Seaclouds Project D7.4 Final Exploitation Plan

Total Page:16

File Type:pdf, Size:1020Kb

Seaclouds Project D7.4 Final Exploitation Plan SeaClouds Project D7.4 Final Exploitation Plan Project Acronym SeaClouds Project Title Seamless adaptive multi-cloud management of service- based applications Call identifier FP7-ICT-2012-10 Grant agreement no. Collaborative Project Start Date 1st October 2013 Ending Date 31st March 2016 Work Package WP7, Exploitation and Collaboration Due Date: M30 Submission Date: 30th March 2016 Version: 1.0 Status Draft Author(s): Ivan Febles (ATOS) Reviewer(s) Oliver Barreto Javier Cubo D7.4 Final Exploitation Plan 2 Dissemination Level Project co-funded by the European Commission within the Seventh Framework Programme PU Public PP Restricted to other programme participants (including the Commission) RE Restricted to a group specified by the consortium (including the Commission) CO Confidential, only for members of the consortium (including the Commission) X Version History Version Date Comments, Changes, Status Authors, contributors, reviewers 0.1 22/03/2016 Initial draft Ivan Febles Andrea Turli Javier Cubo Francesco D´Andria 0.2 Reviewed document Elisabetta di Nitto Christian Tismer Antonio Brogi Oliver Barreto 1.0 30/03/2016 Final document Ivan Febles D7.4 Final Exploitation Plan 3 Table of Contents List of figures .............................................................................................................................. 4 List of acronyms ......................................................................................................................... 4 Executive Summary .................................................................................................................... 5 1. Introduction ........................................................................................................................ 6 2. SeaClouds: an update ........................................................................................................ 7 3. Exploitation methodology and approach .............................................................................. 8 3.1 Impact creation .............................................................................................................. 10 3.1.1 Impact on Research & Scientific community ........................................................... 10 3.1.2 Market oriented impact .......................................................................................... 13 3.2 Exploitation milestones ................................................................................................ 14 The SeaClouds - Apache Brooklyn – Canopy triangle ....................................................... 14 Contribution to standards ................................................................................................ 16 Potential adoption by IBM ................................................................................................ 16 Contribution to Cloud Foundry......................................................................................... 17 UMA´s spinoff creation ..................................................................................................... 17 Other potential collaborations ......................................................................................... 18 SeaClouds as a whole ....................................................................................................... 18 4. SeaClouds Alliance ............................................................................................................ 18 4.1 Joining an existing Alliance ............................................................................................. 19 4.2 Creating the SeaClouds Alliance ..................................................................................... 20 4.2.1 Objectives ................................................................................................................ 20 4.2.2 Structure .................................................................................................................. 21 4.2.3 Activities and roles .................................................................................................. 21 4.2.4 Memorandum of Understanding ............................................................................ 22 5. Sustainability update ........................................................................................................ 22 6. Individual Exploitation Plans ............................................................................................ 24 6.1. ATOS .............................................................................................................................. 24 6.2. Universidad de Málaga ................................................................................................ 27 6.3. Universitá di Pisa .......................................................................................................... 30 6.4. Politecnico di Milano .................................................................................................... 32 6.5. Nurogames ................................................................................................................... 34 6.6. Cloudsoft ...................................................................................................................... 37 7. Conclusions ....................................................................................................................... 38 Annex A .................................................................................................................................... 40 References ............................................................................................................................... 45 D7.4 Final Exploitation Plan 4 List of figures Figure 1: IaaS and PaaS providers .............................................................................................. 7 Figure 2: RightScale State of the Cloud Report .......................................................................... 9 Figure 3: Gartner´s forecast about hybrid cloud ....................................................................... 9 Figure 4: SeaClouds - Canopy meeting .................................................................................... 15 Figure 5: SeaClouds demo for IBM .......................................................................................... 16 Figure 6: MultiClouds DevOps Alliance .................................................................................... 19 List of acronyms Acronym Meaning AAM Abstract Application Model ADP Abstract Deployment Plan DAM Deployment Application Model R&D Research and Development SWOT Strengths, Weaknesses, Opportunities and Threats CAMP Cloud Application Management for Platforms TOSCA Topology Orchestration Specification for Cloud Applications TC Technical Committee ESOCC European Conference on Service Oriented and Cloud Computing WP7 Work Package 7 SLA Service Level Agreement MoU Memorandum of Understanding D7.4 Deliverable 7.4 AKA Also known as DTT Design Time Toolkit RTE Runtime Engine CTO Chief Technology Officer ARI Atos Research and Innovation QoS Quality of Service QoB Quality of Business IaaS Infrastructure as a Service PaaS Platform as a Service SoTA State of The Art OSS Open Source Software ICT Information and Communication Technologies CF Cloud Foundry D7.4 Final Exploitation Plan 5 Executive Summary This document provides the final version of the exploitation plans for the SeaClouds project. We have tried to reflect the impact generated at both internal and external level in such different fields like the scientific and research community and the cloud industry. In the case of the internal impact, this will be described by each partner through the updated version of their individual exploitation plans, which will have an important relevance on the overall exploitation strategy of SeaClouds. On the other hand, the external impact will be demonstrated by showing the wide list of actions carried out, like the contributions to standardization bodies or the improvements provided for related tools like Apache Brooklyn. One of the important topics of this new delivery is related to the need, realized by the consortium, of extending the project beyond the funding period. The great exploitation potential of a solution like SeaClouds together with the room for improvement that it still has, have led the consortium to consider different alternatives which, from the joint perspective, basically consist on creating an alliance to extend the life of the project for at least an additional year or to join an existing alliance, like the one created by a related project like MODAClouds, called Multi-Cloud DevOps Alliance1 and which counts with the involvement of two SeaClouds partners, namely POLIMI and Atos. Although all the partners of the consortium have stated their intention to sign the required documents (Exploitation agreement or MoU) that provides official validity to these possible Alliances, the internal procedures of some of the legal departments involved have delayed it. However, for the date of the review meeting we expect this document to be finished and signed by all the involved parties. 1 http://multiclouddevops.com/ D7.4 Final Exploitation Plan 6 1. Introduction This is the last deliverable of the exploitation series, included in WP7 under task 7.3. Herein are collected the multiple efforts carried out by the different partners to generate impact, both internally and externally to
Recommended publications
  • Openstack Designate
    OpenStack Designate Stephan Lagerholm Graham Hayes What is OpenStack? OpenStack is a free open standard cloud computing platform, mostly deployed as infrastructure-as-a-service (IaaS) in both public and private clouds where virtual servers and other resources are made available to users. The software platform consists of interrelated components that control diverse, multi-vendor hardware pools of processing, storage, and networking resources throughout a data center. Users either manage it through a web-based dashboard, through command-line tools, or through RESTful web services. OpenStack began in 2010 as a joint project of Rackspace Hosting and NASA. As of 2012, it was managed by the OpenStack Foundation (Source: Wikipedia) 2 Designate • Designate started as a project to maintain DNS infrastructure for OpenStack Users. It was an ecosystem project that was in production at both HP’s and Rackspace’s clouds. During 2015, Designate was moved into OpenStack Foundation and in 2017 it became a registered trademark. • Designate is providing API, CLI and a Graphical User interface so that OpenStack Users can setup and make changes to DNS data. The zones are thereafter exposed to secondary DNS servers via Zone Transfers. • Officially Bind 9.X and PowerDNS 4.X is supported although other DNS servers are known to work too. Most resource Record Types such as A, AAAA, PTR, CNAME, NS, MX, etc are supported 3 Producer Producer Backend Producer Producer Producer Worker Customer Facing API Central DNS Servers Standard XFR Secured by TSIG Nova / DB Mini
    [Show full text]
  • Google Is a Strong Performer in Enterprise Public Cloud Platforms Excerpted from the Forrester Wave™: Enterprise Public Cloud Platforms, Q4 2014 by John R
    FOR CIOS DECEMBER 29, 2014 Google Is A Strong Performer In Enterprise Public Cloud Platforms Excerpted From The Forrester Wave™: Enterprise Public Cloud Platforms, Q4 2014 by John R. Rymer and James Staten with Peter Burris, Christopher Mines, and Dominique Whittaker GOOGLE, NOW A FULL-SERVICE PLATFORM, IS RUNNING TO CATCH THE LEADERS Since our last analysis, Google has made significant improvements to its cloud platform — adding an IaaS service, innovated with new big data solutions (based on its homegrown dremel architecture), and added partners. Google is popular among web developers — we estimate that it has between 10,000 and 99,000 customers. But Google Cloud Platform lacks several key certifications, monitoring and security controls, and application services important to CIOs and provided by AWS and Microsoft.1 Google has also been slow to position its cloud platform as the home for applications that want to leverage the broad set of Google services such as Android, AdSense, Search, Maps, and so many other technologies. Look for that to be a key focus in 2015, and for a faster cadence of new features. Forrester Wave™: Enterprise Public Cloud Forrester Wave™: Enterprise Public Cloud Platforms For CIOs, Q4 ‘14 Platforms For Rapid Developers, Q4 ‘14 Risky Strong Risky Strong Bets Contenders Performers Leaders Bets Contenders Performers Leaders Strong Strong Amazon Web Services MIOsoft Microsoft Salesforce Cordys* Mendix MIOsoft Salesforce (Q2 2013) OutSystems OutSystems Google Mendix Acquia Current Rackspace* IBM Current offering (Q2 2013) offering Cordys* (Q2 2013) Engine Yard Acquia CenturyLink Google, with a Forrester score of 2.35, is a Strong Performer in this Dimension Data GoGrid Forrester Wave.
    [Show full text]
  • Deliverable No. 5.3 Techniques to Build the Cloud Infrastructure Available to the Community
    Deliverable No. 5.3 Techniques to build the cloud infrastructure available to the community Grant Agreement No.: 600841 Deliverable No.: D5.3 Deliverable Name: Techniques to build the cloud infrastructure available to the community Contractual Submission Date: 31/03/2015 Actual Submission Date: 31/03/2015 Dissemination Level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) Grant Agreement no. 600841 D5.3 – Techniques to build the cloud infrastructure available to the community COVER AND CONTROL PAGE OF DOCUMENT Project Acronym: CHIC Project Full Name: Computational Horizons In Cancer (CHIC): Developing Meta- and Hyper-Multiscale Models and Repositories for In Silico Oncology Deliverable No.: D5.3 Document name: Techniques to build the cloud infrastructure available to the community Nature (R, P, D, O)1 R Dissemination Level (PU, PP, PU RE, CO)2 Version: 1.0 Actual Submission Date: 31/03/2015 Editor: Manolis Tsiknakis Institution: FORTH E-Mail: [email protected] ABSTRACT: This deliverable reports on the technologies, techniques and configuration needed to install, configure, maintain and run a private cloud infrastructure for productive usage. KEYWORD LIST: Cloud infrastructure, OpenStack, Eucalyptus, CloudStack, VMware vSphere, virtualization, computation, storage, security, architecture. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 600841. The author is solely responsible for its content, it does not represent the opinion of the European Community and the Community is not responsible for any use that might be made of data appearing therein.
    [Show full text]
  • D1.5 Final Business Models
    ITEA 2 Project 10014 EASI-CLOUDS - Extended Architecture and Service Infrastructure for Cloud-Aware Software Deliverable D1.5 – Final Business Models for EASI-CLOUDS Task 1.3: Business model(s) for the EASI-CLOUDS eco-system Editor: Atos, Gearshift Security public Version 1.0 Melanie Jekal, Alexander Krebs, Markku Authors Nurmela, Juhana Peltonen, Florian Röhr, Jan-Frédéric Plogmeier, Jörn Altmann, (alphabetically) Maurice Gagnaire, Mario Lopez-Ramos Pages 95 Deliverable 1.5 – Final Business Models for EASI-CLOUDS v1.0 Abstract The purpose of the business working group within the EASI-CLOUDS project is to investigate the commercial potential of the EASI-CLOUDS platform, and the brokerage and federation- based business models that it would help to enable. Our described approach is both ‘top down’ and ‘bottom up’; we begin by summarizing existing studies on the cloud market, and review how the EASI-CLOUDS project partners are positioned on the cloud value chain. We review emerging trends, concepts, business models and value drivers in the cloud market, and present results from a survey targeted at top cloud bloggers and cloud professionals. We then review how the EASI-CLOUDS infrastructure components create value both directly and by facilitating brokerage and federation. We then examine how cloud market opportunities can be grasped through different business models. Specifically, we examine value creation and value capture in different generic business models that may benefit from the EASI-CLOUDS infrastructure. We conclude by providing recommendations on how the different EASI-CLOUDS demonstrators may be commercialized through different business models. © EASI-CLOUDS Consortium. 2 Deliverable 1.5 – Final Business Models for EASI-CLOUDS v1.0 Table of contents Table of contents ...........................................................................................................................
    [Show full text]
  • Cloud Computing: a Taxonomy of Platform and Infrastructure-Level Offerings David Hilley College of Computing Georgia Institute of Technology
    Cloud Computing: A Taxonomy of Platform and Infrastructure-level Offerings David Hilley College of Computing Georgia Institute of Technology April 2009 Cloud Computing: A Taxonomy of Platform and Infrastructure-level Offerings David Hilley 1 Introduction Cloud computing is a buzzword and umbrella term applied to several nascent trends in the turbulent landscape of information technology. Computing in the “cloud” alludes to ubiquitous and inexhaustible on-demand IT resources accessible through the Internet. Practically every new Internet-based service from Gmail [1] to Amazon Web Services [2] to Microsoft Online Services [3] to even Facebook [4] have been labeled “cloud” offerings, either officially or externally. Although cloud computing has garnered significant interest, factors such as unclear terminology, non-existent product “paper launches”, and opportunistic marketing have led to a significant lack of clarity surrounding discussions of cloud computing technology and products. The need for clarity is well-recognized within the industry [5] and by industry observers [6]. Perhaps more importantly, due to the relative infancy of the industry, currently-available product offerings are not standardized. Neither providers nor potential consumers really know what a “good” cloud computing product offering should look like and what classes of products are appropriate. Consequently, products are not easily comparable. The scope of various product offerings differ and overlap in complicated ways – for example, Ama- zon’s EC2 service [7] and Google’s App Engine [8] partially overlap in scope and applicability. EC2 is more flexible but also lower-level, while App Engine subsumes some functionality in Amazon Web Services suite of offerings [2] external to EC2.
    [Show full text]
  • Ovirt and Openstack Storage (Present and Future)
    oVirt and OpenStack Storage (present and future) Federico Simoncelli Principal Software Engineer, Red Hat January 2014 1 Federico Simoncelli – oVirt and OpenStack Storage (present and future) Agenda ● Introduction ● oVirt and OpenStack Overview ● Present ● oVirt and Glance Integration ● Importing and Exporting Glance Images ● Current Constraints and Limitations ● Future ● Glance Future Integration ● Keystone Authentication in oVirt ● oVirt and Cinder Integration 2 Federico Simoncelli – oVirt and OpenStack Storage (present and future) oVirt Overview ● oVirt is a virtualization management application ● manages hardware nodes, storage and network resources, in order to deploy and monitor virtual machines running in your data center ● Free open source software released under the terms of the Apache License 3 Federico Simoncelli – oVirt and OpenStack Storage (present and future) The oVirt Virtualization Architecture 4 Federico Simoncelli – oVirt and OpenStack Storage (present and future) OpenStack Overview ● Cloud computing project to provide an Infrastructure as a Service (IaaS) ● Controls large pools of compute, storage, and networking resources ● Free open source software released under the terms of the Apache License ● Project is managed by the OpenStack Foundation, a non-profit corporate entity established in September 2012 5 Federico Simoncelli – oVirt and OpenStack Storage (present and future) OpenStack Glance Service ● Provides services for discovering, registering, and retrieving virtual machine images ● RESTful API that allows querying
    [Show full text]
  • IBM Power Systems and Openpower Solutions for Hybrid Cloud Optimized Infrastructure and Solutions for Data and Computational Services in the Cloud
    IBM Systems Power Systems Solution Brief IBM Power Systems and OpenPOWER Solutions for Hybrid Cloud Optimized infrastructure and solutions for data and computational services in the Cloud Technology plays in increasingly critical role in the ability of organiza- Highlights tions in all industries and all regions of the world to compete and succeed. Ubiquitous access to the internet from anywhere is erasing traditional ●● ●●IBM® Power Systems™ and boundaries and empowering customers, partners, and even things—to OpenPOWER servers with POWER8® processor technology are purpose-built connect, respond, engage, compare and buy. There is a digital transfor- for more efficient processing of data and mation sweeping the planet and organizations that do not make bold analytic workloads in the cloud moves to adapt quickly and intelligently, will undoubtedly fall behind ●● ●●Delivers the broadest choice of cloud- and fail to grow. ready infrastructure and solutions to suit client’s needs and workloads: scale up, The challenge and responsibility of responding effectively to these scale out, converged, proven Reference Architectures, hybrid and public cloud changing dynamics rests solidly with today’s technology leaders. Without services strong leadership to chart a strategic path, organizations will flounder and will see their business decline. IT needs to adopt flexible infrastructure ●● ●●OpenStack based cloud management from IBM, ISV partners and open source strategies and agile development methods to deal with the: Linux distributions provide extensible, scalable and resilient solutions for public ●●●Explosion in amount of data that needs to be rapidly analyzed and and private clouds managed ●●●Security threats that are constant and constantly changing ●●●Need to reach global markets and supply chains ●●●Demand for fast and error-free client’ s engagement experiences IBM Systems Power Systems Solution Brief Organizations need a flexible infrastructure to enable growth and innovation while lowering overall IT costs.
    [Show full text]
  • 14. Comparison of Cloud Management Platforms
    14. Comparison of cloud management platforms Kimmo Ahokas Aalto University School of Science [email protected] Abstract tion cloud computing is divided into three different service models, namely Software as a Service (SaaS), Platform as a Cloud computing allows fast and efficient resource provi- Service (PaaS) and Infrastructure as a Service (IaaS). In this sioning within data centers. In large companies this can paper we are only interested in IaaS service model, which lead to significant savings, thus creating market for complete is defined as "The capability provided to the consumer is cloud platforms. In addition to commercial products, sev- to provision processing, storage, networks, and other fun- eral open source cloud platforms exist. This paper compares damental computing resources where the consumer is able four cloud management platforms and identifies the factors to deploy and run arbitrary software, which can include op- affecting future success of each of the platforms. We also es- erating systems and applications. The consumer does not timate the future development of the cloud platform market. manage or control the underlying cloud infrastructure but has control over operating systems, storage, and deployed KEYWORDS: cloud platform, IaaS, CloudStack, Open- applications; and possibly limited control of select network- Stack, OpenNebula, Eucalyptus, VMware ing components (e.g., host firewalls)." [10] Cloud management platform is a software system that 1 Introduction controls the allocation of physical resources on the data cen- ter. In the IaaS model users can launch virtual machines us- Cloud computing has rapidly changed the way in which re- ing the management console, which causes the platform to sources in data centers can be provisioned.
    [Show full text]
  • Cutter IT Journal
    Cutter The Journal of IT Journal Information Technology Management Vol. 26, No. 3 March 2013 “Cloud service providers, the IT industry, professional The Emerging Cloud Ecosystem: and industry associations, governments, and IT pro- Innovative New Services and fessionals all have a role to Business Models play in shaping, fostering, and harnessing the full potential of the emerging cloud ecosystem.” Opening Statement — San Murugesan, by San Murugesan . 3 Guest Editor Merging IaaS with PaaS to Deliver Robust Development Tools by Beth Cohen . 6 Intrusion Detection as a Service (IDaaS) in an Open Source Cloud Infrastructure by John Prakash Veigas and K Chandra Sekaran . 12 Cloud Ecology: Surviving in the Jungle by Claude R. Baudoin . 19 The Promise of a Diverse, Interoperable Cloud Ecosystem — And Recommendations for Realizing It by Kathy L. Grise . 26 NOT FOR DISTRIBUTION For authorized use, contact Cutter Consortium: +1 781 648 8700 [email protected] Cutter IT Journal About Cutter IT Journal Cutter IT Journal® Cutter Business Technology Council: Part of Cutter Consortium’s mission is to Cutter IT Journal subscribers consider the Rob Austin, Ron Blitstein, Tom DeMarco, Lynne Ellyn, Israel Gat, Vince Kellen, foster debate and dialogue on the business Journal a “consultancy in print” and liken Tim Lister, Lou Mazzucchelli, technology issues challenging enterprises each month’s issue to the impassioned Ken Orr, and Robert D. Scott today, helping organizations leverage IT for debates they participate in at the end of Editor Emeritus: Ed Yourdon competitive advantage and business success. a day at a conference. Publisher: Karen Fine Coburn Cutter’s philosophy is that most of the issues Group Publisher: Chris Generali that managers face are complex enough to Every facet of IT — application integration, Managing Editor: Karen Pasley merit examination that goes beyond simple security, portfolio management, and testing, Production Editor: Linda M.
    [Show full text]
  • An Lc-Tools Tutirial
    An lc-tools Tutirial Roman Bogorodskiy [email protected] May 30, 2011 Contents 0.1 Introduction An lc-tools is a set of command line tools to manage various Cloud (aka IaaS) Providers. It’s written in Python and uses libcloud to interact with provider’s API.xx 0.2 Getting Started 0.2.1 Installing Dependencies The only external dependency is libcloud. Please visit libcloud download page to get information how to download and install it. Installing from PyPI Latest stable version of lc-tools could be installed from PyPI: easy_install lctools Installing from source To get latest development version you can checkout sources from project’s github page: git clone https://github.com/novel/lc-tools.git Now you should have all the sources and should be ready to proceed to installation. As lc-tools use setuptools installation process is fairly simple: $ cd lc-tools $ sudo python setup.py install This will install all the tools and you will be able to use them after configu- ration (you will know how to configure lc-tools in the next section: ??). However, there are some additional tools available in lc-tools that’s not installed by default – it’s various provider specific tools. 1 What are provider specific tools, you might ask. You see, libcloud is de- signed to provide an unified API to the cloud, so its model is almost an inter- section of APIs of various cloud providers. However, various provider can have its specific API calls, for example, provider Foo might have a call to return information how many servers could be created in your current account or, say, what’s the maximum allowed rate of requests to the API per minute.
    [Show full text]
  • Understanding the Cloud Computing Landscape
    Chapter 1 Understanding the Cloud Computing Landscape Lamia Youseff, Dilma M. Da Silva, Maria Butrico, and Jonathan Appavoo Contents 1.1 Introduction .................................................................................................2 1.2 Cloud Systems Classifications ......................................................................2 1.3 SPI Cloud Classification ...............................................................................2 1.3.1 Cloud Software Systems ...................................................................3 1.3.2 Cloud Platform Systems ....................................................................3 1.3.3 Cloud Infrastructure Systems ...........................................................4 1.4 UCSB-IBM Cloud Ontology .......................................................................4 1.4.1 Applications (SaaS) ...........................................................................5 1.4.2 Cloud Software Environment (PaaS) ................................................7 1.4.3 Cloud Software Infrastructure ..........................................................8 1.4.4 Software Kernel Layer .......................................................................9 1.4.5 Cloud Hardware/Firmware ...............................................................9 1.5 Jackson’s Expansion on the UCSB-IBM Ontology .....................................10 1.6 Hoff’s Cloud Model ...................................................................................11 1.7 Discussion ..................................................................................................13
    [Show full text]
  • A Comparative Study of Current Open-Source Infrastructure As a Service Frameworks
    A Comparative Study of Current Open-source Infrastructure as a Service Frameworks Theo Lynn, Graham Hunt, David Corcoran, John Morrison and Philip Healy Irish Centre for Cloud Computing, Dublin 9, Ireland Keywords: Cloud Computing, Open Source, IaaS, Openstack, Cloudstack, Opennebula, Eucalyptus. Abstract: With the growth of cloud computing in recent years, several commercial and open source IaaS frameworks have emerged. The development of open source IaaS solutions offers a free and flexible alternative to commercial cloud services. The main contribution of this paper is to provide a qualitative comparative of current open-source IaaS frameworks. Existing research papers examining open source IaaS frameworks have focused on comparing OpenStack with a small number of alternatives. However, current research fails to adequately compare all major open source frameworks in a single study and notably lacks the inclusion of CloudStack. Our research paper provides the first overview of the five main open source cloud IaaS frameworks – OpenStack, CloudStack, OpenNebula, Eucalyptus and Nimbus. As such, this review provides researchers and potential users with an up to date and comprehensive overview of the features of each solution and allows for an easy comparison between the open source solutions. 1 INTRODUCTION the freedom to modify the source code and build a cloud that is pluggable and open to extensions while Cloud Computing technologies have seen significant reducing costs and avoiding vendor lock-in (Zhang adoption in recent years by enterprises, researchers et al., 2013; Wen et al. 2012; Bist et al., 2013). The and individuals. It is forecast that the Cloud development of open source solutions is of particular Computing industry will reach a market size of $241 importance for the further proliferation of private billion by 2020 (Reid and Kilster, 2011).
    [Show full text]