Multiplicity of Massive Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EMBEDDED CLUSTERS in the LARGE MAGELLANIC CLOUD by Krista Romita Grocholski August 2017 Chair: Elizabeth A
EMBEDDED CLUSTERS IN THE LARGE MAGELLANIC CLOUD By KRISTA ROMITA GROCHOLSKI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 c 2017 Krista Romita Grocholski To- Aaron, Allegra, Mom, and Dad. All is possible with you at my side. Thank you. ACKNOWLEDGMENTS First, I would like to acknowledge the University of Florida Astronomy Department for providing me with the opportunity to complete my dissertation. I would like to thank Dr. Elizabeth Lada for taking me on as her graduate student, and for giving me the opportunity and freedom to become a confident, independent researcher. I would also like to thank Drs. Ata Sarajadini, Anthony Gonzalez, and Alessandro Forte for serving on my committee. I would like to give special thanks to Dr. Maria-Rosa Cioni; without your generous collaboration this dissertation project would not be possible. Drs. Margaret Meixner and Lynn Carlson deserve considerable credit for getting me started, not only in astronomy research, but in the wonderful field of star formation in the Large Magellanic Cloud. I will always be grateful for your support and friendship over the years. I would also like to acknowledge Dr. Igor Mikolic-Torreira for giving me the opportunity to apply my research skills beyond the realm of academia. Your guidance and enthusiastic support opened doors to me that changed the nature of my career. I cannot thank you enough. To my fellow UF Astronomy graduate students, the community you have created is something I am proud to have been a part of. -
In the Heart of the Orion Nebula 2 April 2009
In the heart of the Orion Nebula 2 April 2009 technique allows astronomers to combine the light from several telescopes, forming a huge virtual telescope with a resolving power corresponding to that of a single telescope with 200 m diameter. The Very Large Telescope Interferometer (VLTI) now offers this revolutionary technique to European astronomers and allows them to directly reconstruct images from the interferometric infrared data. A team of European astronomers utilized the VLTI and its near-infrared beam-combination instrument AMBER to demonstrate the imaging capabilities of this unique facility and to study the intriguing Zooming in the centre of the Orion star-forming region massive young star Theta1 Ori C in unprecedented with the four bright Trapezium stars (Theta 1 Ori A-D). detail. The dominant star is Theta 1 Ori C, which was imaged with unprecedented resolution with the VLT Theta 1 Ori C is the dominant and most luminous interferometer (lower right). Image: MPIfR/Stefan Kraus, star in the Orion star-forming region. Located at a ESO and NASA/Chris O'Dell distance of only about 1300 light years, it is the nearest region where massive stars are born and provides a unique laboratory to study the formation process of high-mass stars in detail. The intense (PhysOrg.com) -- A team of astronomers, led by radiation of Theta 1 Ori C is ionizing the whole Stefan Kraus and Gerd Weigelt from the Max- Orion nebula. With its strong wind, the star also Planck-Institute for Radio Astronomy (MPIfR) in shapes the famous Orion proplyds, young stars still Bonn, used ESO's Very Large telescope surrounded by their protoplanetary dust disks. -
Two O2ifwn6 Stars Possibly Ejected from the Massive Young Galactic
Mon. Not. R. Astron. Soc. 416, 501–508 (2011) doi:10.1111/j.1365-2966.2011.19062.x Two O2 If*/WN6 stars possibly ejected from the massive young Galactic cluster Westerlund 2 , A. Roman-Lopes,1 R. H. Barba1 2 and N. I. Morrell3 1Department of Physics, Universidad de La Serena, Benavente 980, La Serena, Chile 2Instituto de Ciencias Astronomicas, de la Tierra, y del Espacio (ICATE-CONICET), Av. Espana˜ 1512 Sur, J54202DSP San Juan, Argentina 3Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena, Chile Accepted 2011 May 12. Received 2011 May 10; in original form 2010 September 23 ABSTRACT In this paper we report the identification of two new Galactic O2 If*/WN6 stars (WR20aa and WR20c), on the outskirts of the massive young stellar cluster Westerlund 2. The morphological similarity between the near-infrared spectra of the new stars with that of WR20a and WR21a (two of the most massive binaries known to date) is remarkable, indicating that probably they are also very massive stars. New optical spectroscopic observations of WR20aa suggest an intermediate O2 If*/WN6 spectral type. Based on a mosaic made from the 3.6 µm Spitzer IRAC images of the region including part of the RCW49 complex, we studied the spatial location of the new emission line stars, finding that WR20aa and WR20c are well displaced from the centre of Westerlund 2, being placed at ≈36 pc (15.7 arcmin) and ≈58 pc (25.0 arcmin), respectively, for an assumed heliocentric distance of 8 kpc. Also, very remarkably, a radius vector connecting the two stars would intercept the Westerlund 2 cluster exactly at the place where its stellar density reaches a maximum. -
Publications of the Astronomical Society of the Pacific 108: 8-34, 1996 January
Publications of the Astronomical Society of the Pacific 108: 8-34, 1996 January Invited Review Paper Astrophysics in 1995 Virginia Trimble Department of Astronomy, University of Maryland, College Park, Maryland 20742-2421 and Department of Physics, University of California, Irvine, California 92717-4575 Peter J. T. Leonard Department of Astronomy, University of Maryland, College Park, Maryland 20742-2421 Received 1995 October 26; accepted 1995 October 27 ABSTRACT. Ap95 differs from Ap91 to Ap94 primarily in Ap number. That is, it once again attempts to highlight some areas of our mutual science where a major event has occurred during the year (a possible solution of the Type II supernova problem, the faintness of quasar host galaxies, the collision of Shoemaker-Levy 9 with Jupiter), but also to focus on some topics where dogged determination is producing more gradual advances (dense star clusters, the second-parameter problem, inventories of nearby objects, and dark-matter candidates). In moderate departure from the rules of Ap92-94, there has been some deliberate up-dating of topics discussed previously. The topics are only partly ordered from nearby to far away. 1. INTRODUCTION Journal. Another, less publicized, change of editors has "For crying out loud," we can hear you saying, "is it modified the journal so much that Vinod Krishan's Bulletin them again!" Well, yes. This is the fifth annual mustering of of the Astronomical Society of India (BASI in the references) the sheep and goats of astronomical/astrophysical research, has been added to the list of journals to be scanned regularly. based on journals that reached library shelves between 1 Oc- Last year, we worried a bit about paying too much atten- tober 1994 and 30 September 1995. -
00E the Construction of the Universe Symphony
The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope -
The Massive Star Content of NGC 36031
Accepted by the Astronomical Journal The Massive Star Content of NGC 36031 Nicholas W. Melena2, Philip Massey2, Nidia I. Morrell3, Amanda M. Zangari2,4 ABSTRACT We investigate the massive star content of NGC 3603, the closest known giant H II region. We have obtained spectra of 26 stars in the central cluster using the Baade 6.5-m telescope (Magellan I). Of these 26 stars, 16 had no previous spectroscopy. We also obtained photometry of all of the stars with previous or new spectroscopy, primarily using archival HST ACS/HRC images. The total number of stars that have been spectroscopically classified in NGC 3603 now stands at 38. The sample is dominated by very early O type stars (O3); there are also several (previously identified) H-rich WN+abs stars. We derive E(B − V )=1.39, and find that there is very little variation in reddening across the cluster core, in agreement with previous studies. Our spectroscopic parallax is consistent with the kinematic distance only if the ratio of total to selective extinction is anomalously high within the cluster, as argued by Pandey et al. Adopting their reddening, we derive a distance of 7.6 kpc. We discuss the various distance estimates to the cluster, and note that although there has been a wide range of values in the recent literature (6.3-10.1 kpc) there is actually good agreement with the apparent distance modulus of the cluster—the disagreement has been the result of the uncertain reddening correction. We construct our H-R diagram using the apparent distance modulus with a correction for the slight difference in differential reddening from star to star. -
Visual/Infrared Interferometry of Orion Trapezium Stars: Preliminary Dynamical Orbit and Aperture Synthesis Imaging of the Θ1 Orionis C System
A&A 466, 649–659 (2007) Astronomy DOI: 10.1051/0004-6361:20066965 & c ESO 2007 Astrophysics Visual/infrared interferometry of Orion Trapezium stars: preliminary dynamical orbit and aperture synthesis imaging of the θ1 Orionis C system S. Kraus1, Y. Y. Balega2, J.-P. Berger3, K.-H. Hofmann1, R. Millan-Gabet4, J. D. Monnier5, K. Ohnaka1, E. Pedretti5, Th. Preibisch1, D. Schertl1, F. P. Schloerb6, W. A. Traub7, and G. Weigelt1 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: [email protected] 2 Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnij Arkhyz, Zelenchuk region, Karachai-Cherkesia 357147, Russia 3 Laboratoire d’Astrophysique de Grenoble, UMR 5571 Université Joseph Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9, France 4 Michelson Science Center, California Institute of Technology, Pasadena, CA 91125, USA 5 Astronomy Department, University of Michigan, 500 Church Street, Ann Arbor, MI 48104, USA 6 Department of Astronomy, University of Massachusetts, LGRT-B 619E, 710 North Pleasant Street, Amherst, MA 01003, USA 7 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02183, USA Received 19 December 2006 / Accepted 7 February 2007 ABSTRACT Context. Located in the Orion Trapezium cluster, θ1Ori C is one of the youngest and nearest high-mass stars (O5-O7) known. Besides its unique properties as a magnetic rotator, the system is also known to be a close binary. Aims. By tracing its orbital motion, we aim to determine the orbit and dynamical mass of the system, yielding a characterization of the individual components and, ultimately, also new constraints for stellar evolution models in the high-mass regime. -
Cosmic Raw Material Fig 20-CO, P.438
Stars form in greatStars clouds form of gas in and great dust clouds of gas and dust Slide 1 Cosmic raw material Fig 20-CO, p.438 Chapter Opener The Eagle Nebula (M16) Stars form in great clouds of gas and dust, and this image shows a large region of such cosmic raw material. The gas is visible because, about 2 million years ago, the cloud produced a cluster of bright stars, whose light ionizes the hydrogen gas nearby, causing it to glow. The cluster can be seen just above and to the left of the darker columns of dust at the center of the image. The dark columns or “elephant trunks” of material are seen in much more detail in Figures 20.1 and 20.2. This false-color image was created by combining images taken through filters that select lines of hydrogen alpha (green), oxygen (blue), and sulfur (red). (T.A. Rector, B.A. Wolpa, and OAO/NRAO/AURA/NSF) 1 The Central Region of the Orion Nebula Slide 2 Fig 20-5a, p.443 Figure 20.5 The Central Region of the Orion Nebula The Orion Nebula harbors some of the youngest stars in the solar neighborhood. At the heart of the nebula is the Trapezium cluster, which includes four very bright stars that provide much of the energy that causes the nebula to glow so brightly. In these images, we see a section of the nebula in visible light (left) and infrared (right). The four bright stars in the center of the visible-light image are the Trapezium stars. -
R136: the Core of the Lonizing Cluster of 30 Doradus J
R136: The Core of the lonizing Cluster of 30 Doradus J. Me/nick, ESO Introduction crucial role in the whole story, I will give abrief description of this remarkable object. I first read that R136 contained a supermassive object some time ago in the Sunday edition of the Chilean daily newspaper The 30 Doradus Nebula and R136 EI Mercurio, where it was announced that ... "European astronomers discover the most massive star in the Universe!". The 30 Doradus nebula (thus named because it lies in the Since EI Mercurio is almost always wrang I did not take the Constellation of Doradus) is an outstanding complex of gas, announcement very seriously until the paper by Feitzinger and dust and stars in the Large Magellanic Cloud (LMC), the Co-workers (henceforth the Bochum graup) appeared in nearest galaxy to our own. Beautiful colour photographs of the Astronomy and Astrophysics in 1980. More or less simultane LMC and the 30 Doradus region can be found in the December ously with the publication of these optical observations, a graup 1982 issue of The Messenger. The diameter of 30 Dor is of observers from the University of Wisconsin, headed by J. several hundred parsecs and, although emission nebulae as Cassinelli (henceforth the Wisconsin group) reached the same large or larger than 30 Dor exist in other galaxies, none is found Conclusion on the basis of ultraviolet observations obtained in our own. The visual light emitted by the nebula is produced with the International Ultraviolet Explorer (IUE). almost entirely by hydrogen recombination lines and in orderte . After these papers where published, and since I have been maintain this radiation the equivalent of about 10004stars (the Interested in R136 for a long time, I started to consider the hottest stars known have spectral type 03) are required. -
General Disclaimer One Or More of the Following Statements May Affect This Document
General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) I OASA-CF-1692510) WOLF-RAY? 7 FWWMI^NA N82-33294 (Joint inst. for Lab. kstroph y sics) 34 p HC A03/MF V1 CSCL M3A Unclas G3/85 33535 WOLF-RAYET PHENOMENA * P. S. Conti Joint Institute for Laboratory Astrophysics, University of Colorado and National Bureau of Standards, and Department of Astrophysical, Planetary and Atmospheric Sciences, University of Colorado, Boulder, CO 80309 I. INTRODUMON I have been aske^. to review in broad terms the concept of Wolf- Rayet (W-R) phenomena, that is, to outline what we currently know about the properties of stars showing such phenomena and to indicate the directions in which future work is leading. I thought I would 6egin by listing the characteristics of W-R spectra to which probably all the participants at this Symposium will be able to agree. -
Winds of Massive Stars: High Resolution X-Ray Spectra of Stars in NGC 3603
DRAFT VERSION NOVEMBER 27, 2018 Typeset using LATEX preprint style in AASTeX62 Winds of Massive Stars: High Resolution X-ray Spectra of Stars in NGC 3603 DAVID P. HUENEMOERDER,1 NORBERT S. SCHULZ,1 AND JOY S. NICHOLS2 1Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge, MA 02139, USA 2Harvard-Smithsonian Center for Astrophysics 60 Garden St. Cambridge, MA 02138, USA ABSTRACT The cluster NGC 3603 hosts some of the most massive stars in the Galaxy. With a mod- est 50 ks exposure with the Chandra High Energy Grating Spectrometer, we have resolved emission lines in spectra of several of the brightest cluster members which are of WNh and O spectral types. This observation provides our first definitive high-resolution spectra of such stars in this nearby starburst region. The stars studied have broadened X-ray emission lines, some with blue-shifted centroids, and are characteristic of massive stellar winds with terminal velocities around 2000–3000 km s−1. X-ray luminosities and plasma temperatures are very high for both the WNh and O stars studied. We conclude that their X-rays are likely the result of colliding winds. Keywords: stars: Wolf-Rayet — stars: massive — stars: individual (HD 97950, MTT 68, MTT 71, Sher 47) — X-rays: stars 1. INTRODUCTION The starburst phenomenon is an influential process in the evolution of stellar systems. The formation of massive stars can have a profound effect on their environment through ionizing radiation, kinetic energy of massive winds, and ultimately supernovae explosions. NGC 3603 is a relatively nearby galactic starburst region, close enough that individual stars can be observed in detail. -
The R136 Star Cluster Dissected with Hubble Space Telescope/STIS
MNRAS 000, 1–39 (2015) Preprint 29 January 2016 Compiled using MNRAS LATEXstylefilev3.0 The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He ii λ1640 in young star clusters Paul A. Crowther1⋆, S.M. Caballero-Nieves1, K.A. Bostroem2,3,J.Ma´ız Apell´aniz4, F.R.N. Schneider5,6,N.R.Walborn2,C.R.Angus1,7,I.Brott8,A.Bonanos9, A. de Koter10,11,S.E.deMink10,C.J.Evans12,G.Gr¨afener13,A.Herrero14,15, I.D. Howarth16, N. Langer6,D.J.Lennon17,J.Puls18,H.Sana2,11,J.S.Vink13 1Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK 2Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218, USA 3Department of Physics, University of California, Davis, 1 Shields Ave, Davis CA 95616, USA 4Centro de Astrobiologi´a, CSIC/INTA, Campus ESAC, Apartado Postal 78, E-28 691 Villanueva de la Ca˜nada, Madrid, Spain 5 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK 6 Argelanger-Institut fur¨ Astronomie der Universit¨at Bonn, Auf dem Hugel¨ 71, D-53121 Bonn, Germany 7 Department of Physics, University of Warwick, Gibbet Hill Rd, Coventry CV4 7AL, UK 8 Institute for Astrophysics, Tuerkenschanzstr. 17, AT-1180 Vienna, Austria 9 Institute of Astronomy & Astrophysics, National Observatory of Athens, I. Metaxa & Vas. Pavlou St, P. Penteli 15236, Greece 10 Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ, Amsterdam, Netherlands 11 Institute of Astronomy, KU Leuven, Celestijnenlaan