Phytochemistry and Pharmacology of Genus Ephedra ZHANG Ben-Mei1∆, WANG Zhi-Bin1∆, XIN Ping1, WANG Qiu-Hong2, BU He1, KUANG Hai-Xue1*

Total Page:16

File Type:pdf, Size:1020Kb

Phytochemistry and Pharmacology of Genus Ephedra ZHANG Ben-Mei1∆, WANG Zhi-Bin1∆, XIN Ping1, WANG Qiu-Hong2, BU He1, KUANG Hai-Xue1* Chinese Journal of Natural Chinese Journal of Natural Medicines 2018, 16(11): 08110828 Medicines doi: 10.3724/SP.J.1009.2018.00811 Phytochemistry and pharmacology of genus Ephedra ZHANG Ben-Mei1∆, WANG Zhi-Bin1∆, XIN Ping1, WANG Qiu-Hong2, BU He1, KUANG Hai-Xue1* 1 Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; 2 Department of Natural Medicinal Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510000, China Available online 20 Nov., 2018 [ABSTRACT] The genus Ephedra of the Ephedraceae family contains more than 60 species of nonflowering seed plants distributed throughout Asia, America, Europe, and North Africa. These Ephedra species have medicinal, ecological, and economic value. This review aims to summarize the chemical constituents and pharmacological activities of the Ephedra species to unveil opportunities for future research. Comprehensive information on the Ephedra species was collected by electronic search (e.g., GoogleScholar, Pubmed, SciFinder, and Web of Science) and phytochemical books. The chemical compounds isolated from the Ephedra species include alka- loids, flavonoids, tannins, polysaccharides, and others. The in vitro and in vivo pharmacological studies on the crude extracts, fractions and few isolated compounds of Ephedra species showed anti-inflammatory, anticancer, antibacterial, antioxidant, hepatoprotective, anti-obesity, antiviral, and diuretic activities. After chemical and pharmacological profiling, current research is focused on the antibac- terial and antifungal effects of the phenolic acid compounds, the immunosuppressive activity of the polysaccharides, and the antitumor activity of flavonoids. [KEY WORDS] Ephedra; Phytochemistry; Pharmacology [CLC Number] R284.1, R965 [Document code] A [Article ID] 2095-6975(2018)11-0811-18 Introduction used to treat cold, bronchial asthma, cough, fever, flu, head- ache, edema and allergies. E. sinica has become a natural Ephedra is a genus of non-flowering seed plants belong- product source of ephedrine, pseudoephedrine, and other com- [1] ing to the Ephedraceae family , which includes approxi- pounds [3]. In addition, in some western countries, Ephedra mately 67 species, mainly in the desert areas of Asia, America, sinica has been used as a dietary supplement [4]. It can also be Europe and North Africa. Among these species, 15 ones and used to lose weight by increasing sweating and basal metabo- four varieties can be found in China. Ephedra sinica is a lism and by stimulating the central nervous system [5]. More- member of genus Ephedra and is the primary species that has over, it has also been combined with cardiovascular drugs to been used in China for more than 5000 years [2]. treat cardiovascular diseases [6]. Many reports about the side Ephedrae Herba is defined as the stem of Ephedra sinica effects of E. sinica have emerged, especially in western coun- Stapf, Ephedra intermedia Schrenket C. A. Meyer, or Ephedra tries. A number of side effects of over-the-counter drugs con- equisetina Bunge (Ephedraceae) in the Chinese Pharma- taining ephedrine have been reported, such as myocardial copoeia 15th edition. Dried E. sinica stems are traditionally infarction, arrhythmia, epilepsy, loss of consciousness, and death [7]. In 2004, the FDA announced the prohibition of die- [Received on] 28-Dec.-2017 tary supplements containing E. sinica [8]. With the restriction [Research funding] The study was supported by the Major State on the use of E. sinica and its related preparations in the US, Basic Research Development Program (973 Program) of China ( No. other countries have also joined the ban, which has led to 2013CB531800). difficulties in the use and development of ephedra drugs. To [*Corresponding author] Tel: 86-451-87267188, Fax: 86-451-8726- 7188, E-mail: hxkuang@ yahoo.com resolve this problem, novel pharmacological effects of △These authors contributed equally to this work. ephedra should be investigated. In addition to ephedrine al- These authors have no conflict of interest to declare. kaloids, there are other substances in ephedra, such as poly- – 811 – ZHANG Ben-Mei, et al. / Chin J Nat Med, 2018, 16(11): 811828 saccharides, flavonoids (30–71), tannins (72–118), and mis- more than 145 compounds have been isolated and identified cellaneous compounds (119–145). These substances have from the genus Ephedra, including alkaloids, flavonoids, anti-inflammatory, anticancer, antibacterial, antioxidant, and tannins, and polysaccharides. The compounds isolated from hepatoprotective activities. We conducted a systematic review each species are documented in Tables 1–6. Their chemical of the literature to summarize the currently reported chemical structures are shown in Figs. 1–5. constituents and pharmacological activities of Ephedra. Alkaloids Alkaloids are the main components of this genus. Historical and Botanical Characterization of Ephedra Twenty-nine alkaloids, 1–29, were isolated from this genus. E. sinica is one of the original species of the Ephedraceae Structural characteristics of these compounds are listed as family that was recorded in the Chinese Pharmacopoeia as follows: (1) the amphetamine-type alkaloids (6–18) are the “Ma Huang”. As a stimulant and an anti-asthmatic, E. sinica main active ingredients of E. sinica, including amphetamine has a long medicinal history for the treatment of cold, fever, alkaloids of three stereoisomers (6–11). In addition, com- headache, rhinobyon and other symptoms [9]. In the ancient pound 12, structurally similar to ephedrine, is an anti-in- Han Dynasty, E. sinica was recorded as a stimulant and anti- flammatory compound isolated from Ephedra sinica and be- tussive agent. During the time of the Roman Empire, E. sinica longs to the oxazolone derivatives. Compounds 13 and 14 was well known until it was eventually dropped from medie- may also belong to the oxazolidine alkaloid of the structure. val European literature [10]. However, in the beginning of the Compounds 15 and 16, structurally similar to pseudoephed- 20th century, Ephedra sinica emerged as a weight loss and rine and ephedrine, are trace alkaloids in E. sinica. Compound performance enhancement drug and gradually attracted inter- 18 is a new amphetamine-type alkaloid, which is isolated est. However, products containing Ephedra were banned in from the ethanol extract from the E. sinica stem. (2) Ephedri- the US in 2004 after several years of high-profile reports of nes isolated from the E. sinica root are mainly macrocyclic adverse events [11]. spermine alkaloids (1–4) and an imidazole alkaloid (5). (3) In E. sinica plants are perennial herbs standing, more than recent years, five new quinoline alkaloids have been isolated one meter tall, with thin stems, no leaves, and a strong smell from other species of Ephedra (19–23). These quinoline al- of pine and astringency [12]. Furthermore, E. sinica is a kaloids have a carboxyl group on the C-2 position and have drought-tolerant shrub distributed in both temperate and sub- oxygen-containing substitutions on the benzene ring (20, tropical arid environments in the northern hemisphere and 22–23). Generally, these substitutions are methoxyl and hy- South America [13]. droxyl groups. (4) A pyrrolidine alkaloid (24) is isolated from Progress in Phytochemical Studies on the Genus the seeds of E. foeminea and E. foliata. (5) Other alkaloids (25–29) have been isolated from other species of Ephedra. Ephedra The plant sources, names and structures of these alkaloid Until now, phytochemical studies have revealed that compounds are shown in Table 1 and Fig. 1. Table 1 Alkaloids different species of the genus Ephedra (the structures of main compounds are illustrated in Fig. 1) Classification Chemical name Plant source Ref. Macrocyclic spermine alkaloids Ephedradine A (1) E. sinica (root) [26] Ephedradine B (2) E. sinica (root) [27] Ephedradine C (3) E. sinica (root) [27] Ephedradine D (4) E. sinica (root) [28] Imidazole alkaloid Feruloylhistamine (5) E. sinica (root) [29] Amphetamine-type alkaloids D(–)-Ephedrine (6) E. Sinica, E. nebrodensis, E. major [30-32] L(+)-Pseudoephedrine (7) E. sinica, E. nebrodensis [31, 33] D(–)Norephedrine (8) E. sinica, E. nebrodensis [31, 33] L(+)-Noreseudoephedrine (9) E. sinica [31, 33] D(–)Methylephedrine (10) E. sinica, E. nebrodensis [31, 33] L(+)-Methylpseudoephedrine (11) E. sinica, E. nebrodensis [31, 33] Ephedroxane (12) E. sinica [34-35] 3, 4-Dimethyl-5-pheyloxazolidine (13) E. sinica [17, 35] 2, 3, 4-Trimethyl-5-phenyloxazolidine (14) E. sinica [17, 35] O-benzoyl-L(+)-pseudoephedrine (15) E. sinica [35-36] O-benzoyl-D(–)-ephedrine (16) E. sinica [35-36] Hordenine (17) E. aphylla [35, 37] (S)-N-((1R, 2S)-1-hydroxy-1-phenylpropan-2-yl)-5- E. sinica [35, 38] oxopyrrolidine-2-carboxamide (18) – 812 – ZHANG Ben-Mei, et al. / Chin J Nat Med, 2018, 16(11): 811828 Continued Classification Chemicla name Plant source Ref. Quinoline alkaloids Transtorine (19) E. transitoria [39] 6-Methoxykynurenic acid (20) E. pachyclada ssp. sinaica [40] Kynurenic acid (21) E. pachyclada ssp. sinaica [40] 6-Hydroxykynurenic acids (22) E. foeminea ssp. foliata [40] Ephedralone (23) E. Alata, E. aphylla [41-42] Pyrrolidine alkaloid cis-3, 4-Methanoproline (24) E. foeminea ssp. foliate (seed) [43] Other alkaloids Maokonine (25) E. sinica (root) [44] (±)-1-Phenyl-2-imido-1-propanol (26) E. sinica [45] Tetramethylpyrazine (27) E. sinica [46] N-methybenzlamine (28) E. sinica [47] (2S, 3S, 4S)-2-(carboxycyclopropyl)glycine
Recommended publications
  • Clinical Uses and Toxicity of Ephedra Sinica: an Evidence-Based Comprehensive Retrospective Review (2004–2017)
    Pharmacogn J. 2019; 11(1): 447-452 A Multifaceted Journal in the field of Natural Products and Pharmacognosy Review Article www.phcogj.com | www.journalonweb.com/pj | www.phcog.net Clinical uses and Toxicity of Ephedra sinica: An Evidence-Based Comprehensive Retrospective Review (2004–2017) Walaa Al saeed1, Marwa Al Dhamen1, Rizwan Ahmad2*, Niyaz Ahmad3, Atta Abbas Naqvi4 ABSTRACT Background: Ephedra sinica (ES) (Ma-huang) is a well-known plant due to its widespread therapeutic uses. However, many adverse effects such as hepatitis, nephritises, and cardio- vascular toxicity have been reported for this plant. Few of these side effects are reversible whereas others are irreversible and may even lead to death. Aim of the Study: The aim of this study was to investigate the clinical uses and toxicity cases/consequences associated 1 Walaa Al saeed , Marwa Al with the use of ES. The review will compare and evaluate the cases reported for ES and identify Dhamen1, Rizwan Ah- the causes which make the plant a poisonous one. Materials and Methods: An extensive mad2*, Niyaz Ahmad3, Atta literature review was conducted from 2004 to 2017, and research literature regarding the Abbas Naqvi4 clinical cases were collected using databases and books such as Google Scholar, Science Direct, Research gate, PubMed, and Web of Science/Thomson Reuters whereas the keywords 1College of Clinical Pharmacy, Imam searched were “Ephedra sinica,” clinical cases of Ephedra sinica, “Ma-hung poisonous,” Abdulrahman Bin Faisal University, “Ma-hung toxicity reported cases and treatment,” and “Ephedra Sinica toxicity reported cases Dammam, SAUDI ARABIA. and treatment.” Results: eleven different cases were identified which met the eligibility criteria 2Natural Products and Alternative Medi- and were studied in detail to extract out the findings.
    [Show full text]
  • Discrimination of Three Ephedra Species and Their Geographical
    www.nature.com/scientificreports OPEN Discrimination of three Ephedra species and their geographical origins based on multi-element Received: 6 December 2017 Accepted: 22 June 2018 fngerprinting by inductively Published: xx xx xxxx coupled plasma mass spectrometry Xiaofang Ma1, Lingling Fan1, Fuying Mao1,2, Yunsheng Zhao1,2,3, Yonggang Yan4, Hongling Tian5, Rui Xu1, Yanqun Peng1 & Hong Sui1,2 Discrimination of species and geographical origins of traditional Chinese medicine (TCM) is essential to prevent adulteration and inferior problems. We studied Ephedra sinica Stapf, Ephedra intermedia Schrenk et C.A.Mey. and Ephedra przewalskii Bge. to investigate the relationship between inorganic element content and these three species and their geographical origins. 38 elemental fngerprints from six major Ephedra-producing regions, namely, Inner Mongolia, Ningxia, Gansu, Shanxi, Shaanxi, and Sinkiang, were determined to evaluate the importance of inorganic elements to three species and their geographical origins. The contents of 15 elements, namely, N, P, K, S, Ca, Mg, Fe, Mn, Na, Cl, Sr, Cu, Zn, B, and Mo, of Ephedra samples were measured using inductively coupled plasma mass spectroscopy. Elemental contents were used as chemical indicators to classify species and origins of Ephedra samples using a radar plot and multivariate data analysis, including hierarchical cluster analysis (HCA), principal component analysis (PCA), and discriminant analysis (DA). Ephedra samples from diferent species and geographical origins could be diferentiated. This study showed that inorganic elemental fngerprint combined with multivariate statistical analysis is a promising tool for distinguishing three Ephedra species and their geographical origins, and this strategy might be an efective method for authenticity discrimination of TCM.
    [Show full text]
  • Scientific Assessment of Ephedra Species (Ephedra Spp.)
    Annex 3 Ref. Ares(2010)892815 – 02/12/2010 Recognising risks – Protecting Health Federal Institute for Risk Assessment Annex 2 to 5-3539-02-5591315 Scientific assessment of Ephedra species (Ephedra spp.) Purpose of assessment The Federal Office of Consumer Protection and Food Safety (BVL), in collaboration with the ALS working party on dietary foods, nutrition and classification issues, has compiled a hit list of 10 substances, the consumption of which may pose a health risk. These plants, which include Ephedra species (Ephedra L.) and preparations made from them, contain substances with a strong pharmacological and/or psychoactive effect. The Federal Ministry of Food, Agriculture and Consumer Protection has already asked the EU Commission to start the procedure under Article 8 of Regulation (EC) No 1925/2006 for these plants and preparations, for the purpose of including them in one of the three lists in Annex III. The assessment applies to ephedra alkaloid-containing ephedra haulm. The risk assessment of the plants was carried out on the basis of the Guidance on Safety Assessment of botanicals and botanical preparations intended for use as ingredients in food supplements published by the EFSA1 and the BfR guidelines on health assessments2. Result We know that ingestion of ephedra alkaloid-containing Ephedra haulm represents a risk from medicinal use in the USA and from the fact that it has now been banned as a food supplement in the USA. Serious unwanted and sometimes life-threatening side effects are associated with the ingestion of food supplements containing ephedra alkaloids. Due to the risks described, we would recommend that ephedra alkaloid-containing Ephedra haulm be classified in List A of Annex III to Regulation (EC) No 1925/2006.
    [Show full text]
  • CBD Strategy and Action Plan
    Biological Diversity of Tajikistan 1.2.2. Specific diversity For thousands of years, people of Tajiki- stan lived in harmony with the natural diversity of flora and fauna. In the process of historical de- velopment, they created many new forms of food, medicine, and forage crops, and domestic animals, promoted their conservation, thus en- riching the natural biodiversity. The recent cen- tury was marked by an increased human nega- tive impact on biodiversity, due to the population Ruderal-degraded ecosystems growth and active land mastering. The conservation of vegetation biodiver- Ruderal ecosystems of the foothills are sity in the mountains prevents the fertile soil generally represented by one species open plant layer from erosion and destruction by mudflows, communities: caper (Capparis spinosa), frag- and regulates groundwater formation. ments of wall barley (Hordeum leporinum), an- nual saltworts (Salsola pestifera, S.turkestanica, A. Vegetation world S.forcipitata), and camel’s thorn (Alhagi kirghi- The vegetation world is represented by a sorum). great genetic and environmental diversity, and a Ruderal communities of the low-mountain unique specific diversity; it includes 9771 species zone are represented by Cynodon dactilon, Pro- and 20 formations. sopis farcta, cousinia (Cousinia Olgae, The processes of xerophytization, C.polycephala, C.ambigens, C.dichromata, ephemerization, mesophyllization, cryophytiza- C.microcarpa, C.radians, C.pseudoarctium, etc.), tion, and migration processes in Tajikistan and forbs. caused an extensive formation of flora species Licorice, together with reed (Saccharum and forms. This resulted in the appearance of spontaneum) and camel’s thorn (Alhagi kirghi- numerous vicarious plants, altitudinal and eco- sorum), are formed after cuttings in the forest logical vicariants that considerably enriched the ecosystem zone.
    [Show full text]
  • Wildlife Protection Along the Karakorum Highway in Khunjerab
    Pakistan J. Zool., vol. 44(5), pp. 1452-1457, 2012. occurred, causing severe destruction along the KKH. In February 2006, Pakistan and China signed Wildlife Protection Along the a Memorandum of Understanding which initiated Karakorum Highway in Khunjerab the improvement of the highway between Raikot Bridge and Khunjerab Pass during first phase of National Park project (Tao et al., 2010). The section of the KKH from K753+800 to Yun Wang,1 * Jiding Chen,1 Shuangcheng Tao,1 1 1 K811+343 (kilometer markers) bisects Khunjerab Mengmeng Wang, Xuanya Wang and Asif National Park (KNP). The KNP was built in 1975 Shah2 1 with the primary objective of protecting the China Academy of Transportation Sciences, threatened species Marco Polo sheep (Ovis ammon Beijing, 100029, China 2 polii) and its natural habitat. Other protected species China Agricultural University, Beijing, 100193, found in the KNP include: the snow leopard (Uncia China uncia) and the brown bear (Ursus arctos). These species of wildlife make the KNP one of the most Abstract.- The Karakorum Highway (KKH) which connects Pakistan and China passes through important centers for biodiversity in Pakistan Khunjerab National Park in Pakistan. The park has (Qureshi et al., 2011). extremely rich wildlife diversity. The potential The impact of highway construction on adverse impacts of KKH improvement project on wildlife and the need to protect wildlife are wildlife were analyzed with field surveys, becoming critical issues for zoologists throughout interviews and secondary data for the period from 2009 to 2011. Protective measures were developed the world (Forman and Alexander, 1998). The and used to guide highway construction.
    [Show full text]
  • Sequence Analysis of Chloroplast Chlb Gene of Medicinal Ephedra Species and Its Application to Authentication of Ephedra Herb
    June 2006 Biol. Pharm. Bull. 29(6) 1207—1211 (2006) 1207 Sequence Analysis of Chloroplast chlB Gene of Medicinal Ephedra Species and Its Application to Authentication of Ephedra Herb a a b b b Yahong GUO, Ayako TSURUGA, Shigeharu YAMAGUCHI, Koji OBA, Kasumi IWAI, c,1) ,a Setsuko SEKITA and Hajime MIZUKAMI* a Graduate School of Pharmaceutical Sciences, Nagoya City University; 3–1 Tanabe-dori, Mizuho-ku, Nagoya 467–8603, Japan: b Research and Development Department, Asgen Pharmaceutical Co., Ltd.; 2–28–8 Izumi, Higashi-ku, Nagoya 461–8531, Japan: and c Tsukuba Medicinal Plant Research Station, National Institute of Health Sciences; 1 Hachimandai, Tsukuba, Ibaraki 305–0843, Japan. Received December 26, 2005; accepted February 15, 2006 Chloroplast chlB gene encoding subunit B of light-independent protochlorophyllide reductase was amplified from herbarium and crude drug specimens of Ephedra sinica, E. intermedia, E. equisetina, and E. przewalskii. Se- quence comparison of the chlB gene indicated that all the E. sinica specimens have the same sequence type (Type S) distinctive from other species, while there are two sequence types (Type E1 and Type E2) in E. equisetina. E. intermedia and E. prezewalskii revealed an identical sequence type (Type IP). E. sinica was also identified by di- gesting the chlB fragment with Bcl I. A novel method for DNA authentication of Ephedra Herb based on the se- quences of the chloroplast chlB gene and internal transcribed spacer of nuclear rRNA genes was developed and successfully applied for identification of the crude drugs obtained in the Chinese market. Key words chloroplast chlB; DNA authentication; Ephedra Herb; polymerase chain reaction-restriction fragment length poly- morphism Ephedra Herb is an important crude drug which has been nucleotide deletions were present in the trnL/trnF spacer of used in Chinese and Japanese traditional (Kampo) medi- E.
    [Show full text]
  • Interdisciplinary Investigation on Ancient Ephedra Twigs from Gumugou Cemetery (3800B.P.) in Xinjiang Region, Northwest China
    MICROSCOPY RESEARCH AND TECHNIQUE 00:00–00 (2013) Interdisciplinary Investigation on Ancient Ephedra Twigs From Gumugou Cemetery (3800b.p.) in Xinjiang Region, Northwest China 1,2 1,2 3 1,2 MINGSI XIE, YIMIN YANG, * BINGHUA WANG, AND CHANGSUI WANG 1Laboratory of Human Evolution, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China 2Department of Scientific History and Archaeometry, University of Chinese Academy of Sciences, Beijing 100049, China 3School of Chinese Classics, Renmin University of China, Beijing 100872, China KEY WORDS Ephedra; SEM; chemical analysis; GC-MS ABSTRACT In the dry northern temperate regions of the northern hemisphere, the genus Ephedra comprises a series of native shrub species with a cumulative application history reach- ing back well over 2,000 years for the treatment of asthma, cold, fever, as well as many respira- tory system diseases, especially in China. There are ethnological and philological evidences of Ephedra worship and utilization in many Eurasia Steppe cultures. However, no scientifically verifiable, ancient physical proof has yet been provided for any species in this genus. This study reports the palaeobotanical finding of Ephedra twigs discovered from burials of the Gumugou archaeological site, and ancient community graveyard, dated around 3800 BP, in Lop Nor region of northwestern China. The macro-remains were first examined by scanning electron microscope (SEM) and then by gas chromatography-mass spectrometry (GC-MS) for traits of residual bio- markers under the reference of modern Ephedra samples. The GC-MS result of chemical analy- sis presents the existence of Ephedra-featured compounds, several of which, including benzaldehyde, tetramethyl-pyrazine, and phenmetrazine, are found in the chromatograph of both the ancient and modern sample.
    [Show full text]
  • 1. EPHEDRA Linnaeus, Sp. Pl. 2: 1040. 1753. 麻黄属 Ma Huang Shu Morphological Characters and Geographical Distribution Are the Same As Those of the Family
    Flora of China 4: 97–101. 1999. 1 1. EPHEDRA Linnaeus, Sp. Pl. 2: 1040. 1753. 麻黄属 ma huang shu Morphological characters and geographical distribution are the same as those of the family. 1a. Bracts of seed cones almost completely free, connate only at base, light brown and membranous at maturity ......................................................................................................................................... 1. E. przewalskii 1b. Bracts of seed cones usually connate for 1/3–5/6 their length, red and fleshy at maturity. 2a. Seeds prominently longitudinally ridged, with dense, tiny projections .............................. 3. E. rhytidosperma 2b. Seeds smooth, rarely finely longitudinally striate. 3a. Integument tube 3–5 mm, usually spirally twisted ............................................................. 2. E. intermedia 3b. Integument tube 1–2(–2.5) mm, straight, curved, or slightly twisted. 4a. Shrubs or subshrubs, usually 50–150 cm. 5a. Bracts of seed cones with margin broad, membranous, often erose; integument tube ca. 1.5 mm, slightly spirally twisted; seeds 2 or 3; subshrubs usually to 50 cm .......... 4. E. lomatolepis 5b. Bracts of seed cones with margin narrower, entire or almost so; integument tube 1–2 mm, straight or slightly curved; seeds 1 or 2; shrubs or subshrubs often more than 50 cm. 6a. Apical pair of bracts of seed cones connate for 3/4–8/9 their length; seeds finely striate dorsally ................................................................................................. 9. E. likiangensis 6b. Apical pair of bracts of seed cones connate for 1/2–2/3 their length; seeds completely smooth. 7a. Herbaceous branches virgate, often pruinose, 1–1.5 mm in diam., rigid; integument tube to 2 mm, straight or slightly curved; plants to 100 cm or more .................
    [Show full text]
  • Their Uses and Degrees of Risk of Extinc
    Saudi Journal of Biological Sciences 28 (2021) 3076–3093 Contents lists available at ScienceDirect Saudi Journal of Biological Sciences journal homepage: www.sciencedirect.com Original article Medicinal plants resources of Western Himalayan Palas Valley, Indus Kohistan, Pakistan: Their uses and degrees of risk of extinction ⇑ Mohammad Islam a, , Inamullah a, Israr Ahmad b, Naveed Akhtar c, Jan Alam d, Abdul Razzaq c, Khushi Mohammad a, Tariq Mahmood e, Fahim Ullah Khan e, Wisal Muhammad Khan c, Ishtiaq Ahmad c, ⇑ Irfan Ullah a, Nosheen Shafaqat e, Samina Qamar f, a Department of Genetics, Hazara University, Mansehra 21300, KP, Pakistan b Department of Botany, Women University, AJK, Pakistan c Department of Botany, Islamia College University, 25120 KP, Peshawar, Pakistan d Department of Botany, Hazara University, Mansehra 21300, KP, Pakistan e Department of Agriculture, Hazara University, Mansehra, KP, Pakistan f Department of Zoology, Govt. College University, Faisalabad, Pakistan article info abstract Article history: Present study was intended with the aim to document the pre-existence traditional knowledge and eth- Received 29 December 2020 nomedicinal uses of plant species in the Palas valley. Data were collected during 2015–2016 to explore Revised 10 February 2021 plants resource, their utilization and documentation of the indigenous knowledge. The current study Accepted 14 February 2021 reported a total of 65 medicinal plant species of 57 genera belonging to 40 families. Among 65 species, Available online 22 February 2021 the leading parts were leaves (15) followed by fruits (12), stem (6) and berries (1), medicinally significant while, 13 plant species are medicinally important for rhizome, 4 for root, 4 for seed, 4 for bark and 1 each Keywords: for resin.
    [Show full text]
  • Review of the Powder and Decoction Formulae in Traditional Chinese
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Online Submissions: http://www.journaltcm.com J Tradit Chin Med 2015 June 15; 35(3): 355-360 [email protected] ISSN 0255-2922 © 2015 JTCM. All rights reserved. REVIEWTOPIC Review of the powder and decoction formulae in Traditional Chi- nese Medicine based on pharmacologically active substances and clinical evidence Liu Qihua, Wen Jin, Peng Zhiping, Liu Fenglin, Tong Xiaolin aa Liu Qihua, Wen Jin, Peng Zhiping, Tong Xiaolin, Depart- tions; Pharmacology; Medicine, Chinese traditional; ment of Pharmacy and Endocrinology, Guang'an men Hospi- Review tal, China Academy of Chinese Medical Sciences, Beijing 100053, China Liu Fenglin, Department of Medical, Harbin Emergency INTRODUCTION Center, Harbin 150020, China Supported by National Basic Research Program of China Most crude drugs used in Traditional Chinese Medi- (Dose-Effect Relationship Study of Classical famous Prescrip- cine (TCM) are natural products. Some come from en- tion, No. 2010CB530601), Beijing Science Society Project dangered species, which means their supply is very lim- (Common technology Demonstration and Research for Boil- ited and the supply of some crude drugs is constrained ing Powders of Chinese Materia Medica, No. by their exhaustibility. The use of power formulae is an Z121102001112010) effective way to conserve these crude drug resources. Correspondence to: Prof. Tong Xiaolin, Department of En- Study indicates that the use of powder formulae can docrinology, Guang'an men Hospital, China Academy of Chi- save up to two-thirds of each drug used compared with nese Medical Sciences, Beijing 100053, China.
    [Show full text]
  • Identification of Ephedra Species by Phylogenetic Analyses Using Matk
    Acta Societatis Botanicorum Poloniae DOI: 10.5586/asbp.3497 ORIGINAL RESEARCH PAPER Publication history Received: 2015-09-05 Accepted: 2016-04-22 Identification ofEphedra species by Published: 2016-06-13 phylogenetic analyses using matK and ITS1 Handling editor Przemysław Wojtaszek, Faculty of Biology, Adam Mickiewicz sequences University, Poland Authors’ contributions Yun Sheng Zhao1,2,3*, Li Xia Xie1,2, Fu Ying Mao1, Zhe Cao1,2, Wen LXX and YSZ equally contributed 1,2 1,2,3 1,2 to this study; YSZ designed the Ping Wang , Qi Peng Zhao , Xin Hui Zhang study and analyzed the data; 1 Ningxia Medical University Pharmacy College, Yinchuan 750004, Ningxia, China LXX performed the lab and 2 Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan wrote the manuscript; FYM, ZC, 750004, Ningxia, China WPW, QPZ, and XHZ collected 3 Ministry of Education Key Laboratory of Modern Hui Chinese Medicine, Yinchuan 750004, field data and collaborated with Ningxia, China statistics and results interpretation; FYM and ZC * Corresponding author. Email: [email protected] analyzed matK data; WPW, QPZ, and XHZ analyzed ITS1 data Abstract Funding This study was supported by In this study, the species identifications of seven Ephedra plants, including three a grant (No. 81160505) from medicinal plants from the Pharmacopoeia of the People’s Republic of China, were the National Natural Science conducted using phylogenetic analyses, and the method’s validity was verified. Foundation of China. The phylogenetic trees constructed from the maturase-coding gene (matK) and Competing interests internal transcribed spacer 1 (ITS1) sequences showed that the former could be No competing interests have used for identifying five Ephedra plants, Ephedra intermedia, E.
    [Show full text]
  • The First Record of Ephedra Distachya L. (Ephedraceae, Gnetophyta) in Serbia - Biogeography, Coenology, and Conservation
    42 (1): (2018) 123-138 Original Scientific Paper The first record of Ephedra distachya L. (Ephedraceae, Gnetophyta) in Serbia - Biogeography, coenology, and conservation - Marjan Niketić Natural History Museum in Belgrade, Njegoševa 51, 11000 Belgrade, Serbia ABSTRACT: During floristic investigations of eastern Serbia (foothills of the Stara Planina Mountains near Minićevo, Turjačka Glama hill), Ephedra distachya (Ephedraceae) was discovered as a species new for the vascular flora of Serbia. An overview of the family, genus, and species is given in the present paper. In addition, two phytocoenological relevés recorded in the species habitat are classified at the alliance level. The IUCN threatened status of the population in Serbia is assessed as Critically Endangered. Keywords: Ephedra distachya, Ephedraceae, new record, Stara Planina Mountains, flora of Serbia Received: 13 September 2017 Revision accepted: 28 November 2017 UDC: 497.11:581.95 DOI: INTRODUCTION Stevenson (1993), and Fu et al. (1999). The distribution of E. distachya in the Southeast Europe is mapped on a In spite of continuous and intensive investigations of 50×50 km MGRS grid system (Lampinen 2001) based the Serbian flora at the end of the 20th century (Josifo- on the species distribution map in the Atlas Florae Euro- vić 1970-1977; Sarić & Diklić 1986; Sarić 1992; Ste- paeae (Jalas & Suominen 1973) and supplemented and/ vanović 1999), numerous new species and even higher or confirmed by chrorological records from Stoyanov taxa were recorded in the past two decades (Stevanović (1963), Horeanu & Viţalariu (1992), Christensen 2015). Last year, Ephedra distachya L. − a relict species (1997), Sanda et al. (2001), Tzonev et al.
    [Show full text]