Primate Photopigments and Primate Color Vision (Opsin Genes/Polymorphism/Cones/Evolution) GERALD H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Development Team
Paper No. : 14 Human Origin and Evolution Module : 09 Classification and Distribution of Living Primates Development Team Principal Investigator Prof. Anup Kumar Kapoor Department of Anthropology, University of Delhi Dr. Satwanti Kapoor (Retd Professor) Paper Coordinator Department of Anthropology, University of Delhi Mr. Vijit Deepani & Prof. A.K. Kapoor Content Writer Department of Anthropology, University of Delhi Prof. R.K. Pathak Content Reviewer Department of Anthropology, Panjab University, Chandigarh 1 Classification and Distribution of Living Primates Anthropology Description of Module Subject Name Anthropology Paper Name Human Origin and Evolution Module Name/Title Classification and Distribution of Living Primates Module Id 09 Contents: Primates: A brief Outline Classification of Living Primates Distribution of Living Primates Summary Learning Objectives: To understand the classification of living primates. To discern the distribution of living primates. 2 Classification and Distribution of Living Primates Anthropology Primates: A brief Outline Primates reside at the initial stage in the series of evolution of man and therefore constitute the first footstep of man’s origin. Primates are primarily mammals possessing several basic mammalian features such as presence of mammary glands, dense body hair; heterodonty, increased brain size, endothermy, a relatively long gestation period followed by live birth, considerable capacity for learning and behavioural flexibility. St. George J Mivart (1873) defined Primates (as an order) -
Blue Cone Monochromacy: Visual Function and Efficacy Outcome Measures for Clinical Trials
RESEARCH ARTICLE Blue Cone Monochromacy: Visual Function and Efficacy Outcome Measures for Clinical Trials Xunda Luo1☯‡, Artur V. Cideciyan1☯‡*, Alessandro Iannaccone2, Alejandro J. Roman1, Lauren C. Ditta2, Barbara J. Jennings2, Svetlana A. Yatsenko3, Rebecca Sheplock1, Alexander Sumaroka1, Malgorzata Swider1, Sharon B. Schwartz1, Bernd Wissinger4, Susanne Kohl4, Samuel G. Jacobson1* 1 Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 2 Hamilton Eye Institute, Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America, 3 Pittsburgh Cytogenetics Laboratory, Center for Medical Genetics and Genomics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America, 4 Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany ☯ These authors contributed equally to this work. ‡ OPEN ACCESS These authors are joint first authors on this work. * [email protected] (SGJ); [email protected] (AVC) Citation: Luo X, Cideciyan AV, Iannaccone A, Roman AJ, Ditta LC, Jennings BJ, et al. (2015) Blue Cone Monochromacy: Visual Function and Efficacy Abstract Outcome Measures for Clinical Trials. PLoS ONE 10(4): e0125700. doi:10.1371/journal.pone.0125700 Academic Editor: Dror Sharon, Hadassah-Hebrew University Medical Center, ISRAEL Background Blue Cone Monochromacy (BCM) is an X-linked retinopathy caused by mutations in the Received: December 29, 2014 OPN1LW / OPN1MW gene cluster, encoding long (L)- and middle (M)-wavelength sensitive Accepted: March 21, 2015 cone opsins. Recent evidence shows sufficient structural integrity of cone photoreceptors in Published: April 24, 2015 BCM to warrant consideration of a gene therapy approach to the disease. -
TETRACHROMATIC COLOR VISION Kimberly A. Jameson Prepared For
TETRACHROMATIC COLOR VISION Kimberly A. Jameson prepared for The Oxford Companion to Consciousness. Wilken, P., Bayne, T. & Cleeremans, A. (Ed.s). Oxford University Press: Oxford. To appear in 2007. The term“tetrachromacy” describes the physiological possession of four different classes of simultaneously functioning retinal photopigments (also called “weak tetrachromacy”). From an empirical standpoint, tetrachromatic color vision (or “strong tetrachromacy”) additionally requires demonstrating that mixtures of four independent appropriately chosen primary lights will simulate all distinc- tions in appearance possible in visible color space. Independence of the primary lights implies that no mixtures of any subset of these lights (or their intensity variants) will produce an identical match to any combination of mixtures of the remaining lights. By comparison, trichromacy empirically requires only three primaries to simulate all visible colors. Established theory states that normal color vision humans are trichromats (as, primarily, are Old World monkeys and apes). The first element of trichro- macy is the output from three simultaneously functioning retinal cone classes: Short-, Medium-, and Long- Wavelenth Sensitive (SWS, MWS, & LWS) cones. Three cone classes alone do not establish a trichromat color code, however. A postreceptoral code for three categories of signal is also needed. A standard vision science assumption is that the postreceptoral recoding of cone outputs initiates the neural trivariant (or trichromatic) property of human color percep- tion, and the need for only three primary lights to match any test light. ANIMAL TETRACHROMACY: Tetrachromacy is an early vertebrate characteristic, existing in fish and reptiles, and is evolutionarily more ancient than primate trichromacy. Essentially all diu- ral birds have four retinal cone types (two SWS classes, plus a MWS and a LWS class) which neurally produce four dimensional color experience, or tetrachro- matic color vision. -
Photosynthesis
20 Photosynthesis Plants use sunlight (Photon), (H O) and (CO ) to convert light Energy into chemical Energy by 2 2 chlorophyll. This process is known as photosynthesis. Chemical equation : Sunlight 6CO + 12H O o C H O + 6O + 6H O 2 2 Chlorophyll 6 12 6 2 2 Necessary factors for photoynthesis : Light Chlorophyll Water (H O) 2 Carbon Dioxide (CO ) (0.03 % in the atmosphere) 2 Photosynthetic Organisms : Different types of algae (Blue green algae, Brown algae, Red algae, Green algae). Bryophytes, Pteridophytes, Gymnosperms, Angiosperms. Some bacteria. (Note : Fungi is not able to perform photosynthesis due to lack of chlorophyll.) Advantages of Photosynthesis : Main products of photosynthesis are starch and sucrose. (O ) is byproduct which is used by organisms for respiration. 2 (1) What is produced as byproduct of photosynthesis ? (A) Oxygen (B) Nitrogen (C) Carbon dioxide (D) Sulphur dioxide (2) Which type of energy can be used by all organisms ? (A) Light energy (B) Chemical energy (C) Heat energy (D) Water potential (3) Which of the following type of reaction photosynthesis is ? (A) Anabolic, Endothermic, Reduction (B) Anabolic, Endothermic, Oxidation (C) Catabolic, Exothermic, Oxidation (D) Catabolic, Endothermic, Reduction Answers : (1-A), (2-B), (3-A) 382 History of Photosynthesis : No. Name of Scientist Contribution 1. Joseph Priestly Plants obtain CO from atmosphere and release O . 2 2 (1733-1804) 2. Ingenhouse In bright sunlight, small bubbles were formed around the (1730-1799) green parts of the plant. 3. Julius Von Sachs Green substance (chlorophyll) in plants is located in special (1854) bodies (chloroplast) of plant cell. This green substances produces glucose which is usually stored in the form of starch. -
The Genetics of Normal and Defective Color Vision
Vision Research xxx (2011) xxx–xxx Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Review The genetics of normal and defective color vision Jay Neitz ⇑, Maureen Neitz University of Washington, Dept. of Ophthalmology, Seattle, WA 98195, United States article info a b s t r a c t Article history: The contributions of genetics research to the science of normal and defective color vision over the previ- Received 3 July 2010 ous few decades are reviewed emphasizing the developments in the 25 years since the last anniversary Received in revised form 25 November 2010 issue of Vision Research. Understanding of the biology underlying color vision has been vaulted forward Available online xxxx through the application of the tools of molecular genetics. For all their complexity, the biological pro- cesses responsible for color vision are more accessible than for many other neural systems. This is partly Keywords: because of the wealth of genetic variations that affect color perception, both within and across species, Color vision and because components of the color vision system lend themselves to genetic manipulation. Mutations Cone photoreceptor and rearrangements in the genes encoding the long, middle, and short wavelength sensitive cone pig- Colorblindness Cone mosaic ments are responsible for color vision deficiencies and mutations have been identified that affect the Opsin genes number of cone types, the absorption spectra of the pigments, the functionality and viability of the cones, Evolution and the topography of the cone mosaic. The addition of an opsin gene, as occurred in the evolution of pri- Comparative color vision mate color vision, and has been done in experimental animals can produce expanded color vision capac- Cone photopigments ities and this has provided insight into the underlying neural circuitry. -
Color Vision Test for Dichromatic and Trichromatic Macaque Monkeys
Journal of Vision (2013) 13(13):1, 1–15 http://www.journalofvision.org/content/13/13/1 1 Color vision test for dichromatic and trichromatic macaque monkeys National Institute for Physiological Sciences, Okazaki, Aichi, Japan Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, Toyohashi, Aichi, # Kowa Koida* Japan $ National Institute for Physiological Sciences, Okazaki, Aichi, Japan University for Advanced Studies (SOKENDAI), Okazaki, # Isao Yokoi* Aichi, Japan $ National Institute for Physiological Sciences, Okazaki, Aichi, Japan University for Advanced Studies (SOKENDAI), Okazaki, # Gouki Okazawa Aichi, Japan $ Faculty of Rehabilitation, Chubu Gakuin University, Seki, # Akichika Mikami Gifu, Japan $ Department of Biology, Bogor Agricultural University, # Kanthi Arum Widayati Bogor, Indonesia $ Primate Research Institute, Kyoto University, Inuyama, # Shigehiro Miyachi Aichi, Japan $ National Institute for Physiological Sciences, Okazaki, Aichi, Japan University for Advanced Studies (SOKENDAI), Okazaki, # Hidehiko Komatsu Aichi, Japan $ Dichromacy is a color vision defect in which one of the identified dichromatic macaques (Macaca fascicularis) three cone photoreceptors is absent. Individuals with with that of normal trichromatic macaques. In the color dichromacy are called dichromats (or sometimes ‘‘color- discrimination test, dichromats could not discriminate blind’’), and their color discrimination performance has colors along the protanopic confusion line, though contributed significantly -
Human Trichromacy Revisited PNAS PLUS
Human trichromacy revisited PNAS PLUS Hiroshi Horiguchia,b,1, Jonathan Winawera, Robert F. Doughertyc, and Brian A. Wandella,c aPsychology Department, Stanford University, Stanford, CA 94305; bDepartment of Ophthalmology, School of Medicine, Jikei University, Tokyo 105-8461, Japan; and cStanford Center for Cognitive and Neurobiological Imaging, Stanford, CA 94305 AUTHOR SUMMARY The history of trichromatic color As predicted by the classic tri- theory spans nearly 300 y, be- msARC Fovea Periphery chromatic model, subjects fail to ’ Opticks (%) ginning with Newton s 10 see cone-silent stimuli presented (1). Thomas Young’s Royal So- Visible in the fovea. In contrast, subjects Not ciety Lecture (2) explained how 0 Not do see cone-silent stimuli pre- Visible Visible Visible Visible color perception is initiated by S1 sented to the peripheral visual S2 fi the absorption of light in three Cone-silent −10 eld. In extensive computational S3 fi types of human light receptors, −10 0 10 −10 0 10 (%) modeling, we could nd no plau- the cones. The theory of tri- S-cone S-cone sible pigment density adjustment chromacy is the foundation of (including the lens or photopig- modern color technologies (3). Fig. P1. Built and found. (A) An apparatus using six primary lights was ment densities) that explains the built for the experiment. Mean luminance through the eyepiece was measurements in the periphery For more than a century, the 2 absorption of light in the retina 2,060 cd/m .(B) Graphs represent detection thresholds for stimuli that based on a model that includes was thought to occur only in the have some S-cone contrast and cone-silent contrast, but no L- or M- only three cone photopigments. -
Colour Vision Deficiency
Eye (2010) 24, 747–755 & 2010 Macmillan Publishers Limited All rights reserved 0950-222X/10 $32.00 www.nature.com/eye Colour vision MP Simunovic REVIEW deficiency Abstract effective "treatment" of colour vision deficiency: whilst it has been suggested that tinted lenses Colour vision deficiency is one of the could offer a means of enabling those with commonest disorders of vision and can be colour vision deficiency to make spectral divided into congenital and acquired forms. discriminations that would normally elude Congenital colour vision deficiency affects as them, clinical trials of such lenses have been many as 8% of males and 0.5% of femalesFthe largely disappointing. Recent developments in difference in prevalence reflects the fact that molecular genetics have enabled us to not only the commonest forms of congenital colour understand more completely the genetic basis of vision deficiency are inherited in an X-linked colour vision deficiency, they have opened the recessive manner. Until relatively recently, our possibility of gene therapy. The application of understanding of the pathophysiological basis gene therapy to animal models of colour vision of colour vision deficiency largely rested on deficiency has shown dramatic results; behavioural data; however, modern molecular furthermore, it has provided interesting insights genetic techniques have helped to elucidate its into the plasticity of the visual system with mechanisms. respect to extracting information about the The current management of congenital spectral composition of the visual scene. colour vision deficiency lies chiefly in appropriate counselling (including career counselling). Although visual aids may Materials and methods be of benefit to those with colour vision deficiency when performing certain tasks, the This article was prepared by performing a evidence suggests that they do not enable primary search of Pubmed for articles on wearers to obtain normal colour ‘colo(u)r vision deficiency’ and ‘colo(u)r discrimination. -
1468.Full.Pdf
1468 • The Journal of Neuroscience, February 11, 2004 • 24(6):1468–1477 Cellular/Molecular Novel Features of Cryptochrome-Mediated Photoreception in the Brain Circadian Clock of Drosophila Andre´ Klarsfeld, Se´bastien Malpel, Christine Michard-Vanhe´e, Marie Picot, Elisabeth Che´lot, and Franc¸ois Rouyer Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique, Unite´ Propre de Recherche 2216, 91198 Gif-sur-Yvette, France In Drosophila, light affects circadian behavioral rhythms via at least two distinct mechanisms. One of them relies on the visual photo- transduction cascade. The other involves a presumptive photopigment, cryptochrome (cry), expressed in lateral brain neurons that control behavioral rhythms. We show here that cry is expressed in most, if not all, larval and adult neuronal groups expressing the PERIOD (PER) protein, with the notable exception of larval dorsal neurons (DN2s) in which PER cycles in antiphase to all other known cells. Forcing cry expression in the larval DN2s gave them a normal phase of PER cycling, indicating that their unique antiphase rhythm is related to their lack of cry expression. We were able to directly monitor CRY protein in Drosophila brains in situ. It appeared highly unstable in the light, whereas in the dark, it accumulated in both the nucleus and the cytoplasm, including some neuritic projections. We also show that dorsal PER-expressing brain neurons, the adult DN1s, are the only brain neurons to coexpress the CRY protein and the photoreceptor differentiation factor GLASS. Studies of various visual system mutants and their combination with the cryb mutation indicated that the adult DN1s contribute significantly to the light sensitivity of the clock controlling activity rhythms, and that this contribution depends on CRY. -
Phototransduction Mediated by Melanopsin in Intrinsically Photosensitive Retinal Ganglion Cells
C.A. Domínguez-Solís, J.A. Pérez-León: Phototransduction mediated by melanopsin Contents available at PubMed www.anmm.org.mx PERMANYER Gac Med Mex. 2015;151:709-20 www.permanyer.com GACETA MÉDICA DE MÉXICO REVIEW ARTICLE Phototransduction mediated by melanopsin in intrinsically photosensitive retinal ganglion cells Carlos Augusto Domínguez-Solís and Jorge Alberto Pérez-León* Department of Chemical-Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, Chihuahua, Chih., México Abstract Melanopsin is the most recent photopigment described. As all the other opsins, it attaches in the retina as chromophore. Its amino acid sequence resembles more invertebrate opsins than those of vertebrates. The signal transduction pathway of opsins in vertebrates is based on the coupling to the G protein transducin, triggering a signaling cascade that results in the hyperpolarization of the plasma membrane. On the contrary, the photoreceptors of invertebrates activate the Gq protein pathway, which leads to depolarizing responses. Phototransduction mediated by melanopsin leads to the depolarization of those cells where it is expressed, the intrinsically photosensitive retinal ganglion cells; the cellular messengers and the ion channel type(s) responsible for the cells´ response is still unclear. Studies to elucidate the signaling cascade of melanopsin in heterologous expression systems, in retina and isolated/cultured intrinsically photosensitive retinal ganglion cells, have provided evidence for the involvement of protein Gq and phospholipase C together with the likely participation of an ion channel member of the transient receptor potential-canonical family, a transduction pathway similar to invertebrate photopigments, particularly Drosophila melanogaster. The intrinsically photosensitive retinal ganglion cells are the sole source of retinal inferences to the suprachiasmatic nucleus; thus, clarifying completely the melanopsin signaling pathway will impact the chronobiology field, including the clinical aspects. -
Intrinsically Photosensitive Retinal Ganglion Cells Gary E
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Veterinary and Biomedical Science Veterinary and Biomedical Sciences, Department of 2011 Intrinsically Photosensitive Retinal Ganglion Cells Gary E. Pickard University of Nebraska-Lincoln, [email protected] Patricia J. Sollars University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/vetscipapers Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons, Immunology and Infectious Disease Commons, Medical Sciences Commons, Veterinary Microbiology and Immunobiology Commons, and the Veterinary Pathology and Pathobiology Commons Pickard, Gary E. and Sollars, Patricia J., "Intrinsically Photosensitive Retinal Ganglion Cells" (2011). Papers in Veterinary and Biomedical Science. 268. http://digitalcommons.unl.edu/vetscipapers/268 This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Veterinary and Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Review of Physiology, Biochemistry and Pharmacology 162 (2012), pp. 59-90. doi: 10.1007/112_2011_4, Copyright © 2011 Springer-Verlag Berlin Heidelberg. Used by permission. digitalcommons.unl.edu Intrinsically Photosensitive Retinal Ganglion Cells Gary E. Pickard and Patricia J. -
Genome Sequence of the Basal Haplorrhine Primate Tarsius Syrichta Reveals Unusual Insertions
ARTICLE Received 29 Oct 2015 | Accepted 17 Aug 2016 | Published 6 Oct 2016 DOI: 10.1038/ncomms12997 OPEN Genome sequence of the basal haplorrhine primate Tarsius syrichta reveals unusual insertions Ju¨rgen Schmitz1,2, Angela Noll1,2,3, Carsten A. Raabe1,4, Gennady Churakov1,5, Reinhard Voss6, Martin Kiefmann1, Timofey Rozhdestvensky1,7,Ju¨rgen Brosius1,4, Robert Baertsch8, Hiram Clawson8, Christian Roos3, Aleksey Zimin9, Patrick Minx10, Michael J. Montague10, Richard K. Wilson10 & Wesley C. Warren10 Tarsiers are phylogenetically located between the most basal strepsirrhines and the most derived anthropoid primates. While they share morphological features with both groups, they also possess uncommon primate characteristics, rendering their evolutionary history somewhat obscure. To investigate the molecular basis of such attributes, we present here a new genome assembly of the Philippine tarsier (Tarsius syrichta), and provide extended analyses of the genome and detailed history of transposable element insertion events. We describe the silencing of Alu monomers on the lineage leading to anthropoids, and recognize an unexpected abundance of long terminal repeat-derived and LINE1-mobilized transposed elements (Tarsius interspersed elements; TINEs). For the first time in mammals, we identify a complete mitochondrial genome insertion within the nuclear genome, then reveal tarsier-specific, positive gene selection and posit population size changes over time. The genomic resources and analyses presented here will aid efforts to more fully understand the ancient characteristics of primate genomes. 1 Institute of Experimental Pathology, University of Mu¨nster, 48149 Mu¨nster, Germany. 2 Mu¨nster Graduate School of Evolution, University of Mu¨nster, 48149 Mu¨nster, Germany. 3 Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Go¨ttingen, Germany.