Theory of Algorithms for Unconstrained Optimization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Advances in Interior Point Methods and Column Generation
Advances in Interior Point Methods and Column Generation Pablo Gonz´alezBrevis Doctor of Philosophy University of Edinburgh 2013 Declaration I declare that this thesis was composed by myself and that the work contained therein is my own, except where explicitly stated otherwise in the text. (Pablo Gonz´alezBrevis) ii To my endless inspiration and angels on earth: Paulina, Crist´obal and Esteban iii Abstract In this thesis we study how to efficiently combine the column generation technique (CG) and interior point methods (IPMs) for solving the relaxation of a selection of integer programming problems. In order to obtain an efficient method a change in the column generation technique and a new reoptimization strategy for a primal-dual interior point method are proposed. It is well-known that the standard column generation technique suffers from un- stable behaviour due to the use of optimal dual solutions that are extreme points of the restricted master problem (RMP). This unstable behaviour slows down column generation so variations of the standard technique which rely on interior points of the dual feasible set of the RMP have been proposed in the literature. Among these tech- niques, there is the primal-dual column generation method (PDCGM) which relies on sub-optimal and well-centred dual solutions. This technique dynamically adjusts the column generation tolerance as the method approaches optimality. Also, it relies on the notion of the symmetric neighbourhood of the central path so sub-optimal and well-centred solutions are obtained. We provide a thorough theoretical analysis that guarantees the convergence of the primal-dual approach even though sub-optimal solu- tions are used in the course of the algorithm. -
Hybrid Whale Optimization Algorithm with Modified Conjugate Gradient Method to Solve Global Optimization Problems
Open Access Library Journal 2020, Volume 7, e6459 ISSN Online: 2333-9721 ISSN Print: 2333-9705 Hybrid Whale Optimization Algorithm with Modified Conjugate Gradient Method to Solve Global Optimization Problems Layth Riyadh Khaleel, Ban Ahmed Mitras Department of Mathematics, College of Computer Sciences & Mathematics, Mosul University, Mosul, Iraq How to cite this paper: Khaleel, L.R. and Abstract Mitras, B.A. (2020) Hybrid Whale Optimi- zation Algorithm with Modified Conjugate Whale Optimization Algorithm (WOA) is a meta-heuristic algorithm. It is a Gradient Method to Solve Global Opti- new algorithm, it simulates the behavior of Humpback Whales in their search mization Problems. Open Access Library for food and migration. In this paper, a modified conjugate gradient algo- Journal, 7: e6459. https://doi.org/10.4236/oalib.1106459 rithm is proposed by deriving new conjugate coefficient. The sufficient des- cent and the global convergence properties for the proposed algorithm proved. Received: May 25, 2020 Novel hybrid algorithm of the Whale Optimization Algorithm (WOA) pro- Accepted: June 27, 2020 posed with modified conjugate gradient Algorithm develops the elementary Published: June 30, 2020 society that randomly generated as the primary society for the Whales opti- Copyright © 2020 by author(s) and Open mization algorithm using the characteristics of the modified conjugate gra- Access Library Inc. dient algorithm. The efficiency of the hybrid algorithm measured by applying This work is licensed under the Creative it to (10) of the optimization functions of high measurement with different Commons Attribution International License (CC BY 4.0). dimensions and the results of the hybrid algorithm were very good in com- http://creativecommons.org/licenses/by/4.0/ parison with the original algorithm. -
A New Trust Region Method with Simple Model for Large-Scale Optimization ∗
A New Trust Region Method with Simple Model for Large-Scale Optimization ∗ Qunyan Zhou,y Wenyu Sunz and Hongchao Zhangx Abstract In this paper a new trust region method with simple model for solv- ing large-scale unconstrained nonlinear optimization is proposed. By employing generalized weak quasi-Newton equations, we derive several schemes to construct variants of scalar matrices as the Hessian approx- imation used in the trust region subproblem. Under some reasonable conditions, global convergence of the proposed algorithm is established in the trust region framework. The numerical experiments on solving the test problems with dimensions from 50 to 20000 in the CUTEr li- brary are reported to show efficiency of the algorithm. Key words. unconstrained optimization, Barzilai-Borwein method, weak quasi-Newton equation, trust region method, global convergence AMS(2010) 65K05, 90C30 1. Introduction In this paper, we consider the unconstrained optimization problem min f(x); (1.1) x2Rn where f : Rn ! R is continuously differentiable with dimension n relatively large. Trust region methods are a class of powerful and robust globalization ∗This work was supported by National Natural Science Foundation of China (11171159, 11401308), the Natural Science Fund for Universities of Jiangsu Province (13KJB110007), the Fund of Jiangsu University of Technology (KYY13012). ySchool of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, Jiangsu, China. Email: [email protected] zCorresponding author. School of Mathematical Sciences, Jiangsu Key Laboratory for NSLSCS, Nanjing Normal University, Nanjing 210023, China. Email: [email protected] xDepartment of Mathematics, Louisiana State University, USA. Email: [email protected] 1 methods for solving (1.1). -
Lecture Notes on Numerical Optimization
Lecture Notes on Numerical Optimization Miguel A.´ Carreira-Perpi˜n´an EECS, University of California, Merced December 30, 2020 These are notes for a one-semester graduate course on numerical optimisation given by Prof. Miguel A.´ Carreira-Perpi˜n´an at the University of California, Merced. The notes are largely based on the book “Numerical Optimization” by Jorge Nocedal and Stephen J. Wright (Springer, 2nd ed., 2006), with some additions. These notes may be used for educational, non-commercial purposes. c 2005–2020 Miguel A.´ Carreira-Perpi˜n´an 1 Introduction Goal: describe the basic concepts & main state-of-the-art algorithms for continuous optimiza- • tion. The optimization problem: • c (x)=0, i equality constraints (scalar) min f(x) s.t. i ∈E x Rn ci(x) 0, i inequality constraints (scalar) ∈ ≥ ∈ I x: variables (vector); f(x): objective function (scalar). Feasible region: set of points satisfying all constraints. max f min f. ≡ − − 2 2 2 x1 x2 0 Ex. (fig. 1.1): minx1,x2 (x1 2) +(x2 1) s.t. − ≤ • − − x1 + x2 2. ≤ Ex.: transportation problem (LP) • x a i (capacity of factory i) j ij ≤ i ∀ min cijxij s.t. i xij bj i (demand of shop j) xij P ≥ ∀ { } i,j xij 0 i, j (nonnegative production) X P ≥ ∀ cij: shipping cost; xij: amount of product shipped from factory i to shop j. Ex.: LSQ problem: fit a parametric model (e.g. line, polynomial, neural net...) to a data set. Ex. 2.1 • Optimization algorithms are iterative: build sequence of points that converges to the solution. • Needs good initial point (often by prior knowledge). -
Constrained Multifidelity Optimization Using Model Calibration
Struct Multidisc Optim (2012) 46:93–109 DOI 10.1007/s00158-011-0749-1 RESEARCH PAPER Constrained multifidelity optimization using model calibration Andrew March · Karen Willcox Received: 4 April 2011 / Revised: 22 November 2011 / Accepted: 28 November 2011 / Published online: 8 January 2012 c Springer-Verlag 2012 Abstract Multifidelity optimization approaches seek to derivative-free and sequential quadratic programming meth- bring higher-fidelity analyses earlier into the design process ods. The method uses approximately the same number of by using performance estimates from lower-fidelity models high-fidelity analyses as a multifidelity trust-region algo- to accelerate convergence towards the optimum of a high- rithm that estimates the high-fidelity gradient using finite fidelity design problem. Current multifidelity optimization differences. methods generally fall into two broad categories: provably convergent methods that use either the high-fidelity gradient Keywords Multifidelity · Derivative-free · Optimization · or a high-fidelity pattern-search, and heuristic model cali- Multidisciplinary · Aerodynamic design bration approaches, such as interpolating high-fidelity data or adding a Kriging error model to a lower-fidelity function. This paper presents a multifidelity optimization method that bridges these two ideas; our method iteratively calibrates Nomenclature lower-fidelity information to the high-fidelity function in order to find an optimum of the high-fidelity design prob- A Active and violated constraint Jacobian lem. The -
Computing a Trust Region Step
Distribution Category: Mathematics and Computers ANL--81-83 (UC-32) DE82 005656 ANIr81483 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 COMPUTING A TRUST REGION STEP Jorge J. Mord and D. C. Sorensen Applied Mathematics Division DISCLAIMER - -. ".,.,... December 1981 Computing a Trust Region Step Jorge J. Mord and D. C. Sorensen Applied Mathematics Division Argonne National Laboratory Argonne Illinois 60439 1. Introduction. In an important class of minimization algorithms called "trust region methods" (see, for example, Sorensen [1981]), the calculation of the step between iterates requires the solution of a problem of the form (1.1) minij(w): 1|w |isAl where A is a positive parameter, I- II is the Euclidean norm in R", and (1.2) #(w) = g w + Mw7Bw, with g E R", and B E R a symmetric matrix. The quadratic function ' generally represents a local model to the objective function defined by interpolatory data at an iterate and thus it is important to be able to solve (1.1) for any symmetric matrix B; in particular, for a matrix B with negative eigenvalues. In trust region methods it is sometimes helpful to include a scaling matrix for the variables. In this case, problem (1.1) is replaced by (1.3) mint%(v):IIDu Is A where D E R""" is a nonsingular matrix. The change of variables Du = w shows that problem (1.3) is equivalent to (1.4) minif(w):1|w| Is Al where f(w) _%f(D-'w), and that the solutions of problems (1.3) and (1.4) are related by Dv = w. -
Optimization and Approximation
Optimization and Approximation Elisa Riccietti12 1Thanks to Stefania Bellavia, University of Florence. 2Reference book: Numerical Optimization, Nocedal and Wright, Springer 2 Contents I I part: nonlinear optimization 5 1 Prerequisites 7 1.1 Necessary and sufficient conditions . .9 1.2 Convex functions . 10 1.3 Quadratic functions . 11 2 Iterative methods 13 2.1 Directions for line-search methods . 14 2.1.1 Direction of steepest descent . 14 2.1.2 Newton's direction . 15 2.1.3 Quasi-Newton directions . 16 2.2 Rates of convergence . 16 2.3 Steepest descent method for quadratic functions . 17 2.4 Convergence of Newton's method . 19 3 Line-search methods 23 3.1 Armijo and Wolfe conditions . 23 3.2 Convergence of line-search methods . 27 3.3 Backtracking . 30 3.4 Newton's method . 32 4 Quasi-Newton method 33 4.1 BFGS method . 34 4.2 Global convergence of the BFGS method . 38 5 Nonlinear least-squares problems 41 5.1 Background: modelling, regression . 41 5.2 General concepts . 41 5.3 Linear least-squares problems . 43 5.4 Algorithms for nonlinear least-squares problems . 44 5.4.1 Gauss-Newton method . 44 5.5 Levenberg-Marquardt method . 45 6 Constrained optimization 47 6.1 One equality constraint . 48 6.2 One inequality constraint . 50 6.3 First order optimality conditions . 52 3 4 CONTENTS 6.4 Second order optimality conditions . 58 7 Optimization methods for Machine Learning 61 II Linear and integer programming 63 8 Linear programming 65 8.1 How to rewrite an LP in standard form . -
Download Thesisadobe
Exploiting the Intrinsic Structures of Simultaneous Localization and Mapping by Kasra Khosoussi Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Centre for Autonomous Systems Faculty of Engineering and Information Technology University of Technology Sydney March 2017 Declaration I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Signature: Date: i Abstract Imagine a robot which is assigned a complex task that requires it to navigate in an unknown environment. This situation frequently arises in a wide spectrum of applications; e.g., sur- gical robots used for diagnosis and treatment operate inside the body, domestic robots have to operate in people’s houses, and Mars rovers explore Mars. To navigate safely in such environments, the robot needs to constantly estimate its location and, simultane- ously, create a consistent representation of the environment by, e.g., building a map. This problem is known as simultaneous localization and mapping (SLAM). Over the past three decades, SLAM has always been a central topic in mobile robotics. Tremendous progress has been made during these years in efficiently solving SLAM using a variety of sensors in large-scale environments. -
Arxiv:1806.10197V1 [Math.NA] 26 Jun 2018 Tive
LINEARLY CONVERGENT NONLINEAR CONJUGATE GRADIENT METHODS FOR A PARAMETER IDENTIFICATION PROBLEMS MOHAMED KAMEL RIAHI?;† AND ISSAM AL QATTAN‡ ABSTRACT. This paper presents a general description of a parameter estimation inverse prob- lem for systems governed by nonlinear differential equations. The inverse problem is presented using optimal control tools with state constraints, where the minimization process is based on a first-order optimization technique such as adaptive monotony-backtracking steepest descent technique and nonlinear conjugate gradient methods satisfying strong Wolfe conditions. Global convergence theory of both methods is rigorously established where new linear convergence rates have been reported. Indeed, for the nonlinear non-convex optimization we show that under the Lipschitz-continuous condition of the gradient of the objective function we have a linear conver- gence rate toward a stationary point. Furthermore, nonlinear conjugate gradient method has also been shown to be linearly convergent toward stationary points where the second derivative of the objective function is bounded. The convergence analysis in this work has been established in a general nonlinear non-convex optimization under constraints framework where the considered time-dependent model could whether be a system of coupled ordinary differential equations or partial differential equations. Numerical evidence on a selection of popular nonlinear models is presented to support the theoretical results. Nonlinear Conjugate gradient methods, Nonlinear Optimal control and Convergence analysis and Dynamical systems and Parameter estimation and Inverse problem 1. INTRODUCTION Linear and nonlinear dynamical systems are popular approaches to model the behavior of complex systems such as neural network, biological systems and physical phenomena. These models often need to be tailored to experimental data through optimization of parameters in- volved in the mathematical formulations. -
Welcome to the 2013 MOPTA Conference!
Welcome to the 2013 MOPTA Conference! Mission Statement The Modeling and Optimization: Theory and Applications (MOPTA) conference is an annual event aiming to bring together a diverse group of people from both discrete and continuous optimization, working on both theoretical and applied aspects. The format consists of invited talks from distinguished speakers and selected contributed talks, spread over three days. The goal is to present a diverse set of exciting new developments from different optimization areas while at the same time providing a setting that will allow increased interaction among the participants. We aim to bring together researchers from both the theoretical and applied communities who do not usually have the chance to interact in the framework of a medium- scale event. MOPTA 2013 is hosted by the Department of Industrial and Systems Engineering at Lehigh University. Organization Committee Frank E. Curtis - Chair [email protected] Tamás Terlaky [email protected] Ted Ralphs [email protected] Katya Scheinberg [email protected] Lawrence V. Snyder [email protected] Robert H. Storer [email protected] Aurélie Thiele [email protected] Luis Zuluaga [email protected] Staff Kathy Rambo We thank our sponsors! 1 Program Wednesday, August 14 – Rauch Business Center 7:30-8:10 - Registration and continental breakfast - Perella Auditorium Lobby 8:10-8:20 - Welcome: Tamás Terlaky, Department Chair, Lehigh ISE - Perella Auditorium (RBC 184) 8:20-8:30 - Opening remarks: Patrick Farrell, Provost, Lehigh University -
Unconstrained Optimization
Chapter 4 Unconstrained optimization An unconstrained optimization problem takes the form min f(x) (4.1) x∈Rn for a target functional (also called objective function) f : Rn → R. In this chapter and throughout most of our discussion on optimization, we will assume that f is sufficiently smooth, that is, at least continuously differentiable. In most applications of optimization problem, one is usually interested in a global minimizer x∗, which satisfies f(x∗) ≤ f(x) for all x in Rn (or at least for all x in the domain of interest). Unless f is particularly nice, optimization algorithms are often not guaranteed to yield global minima but only yield local minima. A point x∗ is called a local minimizer if there is a neighborhood N such that f(x∗) ≤ f(x) for all x ∈ N . Similarly, x∗ is called a strict local minimizer f(x∗) < f(x) for all x ∈N with x 6= x∗. 4.1 Fundamentals Sufficient and necessary conditions for local minimizers can be developed from the Taylor expansion of f. Let us recall Example 2.3: If f is two times continuously differentiable then 1 T f(x + h)= f(x)+ ∇f(x)T h + h H(x)h + O(khk3), (4.2) 2 2 m where ∇f is the gradient and H = ∂ f is the Hessian [matrice Hessienne] ∂xi∂xj i,j=1 of f. Ä ä Theorem 4.1 (First-order necessary condition) If x∗ is a local mini- mizer and f is continuously differentiable in an open neighborhood of x∗ then ∇f(x∗) = 0. -
Tutorial: PART 2
Tutorial: PART 2 Optimization for Machine Learning Elad Hazan Princeton University + help from Sanjeev Arora & Yoram Singer Agenda 1. Learning as mathematical optimization • Stochastic optimization, ERM, online regret minimization • Online gradient descent 2. Regularization • AdaGrad and optimal regularization 3. Gradient Descent++ • Frank-Wolfe, acceleration, variance reduction, second order methods, non-convex optimization Accelerating gradient descent? 1. Adaptive regularization (AdaGrad) works for non-smooth&non-convex 2. Variance reduction uses special ERM structure very effective for smooth&convex 3. Acceleration/momentum smooth convex only, general purpose optimization since 80’s Condition number of convex functions # defined as � = , where (simplified) $ 0 ≺ �� ≼ �+� � ≼ �� � = strong convexity, � = smoothness Non-convex smooth functions: (simplified) −�� ≼ �+� � ≼ �� Why do we care? well-conditioned functions exhibit much faster optimization! (but equivalent via reductions) Examples Smooth gradient descent The descent lemma, �-smooth functions: (algorithm: �012 = �0 − ��4 ) + � �012 − � �0 ≤ −�0 �012 − �0 + � �0 − �012 1 = − � + ��+ � + = − � + 0 4� 0 Thus, for M-bounded functions: ( � �0 ≤ �) 1 −2� ≤ � � − �(� ) = > �(� ) − � � ≤ − > � + ; 2 012 0 4� 0 0 0 Thus, exists a t for which, 8�� � + ≤ 0 � Smooth gradient descent 2 Conclusions: for � = � − �� and T = Ω , finds 012 0 4 C + �0 ≤ � 1. Holds even for non-convex functions ∗ 2. For convex functions implies � �0 − � � ≤ �(�) (faster for smooth!) Non-convex stochastic gradient descent The descent lemma, �-smooth functions: (algorithm: �012 = �0 − ��N0) + � � �012 − � �0 ≤ � −�4 �012 − �0 + � �0 − �012 + + + + = � −�P0 ⋅ ��4 + � �N4 = −��4 + � �� �N4 + + + = −��4 + � �(�4 + ��� �P0 ) Thus, for M-bounded functions: ( � �0 ≤ �) M� T = � ⇒ ∃ . � + ≤ � �+ 0Y; 0 Controlling the variance: Interpolating GD and SGD Model: both full and stochastic gradients. Estimator combines both into lower variance RV: �012 = �0 − � �P� �0 − �P� �[ + ��(�[) Every so oFten, compute Full gradient and restart at new �[.