Digital Guitar Effects Unit and Amplifier

Total Page:16

File Type:pdf, Size:1020Kb

Digital Guitar Effects Unit and Amplifier DIGITAL GUITAR EFFECTS UNIT AND AMPLIFIER by Kevin Salvador Senior Project ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University San Luis Obispo i Table of Contents List of Tables and Figures............................................................................................................... ii Acknowledgments.......................................................................................................................... iii Abstract .......................................................................................................................................... iv I. Introduction ..................................................................................................................................1 II. Background .................................................................................................................................1 III. Requirements .............................................................................................................................3 IV. Design Approach Alternatives ...................................................................................................3 V. Project Design .............................................................................................................................4 Blackbox Diagram ...............................................................................................................4 Definition of User Interface .................................................................................................5 Overall System Functional Diagram ....................................................................................5 Analog to Digital and Digital to Analog Converter .............................................................6 Digital Signal Processor .......................................................................................................7 Digital Equalizer ......................................................................................................8 Echo .......................................................................................................................11 Chorus ....................................................................................................................11 Flange .....................................................................................................................12 Reverb ....................................................................................................................12 Auto-Wah ...............................................................................................................13 Distortion ...............................................................................................................13 Power Amplifier.................................................................................................................14 Speaker ...............................................................................................................................16 Power Supply .....................................................................................................................16 VI. Physical Construction and Implementation .............................................................................18 VII. Integrated System Test Results ..............................................................................................20 VIII. Conclusion ............................................................................................................................28 IX. Bibliography ............................................................................................................................29 Appendix ........................................................................................................................................30 ii A. Specifications ................................................................................................................30 B. Parts Lists and Costs .....................................................................................................30 C. Schedule – Time Estimates and Actual .........................................................................30 D. Program Listing.............................................................................................................30 E. Source Code...................................................................................................................30 MatLab Code .........................................................................................................30 C-Programming code .............................................................................................35 iii List of Tables and Figures Figure 1: Analog vs Digital signal ................................................................................................ 1 Figure 2: Blackbox Diagram .......................................................................................................... 4 Figure 3: Functional Block Diagram ............................................................................................. 5 Figure 4: FFT of guitar signal at highest frequency (E string 24 th fret) .................................... 7 Figure 5: Pole-Zero diagram for band pass filter with Fc of 512Hz ........................................... 9 Figure 6: dB magnitude and phase response vs of bandpass filter with Fc = 512Hz ................. 9 Figure 7: Signal Flow graph for the Direct Form II Transposed Difference Equation .......... 10 Figure 8: LTspice simulated circuit of voltage gain stage and power output stage .................. 15 Figure 9: LTspice simulated waveforms of figure 7 ................................................................... 15 Figure 10: LTspice simulated circuit of dual power supply ....................................................... 17 Figure 11: LTspice simulated dual rectified and smoothed waveforms .................................... 17 Figure 12: Setup used during the Senior Project Exhibition. Not included is board’s power supply ............................................................................................................................................ 18 Figure 13: Close up of DSK6713board and setu of user buttons .............................................. 19 Figure 14: Power Amplifier and Speaker ................................................................................... 20 Figure 15: Input and Output waveforms displaying the delay time used for Echo effect ........ 21 Figure 16: Input and Output waveforms displaying the delay time used for Echo effect ........ 22 Figure 17: Input and Output waveforms displaying the delay time used for Echo effect ........ 22 Figure 18: Input and Output waveforms displaying the delay time used for Echo effect ........ 23 Figure 19: Frequency Response Plot of each individual filter .................................................. 24 Figure 20: Secondary Winding voltage from transformer ......................................................... 25 Figure 21: Positive and Negative rails of power supply ............................................................. 26 Figure 22: input voltage vs output voltage of op amp volume stage .......................................... 27 Figure 23: input voltage vs output current of power amplification stage ................................. 27 iv Acknowledgements I would like to thank my Senior Project advisor Dr. Pilkington for his help and enthusiasm throughout the process. His knowledge of music specifically guitars and the effects used with them helped tremendously. Without the knowledge acquired from his Digital Signal Processing course, which was taking concurrently with the first quarter of senior project, none of this would be possible. I’d also like to thank my lab partners from the DSP laboratory, David Smith and Eric Spinks whom help code the design functions used in this project. Also thank you to Dr. DePeiro for providing the template C code for implementing the digital filters of TI’s DSK boards. v Abstract This report outlines the design and implementation of a digital guitar effects unit and amplifier. The main portion of this project consisted of the digital equalizer and effects. Several commercial equalizers were researched in order to decide the typical frequency bands and average amount of bands total. Eventually 8 bands were selected. A range of approximately 20Hz-3kHz was chosen based on test data of guitar signals. Popular effects that were incorporated in this project include Distortion, Echo, Reverb, Chorus and Flanger. The digital processor chosen was a Texas Instruments c6713 floating point processor. Designs for the various filters were done in MatLab and implementation on the processor was done through TI’s Code Composer Studio. 1 I. Introduction This DSP and amplifierunit is targeted towards guitarists. Electric guitars require an amplifier in order for the sounds to be audible. This project also provides them with signal processing “effects” to change the tones of their instrument. An alternative for these customers are analog effects filters such as simple passive filters. Since this project will make use of digital filters and a programmable processor, there is more flexibility and user control for desired output. The use of digital filters also reduces the size and number of components required for more complex processes. The
Recommended publications
  • Gemini Chorus User's Guide
    Gemini Chorus User’s Guide Welcome Thank you for purchasing the Gemini Chorus. This powerful stereo effects pedal features a collection of meticulously crafted chorus sounds ranging from classic dual-voice sounds to lush quad-voice ensembles. With a simple control set, the Gemini can work in a wide variety of musical settings, and the powerful MIDI and Neuro control options under the hood provide access to a vast array of additional tonal possibilities. The Gemini is housed in a durable, lightweight aluminum housing, packing rack mount power and flexibility into a compact, easy-to-use stompbox. SA242 Gemini Chorus User’s Guide 1 The USB and Neuro ports transform the Gemini from a simple chorus pedal into a powerful multi- effects unit. Using the free Neuro App (iOS and Android), a wide range of additional control parameters and effect types (phaser, flanger, resonator) are accessible. When used together with the Neuro Hub, the Gemini is fully MIDI-controllable and 128 multi-pedal presets, or “scenes,” can be saved for instant recall on the stage or in the studio. The Gemini can also connect directly to a passive expression pedal or the Hot Hand for expressive control of any parameter. The Quick Start guide will help you with the basics. For more in-depth information about the Gemini Chorus, move on to the following sections, starting with Connections. Enjoy! - The Source Audio Team Overview Diverse Chorus Sounds – Choose from traditional chorus tones such as Dual, Classic, and Quad, or delve deeper into unique sounds cooked up in the Source Audio lab.
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Sonic Retro-Futures: Musical Nostalgia as Revolution in Post-1960s American Literature, Film and Technoculture Permalink https://escholarship.org/uc/item/65f2825x Author Young, Mark Thomas Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Sonic Retro-Futures: Musical Nostalgia as Revolution in Post-1960s American Literature, Film and Technoculture A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in English by Mark Thomas Young June 2015 Dissertation Committee: Dr. Sherryl Vint, Chairperson Dr. Steven Gould Axelrod Dr. Tom Lutz Copyright by Mark Thomas Young 2015 The Dissertation of Mark Thomas Young is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS As there are many midwives to an “individual” success, I’d like to thank the various mentors, colleagues, organizations, friends, and family members who have supported me through the stages of conception, drafting, revision, and completion of this project. Perhaps the most important influences on my early thinking about this topic came from Paweł Frelik and Larry McCaffery, with whom I shared a rousing desert hike in the foothills of Borrego Springs. After an evening of food, drink, and lively exchange, I had the long-overdue epiphany to channel my training in musical performance more directly into my academic pursuits. The early support, friendship, and collegiality of these two had a tremendously positive effect on the arc of my scholarship; knowing they believed in the project helped me pencil its first sketchy contours—and ultimately see it through to the end.
    [Show full text]
  • Frank Zappa and His Conception of Civilization Phaze Iii
    University of Kentucky UKnowledge Theses and Dissertations--Music Music 2018 FRANK ZAPPA AND HIS CONCEPTION OF CIVILIZATION PHAZE III Jeffrey Daniel Jones University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/ETD.2018.031 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Jones, Jeffrey Daniel, "FRANK ZAPPA AND HIS CONCEPTION OF CIVILIZATION PHAZE III" (2018). Theses and Dissertations--Music. 108. https://uknowledge.uky.edu/music_etds/108 This Doctoral Dissertation is brought to you for free and open access by the Music at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Music by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • Metaflanger Table of Contents
    MetaFlanger Table of Contents Chapter 1 Introduction 2 Chapter 2 Quick Start 3 Flanger effects 5 Chorus effects 5 Producing a phaser effect 5 Chapter 3 More About Flanging 7 Chapter 4 Controls & Displa ys 11 Section 1: Mix, Feedback and Filter controls 11 Section 2: Delay, Rate and Depth controls 14 Section 3: Waveform, Modulation Display and Stereo controls 16 Section 4: Output level 18 Chapter 5 Frequently Asked Questions 19 Chapter 6 Block Diagram 20 Chapter 7.........................................................Tempo Sync in V5.0.............22 MetaFlanger Manual 1 Chapter 1 - Introduction Thanks for buying Waves processors. MetaFlanger is an audio plug-in that can be used to produce a variety of classic tape flanging, vintage phas- er emulation, chorusing, and some unexpected effects. It can emulate traditional analog flangers,fill out a simple sound, create intricate harmonic textures and even generate small rough reverbs and effects. The following pages explain how to use MetaFlanger. MetaFlanger’s Graphic Interface 2 MetaFlanger Manual Chapter 2 - Quick Start For mixing, you can use MetaFlanger as a direct insert and control the amount of flanging with the Mix control. Some applications also offer sends and returns; either way works quite well. 1 When you insert MetaFlanger, it will open with the default settings (click on the Reset button to reload these!). These settings produce a basic classic flanging effect that’s easily tweaked. 2 Preview your audio signal by clicking the Preview button. If you are using a real-time system (such as TDM, VST, or MAS), press ‘play’. You’ll hear the flanged signal.
    [Show full text]
  • Metaflanger User Manual
    MetaFlanger Table of Contents Chapter 1 Introduction 2 Chapter 2 Quick Start 3 Flanger effects 5 Chorus effects 5 Producing a phaser effect 5 Chapter 3 More About Flanging 7 Chapter 4 Controls & Displa ys 11 Section 1: Mix, Feedback and Filter controls 11 Section 2: Delay, Rate and Depth controls 14 Section 3: Waveform, Modulation Display and Stereo controls 16 Section 4: Output level 18 Section 5: WaveSystem Toolbar 18 Chapter 5 Frequently Asked Questions 19 Chapter 6 Block Diagram 20 Chapter 7.........................................................Tempo Sync in V5.0.............22 MetaFlanger Manual 1 Chapter 1 - Introduction Thanks for buying Waves processors. Thank you for choosing Waves! In order to get the most out of your new Waves plugin, please take a moment to read this user guide. To install software and manage your licenses, you need to have a free Waves account. Sign up at www.waves.com. With a Waves account you can keep track of your products, renew your Waves Update Plan, participate in bonus programs, and keep up to date with important information. We suggest that you become familiar with the Waves Support pages: www.waves.com/support. There are technical articles about installation, troubleshooting, specifications, and more. Plus, you’ll find company contact information and Waves Support news. The following pages explain how to use MetaFlanger. MetaFlanger’s Graphic Interface 2 MetaFlanger Manual Chapter 2 - Quick Start For mixing, you can use MetaFlanger as a direct insert and control the amount of flanging with the Mix control. Some applications also offer sends and returns; either way works quite well.
    [Show full text]
  • Reference Manual
    1 6 - V O I C E R E A L A N A L O G S Y N T H E S I Z E R REFERENCE MANUAL February 2001 Your shipping carton should contain the following items: 1. Andromeda A6 synthesizer 2. AC power cable 3. Warranty Registration card 4. Reference Manual 5. A list of the Preset and User Bank Mixes and Programs If anything is missing, please contact your dealer or Alesis immediately. NOTE: Completing and returning the Warranty Registration card is important. Alesis contact information: Alesis Studio Electronics, Inc. 1633 26th Street Santa Monica, CA 90404 USA Telephone: 800-5-ALESIS (800-525-3747) E-Mail: [email protected] Website: http://www.alesis.com Alesis Andromeda A6TM Reference Manual Revision 1.0 by Dave Bertovic © Copyright 2001, Alesis Studio Electronics, Inc. All rights reserved. Reproduction in whole or in part is prohibited. “A6”, “QCard” and “FreeLoader” are trademarks of Alesis Studio Electronics, Inc. A6 REFERENCE MANUAL 1 2 A6 REFERENCE MANUAL Contents CONTENTS Important Safety Instructions ....................................................................................7 Instructions to the User (FCC Notice) ............................................................................................11 CE Declaration of Conformity .........................................................................................................13 Introduction ................................................................................................................ 15 How to Use this Manual....................................................................................................................16
    [Show full text]
  • Common Tape Manipulation Techniques and How They Relate to Modern Electronic Music
    Common Tape Manipulation Techniques and How They Relate to Modern Electronic Music Matthew A. Bardin Experimental Music & Digital Media Center for Computation & Technology Louisiana State University Baton Rouge, Louisiana 70803 [email protected] ABSTRACT the 'play head' was utilized to reverse the process and gen- The purpose of this paper is to provide a historical context erate the output's audio signal [8]. Looking at figure 1, from to some of the common schools of thought in regards to museumofmagneticsoundrecording.org (Accessed: 03/20/2020), tape composition present in the later half of the 20th cen- the locations of the heads can be noticed beneath the rect- tury. Following this, the author then discusses a variety of angular protective cover showing the machine's model in the more common techniques utilized to create these and the middle of the hardware. Previous to the development other styles of music in detail as well as provides examples of the reel-to-reel machine, electronic music was only achiev- of various tracks in order to show each technique in process. able through live performances on instruments such as the In the following sections, the author then discusses some of Theremin and other early predecessors to the modern syn- the limitations of tape composition technologies and prac- thesizer. [11, p. 173] tices. Finally, the author puts the concepts discussed into a modern historical context by comparing the aspects of tape composition of the 20th century discussed previous to the composition done in Digital Audio recording and manipu- lation practices of the 21st century. Author Keywords tape, manipulation, history, hardware, software, music, ex- amples, analog, digital 1.
    [Show full text]
  • ARTIFICIAL REVERBERATION Ainnol
    ARTIFICIAL REVERBERATION Ainnol Lilisuliani Ahmad Rasidi (SID : 430566949) Digital Audio Systems, DESC9115, Semester 1 2014 Graduate Program in Audio and Acoustics Faculty of Architecture, Design and Planning, The University of Sydney -------------------------------------------------------------------------------------------------------------------------------------- 1.0 Abstract Digital reverberation is an audio effect that is very common in musical production. It can be used to enhance recorded sounds that often sounds “dry” and “flat”. The principal idea of artificial reverberation was initiated by Manfred Schroeder in the 1960’s. Since then, many artificial reverb algorithms have been created. This review will look into two types of reverberation, convolution and algorithm based reverberation, focusing on Schroeder’s delay network algorithm and the applications of artificial reverberation in many areas. 2.0 Introduction Sound is a mechanical energy that travels through air at the speed of about 344 m/s. The speed varies upon the properties of air it travels, mostly due to the change of temperature and sometimes due to the humidity. In an enclosed space, this longitudinal waves of sound would reduce its amplitude the further it travels from the source until it reaches a surface. Depending upon the characteristic of the surface, some of the energy of the sound will be absorbed while some shall be reflected back into space. The reflected sound will bounce again as it meets other surface or obstacles, hence creating a complex pattern of reflection. Reverberation is the term we use for the collection of reflected sounds from the surfaces in an enclosed space. It is measured by reverberation time, which is perceived as the time for the sound to die away 60 decibels after the sound sources ceases (Sabine, 1972) .
    [Show full text]
  • MUSIC- YEAR 9- REMIX– Term 2
    MUSIC- YEAR 9- REMIX– Term 2 Music Year 9 - Remix (Builds on from Year 8, Units 1-3,4,6) Students will look to develop their knowledge of the remix. They will develop their understanding of the early historical and cultural context of the remix. Students will learn the main technological characteristics of a remix with a big focus on: Editing, FX and Dynamic processing and track automation. They will develop their skills used in the There will be a strong emphasis on Tempo, Structure and Texture. Students will attempt to create their own Remix using A Capellas of 3 current Dance tracks. The Elements of Music will be further developed within a Remix listening tasks. UNIT INTENT Lesson Intent Vocabulary – Activities/Assessment (to including the Homework/Li Daily metacognitive/learning verb teracy Map Retrieval/Teac h for memory Knowledge Goal WEEK 1 NEW Starter Activity Revise key A CAPELLA Rolling in the Deep Remix listening Recap: Elements of Feeds on from… REMIX vocabulary for music. Develop Students to revisit the Year 8 CONTEXT activity. quiz/listening understanding of what Dance music activity to re- Q&A task. RETRIEVE a remix is and it musical familiarise themselves with the Loops What is a Remix? context. Ostinato basics techniques taught in https://www.youtube.com/watch?v=p Year 8. Students to develop Riff 1. To be able to listen and Editing d0LJmryigY effectively appraise further understanding and Track Automation Reverb several REMIX tracks. implementation of ‘The Equalization (EQ) 2. To use the Elements of elements of Music’ from Years Main music in a listening Audio Software Students to open ‘Remix Ebook’ and context and to use them 7 and 8 in a practical and Instrument creatively.
    [Show full text]
  • Recording and Amplifying of the Accordion in Practice of Other Accordion Players, and Two Recordings: D
    CA1004 Degree Project, Master, Classical Music, 30 credits 2019 Degree of Master in Music Department of Classical music Supervisor: Erik Lanninger Examiner: Jan-Olof Gullö Milan Řehák Recording and amplifying of the accordion What is the best way to capture the sound of the acoustic accordion? SOUNDING PART.zip - Sounding part of the thesis: D. Scarlatti - Sonata D minor K 141, V. Trojan - The Collapsed Cathedral SOUND SAMPLES.zip – Sound samples Declaration I declare that this thesis has been solely the result of my own work. Milan Řehák 2 Abstract In this thesis I discuss, analyse and intend to answer the question: What is the best way to capture the sound of the acoustic accordion? It was my desire to explore this theme that led me to this research, and I believe that this question is important to many other accordionists as well. From the very beginning, I wanted the thesis to be not only an academic material but also that it can be used as an instruction manual, which could serve accordionists and others who are interested in this subject, to delve deeper into it, understand it and hopefully get answers to their questions about this subject. The thesis contains five main chapters: Amplifying of the accordion at live events, Processing of the accordion sound, Recording of the accordion in a studio - the specifics of recording of the accordion, Specific recording solutions and Examples of recording and amplifying of the accordion in practice of other accordion players, and two recordings: D. Scarlatti - Sonata D minor K 141, V. Trojan - The Collasped Cathedral.
    [Show full text]
  • DLM8 and DLM12 2000W Powered Loudspeakers with DL2 Digital Mixer
    DLM8 and DLM12 2000W Powered Loudspeakers with DL2 Digital Mixer OWNER’S MANUAL Important Safety Instructions 1. Read these instructions. 20. NOTE: This equipment has been tested and found to comply with 2. Keep these instructions. the limits for a Class B digital device, pursuant to part 15 of the FCC 3. Heed all warnings. Rules. These limits are designed to provide reasonable protection 4. Follow all instructions. against harmful interference in a residential installation. This equipment 5. Do not use this apparatus near water. generates, uses, and can radiate radio frequency energy and, if not 6. Clean only with a dry cloth. installed and used in accordance with the instructions, may cause 7. Do not block any ventilation openings. Install in accordance with the manu- harmful interference to radio communications. However, there is no facturer’s instructions. guarantee that interference will not occur in a particular installation. 8. Do not install near any heat sources such as radiators, heat registers, stoves, If this equipment does cause harmful interference to radio or television or other apparatus (including amplifiers) that produce heat. reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or 9. Do not defeat the safety purpose of the polarized or grounding-type plug. more of the following measures: A polarized plug has two blades with one wider than the other. A grounding- type plug has two blades and a third grounding prong. The wide blade or • Reorient or relocate the receiving antenna. the third prong are provided for your safety.
    [Show full text]
  • User's Manual
    USER’S MANUAL G-Force GUITAR EFFECTS PROCESSOR IMPORTANT SAFETY INSTRUCTIONS The lightning flash with an arrowhead symbol The exclamation point within an equilateral triangle within an equilateral triangle, is intended to alert is intended to alert the user to the presence of the user to the presence of uninsulated "dan- important operating and maintenance (servicing) gerous voltage" within the product's enclosure that may instructions in the literature accompanying the product. be of sufficient magnitude to constitute a risk of electric shock to persons. 1 Read these instructions. Warning! 2 Keep these instructions. • To reduce the risk of fire or electrical shock, do not 3 Heed all warnings. expose this equipment to dripping or splashing and 4 Follow all instructions. ensure that no objects filled with liquids, such as vases, 5 Do not use this apparatus near water. are placed on the equipment. 6 Clean only with dry cloth. • This apparatus must be earthed. 7 Do not block any ventilation openings. Install in • Use a three wire grounding type line cord like the one accordance with the manufacturer's instructions. supplied with the product. 8 Do not install near any heat sources such • Be advised that different operating voltages require the as radiators, heat registers, stoves, or other use of different types of line cord and attachment plugs. apparatus (including amplifiers) that produce heat. • Check the voltage in your area and use the 9 Do not defeat the safety purpose of the polarized correct type. See table below: or grounding-type plug. A polarized plug has two blades with one wider than the other.
    [Show full text]