Data Visualization: an Exploratory Study Into the Software Tools Used by Businesses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Savvy Survey #16: Data Analysis and Survey Results1 Milton G
AEC409 The Savvy Survey #16: Data Analysis and Survey Results1 Milton G. Newberry, III, Jessica L. O’Leary, and Glenn D. Israel2 Introduction In order to evaluate the effectiveness of a program, an agent or specialist may opt to survey the knowledge or Continuing the Savvy Survey Series, this fact sheet is one of attitudes of the clients attending the program. To capture three focused on working with survey data. In its most raw what participants know or feel at the end of a program, he form, the data collected from surveys do not tell much of a or she could implement a posttest questionnaire. However, story except who completed the survey, partially completed if one is curious about how much information their clients it, or did not respond at all. To truly interpret the data, it learned or how their attitudes changed after participation must be analyzed. Where does one begin the data analysis in a program, then either a pretest/posttest questionnaire process? What computer program(s) can be used to analyze or a pretest/follow-up questionnaire would need to be data? How should the data be analyzed? This publication implemented. It is important to consider realistic expecta- serves to answer these questions. tions when evaluating a program. Participants should not be expected to make a drastic change in behavior within the Extension faculty members often use surveys to explore duration of a program. Therefore, an agent should consider relevant situations when conducting needs and asset implementing a posttest/follow up questionnaire in several assessments, when planning for programs, or when waves in a specific timeframe after the program (e.g., six assessing customer satisfaction. -
An Overview of the 50 Most Common Web Scraping Tools
AN OVERVIEW OF THE 50 MOST COMMON WEB SCRAPING TOOLS WEB SCRAPING IS THE PROCESS OF USING BOTS TO EXTRACT CONTENT AND DATA FROM A WEBSITE. UNLIKE SCREEN SCRAPING, WHICH ONLY COPIES PIXELS DISPLAYED ON SCREEN, WEB SCRAPING EXTRACTS UNDERLYING CODE — AND WITH IT, STORED DATA — AND OUTPUTS THAT INFORMATION INTO A DESIGNATED FILE FORMAT. While legitimate uses cases exist for data harvesting, illegal purposes exist as well, including undercutting prices and theft of copyrighted content. Understanding web scraping bots starts with understanding the diverse and assorted array of web scraping tools and existing platforms. Following is a high-level overview of the 50 most common web scraping tools and platforms currently available. PAGE 1 50 OF THE MOST COMMON WEB SCRAPING TOOLS NAME DESCRIPTION 1 Apache Nutch Apache Nutch is an extensible and scalable open-source web crawler software project. A-Parser is a multithreaded parser of search engines, site assessment services, keywords 2 A-Parser and content. 3 Apify Apify is a Node.js library similar to Scrapy and can be used for scraping libraries in JavaScript. Artoo.js provides script that can be run from your browser’s bookmark bar to scrape a website 4 Artoo.js and return the data in JSON format. Blockspring lets users build visualizations from the most innovative blocks developed 5 Blockspring by engineers within your organization. BotScraper is a tool for advanced web scraping and data extraction services that helps 6 BotScraper organizations from small and medium-sized businesses. Cheerio is a library that parses HTML and XML documents and allows use of jQuery syntax while 7 Cheerio working with the downloaded data. -
Data and Computer Communications (Eighth Edition)
DATA AND COMPUTER COMMUNICATIONS Eighth Edition William Stallings Upper Saddle River, New Jersey 07458 Library of Congress Cataloging-in-Publication Data on File Vice President and Editorial Director, ECS: Art Editor: Gregory Dulles Marcia J. Horton Director, Image Resource Center: Melinda Reo Executive Editor: Tracy Dunkelberger Manager, Rights and Permissions: Zina Arabia Assistant Editor: Carole Snyder Manager,Visual Research: Beth Brenzel Editorial Assistant: Christianna Lee Manager, Cover Visual Research and Permissions: Executive Managing Editor: Vince O’Brien Karen Sanatar Managing Editor: Camille Trentacoste Manufacturing Manager, ESM: Alexis Heydt-Long Production Editor: Rose Kernan Manufacturing Buyer: Lisa McDowell Director of Creative Services: Paul Belfanti Executive Marketing Manager: Robin O’Brien Creative Director: Juan Lopez Marketing Assistant: Mack Patterson Cover Designer: Bruce Kenselaar Managing Editor,AV Management and Production: Patricia Burns ©2007 Pearson Education, Inc. Pearson Prentice Hall Pearson Education, Inc. Upper Saddle River, NJ 07458 All rights reserved. No part of this book may be reproduced in any form or by any means, without permission in writing from the publisher. Pearson Prentice Hall™ is a trademark of Pearson Education, Inc. All other tradmarks or product names are the property of their respective owners. The author and publisher of this book have used their best efforts in preparing this book.These efforts include the development, research, and testing of the theories and programs to determine their effectiveness.The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book.The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs. -
Evolution of the Infographic
EVOLUTION OF THE INFOGRAPHIC: Then, now, and future-now. EVOLUTION People have been using images and data to tell stories for ages—long before the days of the Internet, smartphones, and Excel. In fact, the history of infographics pre-dates the web by more than 30,000 years with the earliest forms of these visuals being cave paintings that helped early humans find food, resources, and shelter. But as technology has advanced, so has our ability to tell meaningful stories. Here’s a look into the evolution of modern infographics—where they’ve been, how they’ve evolved, and where they’re headed. Then: Printed, static infographics The 20th Century introduced the infographic—a staple for how we communicate, visualize, and share information today. Early on, these print graphics married illustration and data to communicate information in a revolutionary way. ADVANTAGE Design elements enable people to quickly absorb information previously confined to long paragraphs of text. LIMITATION Static infographics didn’t allow for deeper dives into the data to explore granularities. Hoping to drill down for more detail or context? Tough luck—what you see is what you get. Source: http://www.wired.co.uk/news/archive/2012-01/16/painting- by-numbers-at-london-transport-museum INFOGRAPHICS THROUGH THE AGES DOMO 03 Now: Web-based, interactive infographics While the first wave of modern infographics made complex data more consumable, web-based, interactive infographics made data more explorable. These are everywhere today. ADVANTAGE Everyone looking to make data an asset, from executives to graphic designers, are now building interactive data stories that deliver additional context and value. -
Using Survey Data Author: Jen Buckley and Sarah King-Hele Updated: August 2015 Version: 1
ukdataservice.ac.uk Using survey data Author: Jen Buckley and Sarah King-Hele Updated: August 2015 Version: 1 Acknowledgement/Citation These pages are based on the following workbook, funded by the Economic and Social Research Council (ESRC). Williamson, Lee, Mark Brown, Jo Wathan, Vanessa Higgins (2013) Secondary Analysis for Social Scientists; Analysing the fear of crime using the British Crime Survey. Updated version by Sarah King-Hele. Centre for Census and Survey Research We are happy for our materials to be used and copied but request that users should: • link to our original materials instead of re-mounting our materials on your website • cite this as an original source as follows: Buckley, Jen and Sarah King-Hele (2015). Using survey data. UK Data Service, University of Essex and University of Manchester. UK Data Service – Using survey data Contents 1. Introduction 3 2. Before you start 4 2.1. Research topic and questions 4 2.2. Survey data and secondary analysis 5 2.3. Concepts and measurement 6 2.4. Change over time 8 2.5. Worksheets 9 3. Find data 10 3.1. Survey microdata 10 3.2. UK Data Service 12 3.3. Other ways to find data 14 3.4. Evaluating data 15 3.5. Tables and reports 17 3.6. Worksheets 18 4. Get started with survey data 19 4.1. Registration and access conditions 19 4.2. Download 20 4.3. Statistics packages 21 4.4. Survey weights 22 4.5. Worksheets 24 5. Data analysis 25 5.1. Types of variables 25 5.2. Variable distributions 27 5.3. -
Monte Carlo Likelihood Inference for Missing Data Models
MONTE CARLO LIKELIHOOD INFERENCE FOR MISSING DATA MODELS By Yun Ju Sung and Charles J. Geyer University of Washington and University of Minnesota Abbreviated title: Monte Carlo Likelihood Asymptotics We describe a Monte Carlo method to approximate the maximum likeli- hood estimate (MLE), when there are missing data and the observed data likelihood is not available in closed form. This method uses simulated missing data that are independent and identically distributed and independent of the observed data. Our Monte Carlo approximation to the MLE is a consistent and asymptotically normal estimate of the minimizer ¤ of the Kullback- Leibler information, as both a Monte Carlo sample size and an observed data sample size go to in¯nity simultaneously. Plug-in estimates of the asymptotic variance are provided for constructing con¯dence regions for ¤. We give Logit-Normal generalized linear mixed model examples, calculated using an R package that we wrote. AMS 2000 subject classi¯cations. Primary 62F12; secondary 65C05. Key words and phrases. Asymptotic theory, Monte Carlo, maximum likelihood, generalized linear mixed model, empirical process, model misspeci¯cation 1 1. Introduction. Missing data (Little and Rubin, 2002) either arise naturally|data that might have been observed are missing|or are intentionally chosen|a model includes random variables that are not observable (called latent variables or random e®ects). A mixture of normals or a generalized linear mixed model (GLMM) is an example of the latter. In either case, a model is speci¯ed for the complete data (x; y), where x is missing and y is observed, by their joint den- sity f(x; y), also called the complete data likelihood (when considered as a function of ). -
Research Data Management Best Practices
Research Data Management Best Practices Introduction ............................................................................................................................................................................ 2 Planning & Data Management Plans ...................................................................................................................................... 3 Naming and Organizing Your Files .......................................................................................................................................... 6 Choosing File Formats ............................................................................................................................................................. 9 Working with Tabular Data ................................................................................................................................................... 10 Describing Your Data: Data Dictionaries ............................................................................................................................... 12 Describing Your Project: Citation Metadata ......................................................................................................................... 15 Preparing for Storage and Preservation ............................................................................................................................... 17 Choosing a Repository ......................................................................................................................................................... -
Data Management, Analysis Tools, and Analysis Mechanics
Chapter 2 Data Management, Analysis Tools, and Analysis Mechanics This chapter explores different tools and techniques for handling data for research purposes. This chapter assumes that a research problem statement has been formulated, research hypotheses have been stated, data collection planning has been conducted, and data have been collected from various sources (see Volume I for information and details on these phases of research). This chapter discusses how to combine and manage data streams, and how to use data management tools to produce analytical results that are error free and reproducible, once useful data have been obtained to accomplish the overall research goals and objectives. Purpose of Data Management Proper data handling and management is crucial to the success and reproducibility of a statistical analysis. Selection of the appropriate tools and efficient use of these tools can save the researcher numerous hours, and allow other researchers to leverage the products of their work. In addition, as the size of databases in transportation continue to grow, it is becoming increasingly important to invest resources into the management of these data. There are a number of ancillary steps that need to be performed both before and after statistical analysis of data. For example, a database composed of different data streams needs to be matched and integrated into a single database for analysis. In addition, in some cases data must be transformed into the preferred electronic format for a variety of statistical packages. Sometimes, data obtained from “the field” must be cleaned and debugged for input and measurement errors, and reformatted. The following sections discuss considerations for developing an overall data collection, handling, and management plan, and tools necessary for successful implementation of that plan. -
Interactive Statistical Graphics/ When Charts Come to Life
Titel Event, Date Author Affiliation Interactive Statistical Graphics When Charts come to Life [email protected] www.theusRus.de Telefónica Germany Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 2 www.theusRus.de What I do not talk about … Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 3 www.theusRus.de … still not what I mean. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. • Dynamic Graphics … uses animated / rotating plots to visualize high dimensional (continuous) data. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. • Dynamic Graphics … uses animated / rotating plots to visualize high dimensional (continuous) data. 1973 PRIM-9 Tukey et al. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. • Dynamic Graphics … uses animated / rotating plots to visualize high dimensional (continuous) data. -
Computer Files & Data Storage
STORAGE & FILE CONCEPTS, UTILITIES (Pages 6, 150-158 - Discovering Computers & Microsoft Office 2010) I. Computer files – data, information or instructions residing on secondary storage are stored in the form of a file. A. Software files are also called program files. Program files (instructions) are created by a computer programmer and generally cannot be modified by a user. It’s important that we not move or delete program files because your computer requires them to perform operations. Program files are also referred to as “executables”. 1. You can identify a program file by its extension:“.EXE”, “.COM”, “.BAT”, “.DLL”, “.SYS”, or “.INI” (there are others) or a distinct program icon. B. Data files - when you select a “save” option while using an application program, you are in essence creating a data file. Users create data files. 1. File naming conventions refer to the guidelines followed while assigning file names and will vary with the operating system and application in use (see figure 4-1). File names in Windows 7 may be up to 255 characters, you're not allowed to use reserved characters or certain reserved words. File extensions are used to identify the application that was used to create the file and format data in a manner recognized by the source application used to create it. FALL 2012 1 II. Selecting secondary storage media A. There are three type of technologies for storage devices: magnetic, optical, & solid state, there are advantages & disadvantages between them. When selecting a secondary storage device, certain factors should be considered: 1. Capacity - the capacity of computer storage is expressed in bytes. -
File Format Guidelines for Management and Long-Term Retention of Electronic Records
FILE FORMAT GUIDELINES FOR MANAGEMENT AND LONG-TERM RETENTION OF ELECTRONIC RECORDS 9/10/2012 State Archives of North Carolina File Format Guidelines for Management and Long-Term Retention of Electronic records Table of Contents 1. GUIDELINES AND RECOMMENDATIONS .................................................................................. 3 2. DESCRIPTION OF FORMATS RECOMMENDED FOR LONG-TERM RETENTION ......................... 7 2.1 Word Processing Documents ...................................................................................................................... 7 2.1.1 PDF/A-1a (.pdf) (ISO 19005-1 compliant PDF/A) ........................................................................ 7 2.1.2 OpenDocument Text (.odt) ................................................................................................................... 3 2.1.3 Special Note on Google Docs™ .......................................................................................................... 4 2.2 Plain Text Documents ................................................................................................................................... 5 2.2.1 Plain Text (.txt) US-ASCII or UTF-8 encoding ................................................................................... 6 2.2.2 Comma-separated file (.csv) US-ASCII or UTF-8 encoding ........................................................... 7 2.2.3 Tab-delimited file (.txt) US-ASCII or UTF-8 encoding .................................................................... 8 2.3 -
Questionnaire Analysis Using SPSS
Questionnaire design and analysing the data using SPSS page 1 Questionnaire design. For each decision you make when designing a questionnaire there is likely to be a list of points for and against just as there is for deciding on a questionnaire as the data gathering vehicle in the first place. Before designing the questionnaire the initial driver for its design has to be the research question, what are you trying to find out. After that is established you can address the issues of how best to do it. An early decision will be to choose the method that your survey will be administered by, i.e. how it will you inflict it on your subjects. There are typically two underlying methods for conducting your survey; self-administered and interviewer administered. A self-administered survey is more adaptable in some respects, it can be written e.g. a paper questionnaire or sent by mail, email, or conducted electronically on the internet. Surveys administered by an interviewer can be done in person or over the phone, with the interviewer recording results on paper or directly onto a PC. Deciding on which is the best for you will depend upon your question and the target population. For example, if questions are personal then self-administered surveys can be a good choice. Self-administered surveys reduce the chance of bias sneaking in via the interviewer but at the expense of having the interviewer available to explain the questions. The hints and tips below about questionnaire design draw heavily on two excellent resources. SPSS Survey Tips, SPSS Inc (2008) and Guide to the Design of Questionnaires, The University of Leeds (1996).