rob Fender and Tomaso Belloni Science 337, 540 (2012); DOI: 10.1126/science.1221790 This copy is for your personal, non-commercial use only. If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this information is current as of March 28, 2013 ): Updated information and services, including high-resolution figures, can be found in the online on March 28, 2013 version of this article at: http://www.sciencemag.org/content/337/6094/540.full.html Supporting Online Material can be found at: http://www.sciencemag.org/content/suppl/2012/08/01/337.6094.540.DC1.html A list of selected additional articles on the Science Web sites related to this article can be found at: http://www.sciencemag.org/content/337/6094/540.full.html#related This article cites 37 articles, 6 of which can be accessed free: www.sciencemag.org http://www.sciencemag.org/content/337/6094/540.full.html#ref-list-1 This article has been cited by 1 articles hosted by HighWire Press; see: http://www.sciencemag.org/content/337/6094/540.full.html#related-urls This article appears in the following subject collections: Astronomy http://www.sciencemag.org/cgi/collection/astronomy Downloaded from Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. -
Black Hole Weather Forcasting
NTU Physics Department Chih-Hung Wu 吳智弘 I. Spacetime Locality and ER=EPR Conjecture II. Construction of the Counter-example III. Debate with Professor J. Maldacena J. Maldacena and L.Susskind, “Cool horizon for entangled black holes”, Fortsch. Phys. 61 (2013) 781-811 arXiv:1306.0533 Pisin Chen, Chih-Hung Wu, Dong-hanYeom. ”Broken bridges: A counter-example of the ER=EPR conjecture”, arXiv:1608.08695, Aug 30, 2016 Locality(Impossibility of superluminal signal) 1.Quantum Theory-EPR entanglement 2.General Relativity-ER bridge Violation of Locality?---NO! ER bridge should remain un-traversable even in the quantum theory. En /2 e nLR m n In AdS/CFT framework, an eternal AdS- Schwarzschild BH and the Penrose diagram: En /2 e nLR m n Maximally entangled J. Maldacena, “Eternal black hole in AdS” JHEP 0304 (2003) 021 ,arXiv:0106112 Consider such a scenario: A large number of particles, entangled into separate Bell pairs, and separate them when we collapse each side to form two distant black holes, the two black holes will be entangled. Now they make a conjecture that they will also be connected by an Einstein-Rosen bridge. ER=EPR Known: EREPR Conjecture: EPRER How to realize in the usual Hawking radiation scenario? Second black hole= early half of HR. Step 1: Generate an entangled system Step 2: Formation of the ER bridge Step 3: Collapsing of the bubble Step 4: Evaporation of the black hole Step 5: Communication via ER bridge Assumption: GR with N massless scalar fields 11N S gd4 x ()()() 2 U f 2 i 22i1 The potential has two minima: (AdS space) Background (false vacuum) True vacuum 0 Prepared in advance (e.g. -
A Hole in the Black Hole
Open Journal of Mathematics and Physics | Volume 2, Article 78, 2020 | ISSN: 2674-5747 https://doi.org/10.31219/osf.io/js7rf | published: 7 Feb 2020 | https://ojmp.wordpress.com DA [microresearch] Diamond Open Access A hole in the black hole Open Physics Collaboration∗† April 19, 2020 Abstract Supposedly, matter falls inside the black hole whenever it reaches its event horizon. The Planck scale, however, imposes a limit on how much matter can occupy the center of a black hole. It is shown here that the density of matter exceeds Planck density in the singularity, and as a result, spacetime tears apart. After the black hole is formed, matter flows from its center to its border due to a topological force, namely, the increase on the tear of spacetime due to its limit until it reaches back to the event horizon, generating the firewall phenomenon. We conclude that there is no spacetime inside black holes. We propose a solution to the black hole information paradox. keywords: black hole information paradox, singularity, firewall, entropy, topology, quantum gravity Introduction 1. Black holes are controversial astronomical objects [1] exhibiting such a strong gravitational field that nothing–not even light–can escape from inside it [2]. ∗All authors with their affiliations appear at the end of this paper. †Corresponding author: [email protected] | Join the Open Physics Collaboration 1 2. A black hole is formed when the density of matter exceeds the amount supported by spacetime. 3. It is believed that at or near the event horizon, there are high-energy quanta, known as the black hole firewall [3]. -
Effective Conformal Descriptions of Black Hole Entropy
Entropy 2011, 13, 1355-1379; doi:10.3390/e13071355 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Effective Conformal Descriptions of Black Hole Entropy Steven Carlip Department of Physics, University of California at Davis, Davis, CA 95616, USA; E-Mail: [email protected]. Received: 1 July 2011; in revised form: 12 July 2011 / Accepted: 19 July 2011 / Published: 20 July 2011 Abstract: It is no longer considered surprising that black holes have temperatures and entropies. What remains surprising, though, is the universality of these thermodynamic properties: their exceptionally simple and general form, and the fact that they can be derived from many very different descriptions of the underlying microscopic degrees of freedom. I review the proposal that this universality arises from an approximate conformal symmetry, which permits an effective “conformal dual” description that is largely independent of the microscopic details. Keywords: black holes; Bekenstein–Hawking entropy; conformal dual 1. Introduction Since the seminal work of Bekenstein [1] and Hawking [2], we have understood that black holes behave as thermodynamic systems, with characteristic temperatures and entropies. A central task for quantum gravity is finding a statistical mechanical description of this behavior in terms of microscopic states. One important clue may come from the surprising “universality” of these thermodynamic properties, which manifests itself in two ways: – The Bekenstein–Hawking entropy A S = (1) 4G takes the same simple form for all black holes, independent of the charges, spin, and even the number of spacetime dimensions. If the action differs from that of general relativity, the entropy is modified, but again in a simple and universal way [3]. -
Naked Firewalls Phys
Naked Firewalls Phys. Rev. Lett. 116, 161304 (2016) Pisin Chen, Yen Chin Ong, Don N. Page, Misao Sasaki, and Dong-han Yeom 2016 May 19 Introduction In the firewall proposal, it is assumed that the firewall lies near the event horizon and should not be observable except by infalling observers, who are presumably terminated at the firewall. However, if the firewall is located near where the horizon would have been, based on the spacetime evolution up to that time, later quantum fluctuations of the Hawking emission rate can cause the `teleological' event horizon to have migrated to the inside of the firewall location, rendering the firewall naked. In principle, the firewall can be arbitrarily far outside the horizon. This casts doubt about the notion that a firewall is the `most conservative' solution to the information loss paradox. The AMPS Argument Almheiri, Marolf, Polchinski and Sully (AMPS) argued that local quantum field theory, unitarity, and no-drama (the assumption that infalling observers should not experience anything unusual at the event horizon if the black hole is sufficiently large) cannot all be consistent with each other for the Hawking evaporation of a black hole with a finite number of quantum states given by the Bekenstein-Hawking entropy. AMPS suggested that the `most conservative' resolution to this inherent inconsistency between the various assumptions is to give up no-drama. Instead, an infalling observer would be terminated once he or she hits the so-called firewall. This seems rather surprising, because the curvature is negligibly small at the event horizon of a sufficiently large black hole, and thus one would expect nothing special but low energy physics. -
Firewalls and the Quantum Properties of Black Holes
Firewalls and the Quantum Properties of Black Holes A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science degree in Physics from the College of William and Mary by Dylan Louis Veyrat Advisor: Marc Sher Senior Research Coordinator: Gina Hoatson Date: May 10, 2015 1 Abstract With the proposal of black hole complementarity as a solution to the information paradox resulting from the existence of black holes, a new problem has become apparent. Complementarity requires a vio- lation of monogamy of entanglement that can be avoided in one of two ways: a violation of Einstein’s equivalence principle, or a reworking of Quantum Field Theory [1]. The existence of a barrier of high-energy quanta - or “firewall” - at the event horizon is the first of these two resolutions, and this paper aims to discuss it, for Schwarzschild as well as Kerr and Reissner-Nordstr¨omblack holes, and to compare it to alternate proposals. 1 Introduction, Hawking Radiation While black holes continue to present problems for the physical theories of today, quite a few steps have been made in the direction of understanding the physics describing them, and, consequently, in the direction of a consistent theory of quantum gravity. Two of the most central concepts in the effort to understand black holes are the black hole information paradox and the existence of Hawking radiation [2]. Perhaps the most apparent result of black holes (which are a consequence of general relativity) that disagrees with quantum principles is the possibility of information loss. Since the only possible direction in which to pass through the event horizon is in, toward the singularity, it would seem that information 2 entering a black hole could never be retrieved. -
Membrane Horizons: the Black Hole's New Clothes
MEMBRANE HORIZONS: THE BLACK HOLE’S NEW CLOTHES Maulik Kirit Parikh A DISSERTATION PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY IN CANDIDACY FOR THE DEGREE arXiv:hep-th/9907002v1 1 Jul 1999 OF DOCTOR OF PHILOSOPHY RECOMMENDED FOR ACCEPTANCE BY THE DEPARTMENT OF PHYSICS October 1998 Abstract This thesis addresses some classical and semi-classical aspects of black holes, using an effective membrane representation of the event horizon. This “membrane paradigm” is the remarkable view that, to an external observer, a black hole appears to behave exactly like a dynamical fluid membrane, obeying such pre-relativistic equations as Ohm’s law and the Navier-Stokes equation. It has traditionally been derived by manipulating the equations of motion. Here, however, the equations are derived from an underlying action formulation which has the advantage of clarifying the paradigm and simplifying the derivations, in addition to providing a bridge to thermodynamics and quantum mechanics. Within this framework, previous mem- brane results are derived and extended to dyonic black hole solutions. It is explained how an action can produce dissipative equations. The classical portion of the study ends with a demonstration of the validity of a minimum entropy production principle for black holes. Turning next to semi-classical theory, it is shown that familiar thermodynamic properties of black holes also emerge from the membrane action, via a Euclidean path integral. In particular, the membrane action can account for the hole’s Bekenstein- Hawking entropy, including the numerical factor. Two short and direct derivations of Hawking radiation as an instanton process are then presented. The first is a tunneling calculation based on particles in a dynamical geometry, closely analogous to Schwinger pair production in an electric field. -
Energy Extraction from Boosted Black Holes: Penrose Process, Jets, and the Membrane at Infinity
Energy extraction from boosted black holes: Penrose process, jets, and the membrane at infinity The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Penna, Robert F. "Energy extraction from boosted black holes: Penrose process, jets, and the membrane at infinity." Phys. Rev. D 91, 084044 (April 2015). © 2015 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevD.91.084044 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/96722 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PHYSICAL REVIEW D 91, 084044 (2015) Energy extraction from boosted black holes: Penrose process, jets, and the membrane at infinity Robert F. Penna* Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 12 March 2015; published 20 April 2015) Numerical simulations indicate that black holes carrying linear momentum and/or orbital momentum can power jets. The jets extract the kinetic energy stored in the black hole’s motion. This could provide an important electromagnetic counterpart to gravitational wave searches. We develop the theory underlying these jets. In particular, we derive the analogues of the Penrose process and the Blandford-Znajek jet power prediction for boosted black holes. The jet power we find is ðv=2MÞ2Φ2=ð4πÞ, where v is the hole’s velocity, M is its mass, and Φ is the magnetic flux.