Appendix A. Ecological Effects Characterization

Total Page:16

File Type:pdf, Size:1020Kb

Appendix A. Ecological Effects Characterization Appendix A. Ecological Effects Characterization A.1 Toxicity to Birds / Reptiles ..................................................................................................... 3 A.1 Toxicity to Birds / Reptiles ..................................................................................................... 3 A.1.1 Birds: Acute Oral Studies ................................................................................................ 3 A.1.2 Birds: Subacute Dietary Studies ...................................................................................... 4 A.1.3 Birds: Chronic Studies...................................................................................................... 6 A.1.4 Birds/Reptiles: Open Literature....................................................................................... 7 A.1.4a Birds: New Open Literature Data............................................................................... 7 A.1.4b Reptiles: Open Literature Data from 2003 IRED....................................................... 8 A.1.4c Reptiles: New Open Literature Data (2007 Literature Review).................................. 8 A.2 Toxicity to Freshwater Animals............................................................................................ 13 A.2.1 Freshwater Fish and Amphibia, Acute ........................................................................... 13 A.2.2 Freshwater Fish, Chronic................................................................................................ 16 A.2.3 Freshwater Fish/Amphibians, Open Literature Data on Mortality/Survivorship ........... 18 A.2.4 Sublethal Effects, Freshwater Fish and Amphibians (Open Literature)......................... 21 A.2.4a Sublethal Effects: Freshwater Fish (2003 IRED Data): ........................................... 21 A.2.4b Sublethal Effects: Freshwater Fish (New 2007) Open Literature Data) .................. 24 A.2.4c Sublethal Effects: Amphibians (Summary of the White Paper):............................. 33 A.2.4d Sublethal Effects: Amphibians (New Open Literature Data)................................... 35 A.2.5 Freshwater Invertebrates, Acute ..................................................................................... 52 A.2.6 Freshwater Invertebrate, Chronic ................................................................................... 54 A.2.7a Freshwater Invertebrates, Acute Open Literature Data ................................................ 56 A.2.7b Freshwater Invertebrates, Chronic Open Literature Data............................................. 57 A.2.8a Freshwater Microcosm/Field Studies (2003 IRED Data).......................................... 57 A.2.8b Freshwater Field Studies (New Open Literature Data)............................................. 76 A.3 Toxicity to Estuarine and Marine Animals........................................................................... 77 A.3.1 Estuarine and Marine Fish, Acute .................................................................................. 77 A.3.2 Estuarine and Marine Fish, Acute (Open Literature 2006 Review) ............................... 78 A.3.2 Estuarine and Marine Fish, Chronic ............................................................................... 78 A.3.3a Sublethal Effects: Estuarine/Marine Fish (2003 IRED Data) .................................. 79 A.3.3b Sublethal Effects: Estuarine/Marine Fish (New Open Literature Data).................... 80 A.3.4 Estuarine and Marine Invertebrates, Acute .................................................................... 80 A.3.5 Estuarine and Marine Invertebrate, Chronic................................................................... 83 A.3.6 Sublethal Effects: Estuarine/Marine Invertebrates (New Open Literature Data)........... 83 A.3.7a Estuarine and Marine Field Studies (2003 IRED Data)....................................... 85 A.3.7b Estuarine and Marine Field Studies (New Open Literature Data) ............................ 91 A.4 Toxicity to Plants .................................................................................................................. 92 A.4.1 Terrestrial Plants............................................................................................................. 92 A.4.2 Aquatic Plants................................................................................................................. 95 A.5 Toxicity to Terrestrial Invertebrates ................................................................................... 106 A.6 Effects of Environmental Factors and Life-Stage on Aquatic Atrazine Toxicity............... 108 A.6.1 Interaction Effects on Atrazine Toxicity to Plants ....................................................... 108 A.6.2 Interaction Effects on Atrazine Toxicity to Aquatic Animals ...................................... 109 A.7 Pesticide Toxicity Interactions............................................................................................ 110 1 A.7.1 Plants....................................................................................................................... 111 A.7.2 Animals................................................................................................................... 112 A.8. References.......................................................................................................................... 116 This appendix presents available submitted and open literature studies available on atrazine. Studies that are submitted to the Agency in support of pesticide registration or re-registration are categorized as either acceptable, supplemental, or invalid. Acceptable means that all essential information was reported, the data are scientifically valid, and the study was performed according to recommended protocols. Studies in the “acceptable” category fulfill the corresponding data requirement in 40 CFR Part 158 and are appropriate for use in risk assessment. Supplemental studies are also scientifically valid; however, they were either performed under conditions that deviate from recommended guideline protocols or certain data necessary for complete verification are missing. Supplemental studies may be used quantitatively in the risk assessment and can, at the Agency’s discretion, fulfill the corresponding data requirement in 40 CFR Part 158. Invalid studies are not scientifically vald, or deviate substantially from recommended protocols such that they are not useful for risk assessment. Invalid studies do not fulfill the corresponding data requirement in 40 CFR Part 158. With respect to the open literature, studies may be classified as either qualitative, quantitative, or invalid. The degree to which open literature data are quantitatively or qualitatively characterized is dependent on whether the information is relevant to the assessment endpoints (i.e., maintenance of the survival, reproduction, and growth of the assessed listed species) identified in the problem formulation. Open literature studies classified as qualitative are not appropriate for quantitative use but are of good quality, address issues of concern to the risk assessement, and, when appropriate, are discussed qualitatively in the risk characterization discussion. Those open literature studies that are classified as quantitative are appropriate for quantitative use in the risk assessment including calculation of RQs. It should be noted that this appendix includes all relevant data taken from the 2003 IRED atrazine effects appendix. In addition, ECOTOX information was obtained on May 31, 2007. The May 2007 ECOTOX search included all open literature data for atrazine (i.e., pre- and post-IRED). Data that pass the ECOTOX screen described in Section 4.1 of the assessement are evaluated along with the registrant-submitted data, and may be incorporated qualitatively or quantitatively into this endangered species assessment. In general, effects data in the open literature that are more conservative than the registrant-submitted data are considered for quantitative use. Citations for all open literature not considered as part of this assessment because it was either rejected by the ECOTOX screen or accepted by ECOTOX but not used (e.g., the endpoint is less sensitive and/or not appropriate for use in this assessment) is included in Appendix G. Appendix G also includes a rationale for rejection of those studies that did not pass the ECOTOX screen and those that were not evaluated as part of this endangered species assessment. Further detail on the ECOTOX exclusion categories is provided in the Agency’s Guidance of the Evaluation Criteria for Ecological Toxicity Data in the Open Literature (U.S. EPA, 2004). 2 A.1 Toxicity to Birds / Reptiles Given limited ecotoxicity data for reptiles, avian acute oral, subacute dietary, and chronic reproduction data are used as a surrogate for sea turtles. In addition, open literature data are available for a limited number of reptiles including turtles (red-eared slider [Pseudemys elegans] and snapping turtles [Chelydra serpentine]) and American alligators (Alligator mississippiensis). Ecotoxicity data for birds and reptiles are discussed in Sections A.1.1 through A.1.4. No studies in birds that were more sensitive than currently available data were located in the most recent ECOTOX search (October, 2008). A.1.1 Birds: Acute Oral Studies An acute oral toxicity study using the technical grade of the active ingredient (TGAI) is required to establish the toxicity
Recommended publications
  • Acute Toxicity of Atrazine, Endosulfan Sulphate and Chlorpyrifos
    Bull Environ Contam Toxicol (2008) 81:485–489 DOI 10.1007/s00128-008-9517-3 Acute Toxicity of Atrazine, Endosulfan Sulphate and Chlorpyrifos to Vibrio fischeri, Thamnocephalus platyurus and Daphnia magna, Relative to Their Concentrations in Surface Waters from the Alentejo Region of Portugal P. Palma Æ V. L. Palma Æ R. M. Fernandes Æ A. M. V. M. Soares Æ I. R. Barbosa Received: 28 September 2007 / Accepted: 20 August 2008 / Published online: 8 September 2008 Ó Springer Science+Business Media, LLC 2008 Abstract Ecotoxicological effects of the herbicide atra- the herbicide atrazine are three of the pesticides most fre- zine and the insecticides endosulfan sulphate and chlor- quently used in Alentejo region crops. These compounds pyrifos were evaluated using a test battery comprising were chosen taking in account their concentration in the aquatic organisms from different trophic levels. According surface water of Alentejo region, mainly in Guadiana River, to the categories established in the EU legislation, atrazine and their environmental significance. The herbicide atrazine can be considered non-harmful for the species tested, while may reach values above maximum admissible concentration the insecticides can be considered very toxic for the crus- (MAC) allowed by Portuguese Legislation for surface taceans. The results of acute toxicity tests showed that the waters (Decreto-Lei n8236/98 1998). Despite that, atrazine sensitivity of organisms were as follows: Thamnocephalus did not pose a significant threat to the aquatic environment. platyurus [ Daphnia magna [ Vibrio fischeri. Chlorpyri- However, Solomon et al. (1996) cautioned that, when atra- fos may act as a toxic compound in the aquatic environment zine is retained in small, standing-water reservoirs or has of Guadiana River, as it may be detected in water at levels repeated inputs to a reservoir, damage can occur in the that promote toxic effects.
    [Show full text]
  • The Effects of Estrogen in Atrazine-Mediated Foxp3 Induction and Inhibition of Cd4+ T Effector Cells
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2014 THE EFFECTS OF ESTROGEN IN ATRAZINE-MEDIATED FOXP3 INDUCTION AND INHIBITION OF CD4+ T EFFECTOR CELLS Tiffany Emmons The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Emmons, Tiffany, "THE EFFECTS OF ESTROGEN IN ATRAZINE-MEDIATED FOXP3 INDUCTION AND INHIBITION OF CD4+ T EFFECTOR CELLS" (2014). Graduate Student Theses, Dissertations, & Professional Papers. 4350. https://scholarworks.umt.edu/etd/4350 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE EFFECTS OF ESTROGEN IN ATRAZINE-MEDIATED FOXP3 INDUCTION AND INHIBITION OF CD4+ T EFFECTOR CELLS By TIFFANY ROSE EMMONS B.S. Biology, University of California, Merced, Merced, California, 2012 Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Cellular, Molecular and Microbial Biology Option: Immunology The University of Montana Missoula, MT Official Graduation Date: July 2014 Approved by: J. B. Alexander Ross, Dean of The Graduate School Graduate School Dr. Scott Wetzel, Chair Division of Biological Sciences Dr. Stephen Lodmell Division of Biological Sciences Dr. David Shepherd Department of Biomedical and Pharmaceutical Sciences Emmons, Tiffany, M.S. Summer 2014 Biology The Effects of Estrogen in Atrazine-mediated Foxp3 Induction and Inhibition of CD4+ T effector Cells Atrazine (ATR) is a chlorotriazine herbicide that is heavily used in agricultural areas.
    [Show full text]
  • What's the Deal with Andropause?
    What’sF.A.Q. the Deal Troches and Bio-Identical With HormonesAndropause? Compounding Without WrittenWritten and Edited ByBy CompromiseCompounding Since Without 1962 LisaLisa Everett Everett Andersen, Andersen, B.Sc B.Sc Pharm, Pharm, CCN, CCN, FACA, FACA FIACP Compromise Since 1962 and Shana Curtis Webb, Pharm Tech In the beginning, it can be difficult to recognize and easily and Dobs of Johns Hopkins University recommend that dismissed. It might start with lowered immune function, elderly men with symptoms of hypogonadism and a total Whatmaybe aIs little a Troche irritability? and unexplainable fatigue, or perhaps testosteroneOther Dosage level of Forms 300ng/dl or less should start hormone difficulty sleeping. Slowly, the symptoms can increase and A troche is a French dosage form that dissolves between the replacement.Besides troches, But dosagewhat about forms young for hormones men with include those sameoral others appear, including hair loss, depression, the typical levels? They are also being told by their physicians that upper cheek and gum, allowing the medication to absorb tablets and capsules, sublingual lozenges, topical creams and actions of a “mid-life crisis,” and erectile dysfunction. This their lab values are in range and therefore just fine. After directly into the blood stream. Born out of the need to address ointments, suppositories, pessaries, injections, implanted cascade of events is often due to andropause (AKA the “male all, testosterone is now a controlled substance and some the problems associated with other dosage forms, troches pellets, and patches. menopause” or hypogonadism). It is the decline of androgens, practitioners don’t want to go there unless they have to.
    [Show full text]
  • Impact of Atrazine on Organophosphate Insecticide Toxicity
    Environmental Toxicology and Chemistry, Vol. 19, No. 9, pp. 2266±2274, 2000 q 2000 SETAC Printed in the USA 0730-7268/00 $9.00 1 .00 IMPACT OF ATRAZINE ON ORGANOPHOSPHATE INSECTICIDE TOXICITY JASON B. BELDEN and MICHAEL J. LYDY* Department of Biological Sciences, 1845 N Fairmount, Wichita State University, Wichita, Kansas 67260-0026, USA (Received 9 August 1999; Accepted 24 January 2000) AbstractÐAcute toxicity of selected organophosphorus insecticides (OPs; chlorpyrifos, methyl parathion, diazinon, and malathion) was determined for individual OPs and binary combinations of the OPs with atrazine to larvae of the midge Chironomus tentans. Atrazine individually was not acutely toxic even at high concentrations (10,000 mg/L); however, the presence of atrazine at much lower concentrations (40±200 mg/L) increased the toxicity of chlorpyrifos, methyl parathion, and diazinon. Atrazine did not increase the toxicity of malathion. Possible mechanisms for the synergistic toxicity found between atrazine and chlorpyrifos were investigated, including increased uptake rate and increased biotransformation into a more toxic metabolite. Although the uptake rate was increased by more than 40%, the resulting increase in toxicity would be minimal as compared to the 400% decrease estimated to occur in EC50 values for the same atrazine exposure (200 mg/L). Body residue analysis of midges exposed in vivo to atrazine and chlorpyrifos mixtures for 96 h indicated that a larger amount of metabolites was generated in atrazine treatments as compared to controls. Additionally, in vitro assays of microsomal proteins obtained from treated and control midges indicated that an increase in toxic metabolite (chlorpyrifos-O-analog) was generated in atrazine-treated midges.
    [Show full text]
  • Effects of the Pesticides Atrazine, Metoachlor and Diazinon and Binary Mixtures on Proliferation of Human Fibroblasts
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Northern Iowa International Journal of Global Health Volume 2 Number 2 Article 3 2003 Effects of the Pesticides Atrazine, Metoachlor and Diazinon and Binary Mixtures on Proliferation of Human Fibroblasts Kavita R. Dhanwada University of Northern Iowa Yijun Deng University of Northern Iowa Maureen E. Clayton University of Northern Iowa Follow this and additional works at: https://scholarworks.uni.edu/ijgh Part of the Public Health Commons Recommended Citation Dhanwada, Kavita R.; Deng, Yijun; and Clayton, Maureen E. (2003) "Effects of the Pesticides Atrazine, Metoachlor and Diazinon and Binary Mixtures on Proliferation of Human Fibroblasts," International Journal of Global Health, 2(2), 21-36. Available at: https://scholarworks.uni.edu/ijgh/vol2/iss2/3 This Research is brought to you for free and open access by the Journals at UNI ScholarWorks. It has been accepted for inclusion in International Journal of Global Health by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. EFFECTS OF THE PESTICIDES ATRAZINE, METOACHLOR AND DIAZINON AND BINARY MIXTURES ON PROLIFERATION OF HUMAN FIBROBLASTS Kavita R. Dhanwada, Ph.D. Department of Biology, University of Northern Iowa Cedar Falls, IA 50614-0421 Yijun Deng, M.S . Environmental Programs, University of Northern Iowa Maureen E. Clayton, Ph.D . Department of Biology and Environmental Programs, University of Northern Iowa ABSTRACT The frequent and heavy use of pesticides in agriculture has led to the contamina­ tion of surface and ground waters worldwide. Many questions have arisen about the human health effects of exposure to these pesticides and their mixtures.
    [Show full text]
  • Robust Nanocatalyst Membranes for Degradation of Atrazine in Water T ⁎ H
    Journal of Water Process Engineering 25 (2018) 15–21 Contents lists available at ScienceDirect Journal of Water Process Engineering journal homepage: www.elsevier.com/locate/jwpe Robust nanocatalyst membranes for degradation of atrazine in water T ⁎ H. Vijwani, M.N. Nadagouda, S.M. Mukhopadhyay Center for Nanoscale Multifunctional Materials, Mechanical & Materials Engineering, Wright State University, Dayton, OH 45435, United States ARTICLE INFO ABSTRACT Keywords: Solid membranes for degradation of emerging contaminants such as atrazine is of significant interest for water Hierarchical hybrid surfaces as catalyst support engineering applications. In this study, nanocatalyst particles have been anchored on vertically-aligned carpet- Carbon nanotube carpets on porous membranes like arrays of carbon nanotubes (CNT) grown on porous carbon foams. This hierarchical architecture combines Palladium nano-particles the advantages of highly surface-active nanoparticles with the robust and reusable structural advantage of Atrazine degradation porous solid membranes suitable for water treatment devices. Three types of palladium-based nano-catalytic Surface chemical states surfaces have been investigated: metallic palladium (Pd), Pd nanoparticle with a layer of oxide (PdO-coated Pd), Nano-catalysts and Pd nanoparticle coated with thin film of silver (Ag-Pd). Their catalytic activities have been compared by analysing the degradation rate of atrazine in water. It is noted that all three catalysts show high levels of atrazine degradation, with the PdO-coated nanoparticles showing the highest kinetics. These results demonstrate that hierarchical hybrid architectures can provide compact and powerful surface-active materials such as adsorbents and catalytic degradation devices in future water treatment applications. 1. Introduction significantly constrained by the morphology of the underlying solid.
    [Show full text]
  • Fourth National Report to the Convention on Biological Diversity
    Fourth National Report to the Convention on Biological Diversity Biodiversity is life Biodiversity is our life Fourth National Report (Biodiversity National Assessment and Programme of Action 2020) Department of Environment E-16, Agargaon, Sher-e-Bangla Nagar Dhaka-1207, Bangladesh Ph- 88-02-9127882, 88-02-9117615 e-mail: [email protected] www.doe-bd.org Ministry of Environment and Forests Government of the People's Republic of Bangladesh January 2010 Ministry of Environment and Forests Government of the People's Republic of Bangladesh MESSAGE am very pleased with the publication of Biodiversity National Assessment and Programme of Action 2020 prepared by the Department of Environment. The report assesses the status of biodiversity of Bangladesh indicating a shrinking trend that makes us awaken for immediate actions. The situation analysis also indicates the need for an appropriate programme of actions so that ecosystem services, as outlined in the Millennium Ecosystem Assessment (MEA), are afforded greater protection and managed sustainably . There is enough evidence that biodiversity is threatened worldwide. According to the 2009 update of the International Union for Conservation of Nature's (IUCN) Red List of Threatened Species, 875 plants and animals are already extinct, or extinct in the wild, and an additional 17,291 are known to face a high risk of extinction in the wild. This is only the tip of an iceberg. Species are disappearing at a rate 100 to 1,000 times higher than normal and the threat like global climate change will significantly accelerate biodiversity loss. The imminent peril of so many species is an ominous signal for the future of our own species.
    [Show full text]
  • Paper Sessions 41St National AAZK Conference Orlando, FL
    Pro]__^ings of th_ 41st N[tion[l Conf_r_n]_ of th_ @m_ri][n @sso]i[tion of Zoo K__p_rs, In]. "KEEPERS MAKING A WORLD OF DIFFERENCE" Paper Sessions 41st National AAZK Conference Orlando, FL September 8-12, 2014 Welcome to the 41st American Association of Zoo Keepers National Conference “Keepers Making a World of Difference” Hosted by the Greater Orlando AAZK Chapter & Disney’s Animal Kingdom Our Chapter is thrilled by this opportunity to welcome you to our world! The members have been working hard to ensure that the 2014 AAZK Conference will be an experience you will always remember. This year’s conference will allow you to enjoy the Walt Disney World Resort, while connecting and developing profes- sionally with your colleagues from animal institutions around the globe. In partnership with your national AAZK Professional Development Committee, we are excited to bring you a varied program of workshops, papers, and speakers as the foundation of your conference experience. Addi- tionally, the AAZK, Inc. Specialized Training Workshop Series will debut “The Core Elements of Zoo Keeping” and an in-depth Hospital/Quarantine workshop. These featured programs are a track of AAZK’s Certification Series, brought to you in collaboration with AAZK Online Learning. Highlights of this year’s conference will include an Epcot icebreaker in The Seas with Nemo and Friends pavil- ion, followed by a dessert party with an exclusive viewing area for the nighttime spectacular, “Illuminations: Reflections of Earth.” We are also pleased to present a distinctive zoo day, which will take you “behind the magic” at Disney’s Animal Kingdom.
    [Show full text]
  • Red List of Bangladesh 2015
    Red List of Bangladesh Volume 1: Summary Chief National Technical Expert Mohammad Ali Reza Khan Technical Coordinator Mohammad Shahad Mahabub Chowdhury IUCN, International Union for Conservation of Nature Bangladesh Country Office 2015 i The designation of geographical entitles in this book and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, International Union for Conservation of Nature concerning the legal status of any country, territory, administration, or concerning the delimitation of its frontiers or boundaries. The biodiversity database and views expressed in this publication are not necessarily reflect those of IUCN, Bangladesh Forest Department and The World Bank. This publication has been made possible because of the funding received from The World Bank through Bangladesh Forest Department to implement the subproject entitled ‘Updating Species Red List of Bangladesh’ under the ‘Strengthening Regional Cooperation for Wildlife Protection (SRCWP)’ Project. Published by: IUCN Bangladesh Country Office Copyright: © 2015 Bangladesh Forest Department and IUCN, International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holders, provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holders. Citation: Of this volume IUCN Bangladesh. 2015. Red List of Bangladesh Volume 1: Summary. IUCN, International Union for Conservation of Nature, Bangladesh Country Office, Dhaka, Bangladesh, pp. xvi+122. ISBN: 978-984-34-0733-7 Publication Assistant: Sheikh Asaduzzaman Design and Printed by: Progressive Printers Pvt.
    [Show full text]
  • Assessing Toxicity of Endocrine Disrupting Compounds in Wastewater for Water Reuse Ryan Duchanois
    University of Arkansas, Fayetteville ScholarWorks@UARK Civil Engineering Undergraduate Honors Theses Civil Engineering 5-2016 Assessing Toxicity of Endocrine Disrupting Compounds in Wastewater for Water Reuse Ryan DuChanois Follow this and additional works at: http://scholarworks.uark.edu/cveguht Part of the Environmental Engineering Commons Recommended Citation DuChanois, Ryan, "Assessing Toxicity of Endocrine Disrupting Compounds in Wastewater for Water Reuse" (2016). Civil Engineering Undergraduate Honors Theses. 30. http://scholarworks.uark.edu/cveguht/30 This Thesis is brought to you for free and open access by the Civil Engineering at ScholarWorks@UARK. It has been accepted for inclusion in Civil Engineering Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Assessing Toxicity of Endocrine Disrupting Compounds in Wastewater for Water Reuse Ryan DuChanois Research Assistant Department of Civil Engineering University of Arkansas Dr. Wen Zhang Assistant Professor Department of Civil Engineering University of Arkansas 1.0. Introduction 1.1. Background As indicated by University of California Berkeley professor Dr. David Sedlak in his book Water 4.0, “If water is the essential ingredient of life, then water supply is the essential ingredient of civilization.” While water is undoubtedly crucial, one-fifth of the population in the world currently lives in areas of physical water scarcity (UN 2015). As both world population and industrial development increase, water consumption also increases. When combined with localized drought, these elements have led to predictions that there will be 1.8 billion people living in absolute water scarcity and nearly 70 percent of the world could be experiencing water-stressed conditions by 2025 (UN 2015).
    [Show full text]
  • Atrazine Health and Safety Guide
    IPCS INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY Health and Safety Guide No. 47 ATRAZINE HEALTH AND SAFETY GUIDE UNITED NATIONS INTERNATIONAL E~RONMENTPROGRAMME LABOUR ORGANISATION WORLD HEALTH ORGANIZATION WORLD HEALTH ORGANIZATION, GENEVA 1990 IPCS Other HEALTH AND SAFETY GUIDES available: 1. Acrylonitrile 27. Magnetic Fields 2. Kelevan 28. Phosphine 3. 1-Butanol 29. Dimethyl Sulfate 4. 2-Butanol 30. Deltamethrin 5. 2,4-Dichlorphenoxy- 31. Tetramethrin acetic Acid (2,4-D) 32. d-Phenothrin 6. Methylene Chloride 33. Permethrin 7. terl-Butanol 34. Fenvalerate 8. Epichlorohydrin 35. Phosphorus Trichloride and 9. Isobutanol Phosphorus Oxychloride 10. Tetrachloroethylene 36. Vinylidene Chloride 11. Tetradifon 37. Ammonia 12. Tecnazene 38. Cyhalothrin and Lambda- 13. Chlordane Cyhalothrin 14. Heptachlor 39. Mirex 15. Propylene Oxide 40. Camphechlor 16. Ethylene Oxide 41. Chlordecone 17. Endosulfan 42. Vanadium 18. Dichlorvos 43. Dimethylformamide 19. Pentachlorophenol 44. Beryllium 20. Dimethoate 45. Acrylamide 21. Aldrin and Dieldrin 46. Barium 22. Cypermethrin 23. Quintozene 24. Allethrins 25. Resmethrins 26. Pyrrolizidine Alkaloids IPCS Health and Safety Guide No. 47 ATRAZINE HEALTH AND SAFETY GUIDE Published by the World Health Organization for the International Programme on Chemical Safety (a collaborative programme of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization) WORLD HEALTH ORGANIZATION, GENEVA 1990 This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization WHO Library Cataloguing in Publication Data Atrazine : health and safety guide. (Health and safety guide ; no.
    [Show full text]
  • Assessment of Atrazine Effects and the Pathogenic Chytrid Fungus To
    Contaminants Report Number: R6/726C/12 DEPARTMENT OF THE INTERIOR U.S. FISH AND WILDLIFE SERVICE REGION 6 Assessment of Atrazine Effects and the pathogenic chytrid fungus (Batrachochytrium dendrobatidis) to the Endangered Wyoming Toad (Bufo baxteri) and the Chorus Frog (Pseudacris triseriata) at Mortenson National Wildlife Refuge, Wyoming By Kimberly Dickerson in cooperation with Dr. Carol Helbing, University of Victoria, Canada and Dr. Mark Jordan, Indiana University-Purdue University, Indiana USFWS photo FFS# 6N58 DEQ Project ID: 200860001.1 June 2013 Abstract The Wyoming toad (Anaxyrus baxteri, formerly Bufo baxteri) population in the Laramie Plains of Wyoming declined dramatically in the 1970s and was listed as an endangered species in 1984. The Federal Register Notice Listing Package included habitat loss, pesticide applications, and disease as potential reasons for the decline and as threats to the recovery of the toad. Several investigations were conducted to determine why reintroduction efforts continue to have limited success but none have indicated serious concern to date. However, the pathogenic chytrid fungus (Batrachochytrium dendrobatidis, Bd), which has decimated amphibian populations worldwide, was found at the primary reintroduction site at Mortenson Lake National Wildlife Refuge (NWR). Additionally, research has indicated that the widely used herbicide atrazine can adversely affect amphibians, including suppressing immune functions and increasing their susceptibility to disease (e.g Bd). Therefore, we conducted this study to determine if Wyoming toads and chorus frogs are being exposed to atrazine and if so, are sublethal effects occurring, including their susceptibility to Bd. In the fall of 2004, we collected water samples to establish if atrazine was present at the refuge.
    [Show full text]