Elliptic Curves in the Modern Age
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
INTRODUCTION to ALGEBRAIC GEOMETRY, CLASS 25 Contents 1
INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 25 RAVI VAKIL Contents 1. The genus of a nonsingular projective curve 1 2. The Riemann-Roch Theorem with Applications but No Proof 2 2.1. A criterion for closed immersions 3 3. Recap of course 6 PS10 back today; PS11 due today. PS12 due Monday December 13. 1. The genus of a nonsingular projective curve The definition I’m going to give you isn’t the one people would typically start with. I prefer to introduce this one here, because it is more easily computable. Definition. The tentative genus of a nonsingular projective curve C is given by 1 − deg ΩC =2g 2. Fact (from Riemann-Roch, later). g is always a nonnegative integer, i.e. deg K = −2, 0, 2,.... Complex picture: Riemann-surface with g “holes”. Examples. Hence P1 has genus 0, smooth plane cubics have genus 1, etc. Exercise: Hyperelliptic curves. Suppose f(x0,x1) is a polynomial of homo- geneous degree n where n is even. Let C0 be the affine plane curve given by 2 y = f(1,x1), with the generically 2-to-1 cover C0 → U0.LetC1be the affine 2 plane curve given by z = f(x0, 1), with the generically 2-to-1 cover C1 → U1. Check that C0 and C1 are nonsingular. Show that you can glue together C0 and C1 (and the double covers) so as to give a double cover C → P1. (For computational convenience, you may assume that neither [0; 1] nor [1; 0] are zeros of f.) What goes wrong if n is odd? Show that the tentative genus of C is n/2 − 1.(Thisisa special case of the Riemann-Hurwitz formula.) This provides examples of curves of any genus. -
Classics Revisited: El´ Ements´ De Geom´ Etrie´ Algebrique´
Noname manuscript No. (will be inserted by the editor) Classics Revisited: El´ ements´ de Geom´ etrie´ Algebrique´ Ulrich Gortz¨ Received: date / Accepted: date Abstract About 50 years ago, El´ ements´ de Geom´ etrie´ Algebrique´ (EGA) by A. Grothen- dieck and J. Dieudonne´ appeared, an encyclopedic work on the foundations of Grothen- dieck’s algebraic geometry. We sketch some of the most important concepts developed there, comparing it to the classical language, and mention a few results in algebraic and arithmetic geometry which have since been proved using the new framework. Keywords El´ ements´ de Geom´ etrie´ Algebrique´ · Algebraic Geometry · Schemes Contents 1 Introduction . .2 2 Classical algebraic geometry . .3 2.1 Algebraic sets in affine space . .3 2.2 Basic algebraic results . .4 2.3 Projective space . .6 2.4 Smoothness . .8 2.5 Elliptic curves . .9 2.6 The search for new foundations of algebraic geometry . 10 2.7 The Weil Conjectures . 11 3 The Language of Schemes . 12 3.1 Affine schemes . 13 3.2 Sheaves . 15 3.3 The notion of scheme . 20 3.4 The arithmetic situation . 22 4 The categorical point of view . 23 4.1 Morphisms . 23 4.2 Fiber products . 24 4.3 Properties of morphisms . 28 4.4 Parameter Spaces and Representable Functors . 30 4.5 The Yoneda Lemma . 33 4.6 Group schemes . 34 5 Moduli spaces . 36 5.1 Coming back to moduli spaces of curves . 36 U. Gortz¨ University of Duisburg-Essen, Fakultat¨ fur¨ Mathematik, 45117 Essen, Germany E-mail: [email protected] 2 Ulrich Gortz¨ 5.2 Deformation theory . -
Cubic Curves and Totally Geodesic Subvarieties of Moduli Space
Cubic curves and totally geodesic subvarieties of moduli space Curtis T. McMullen, Ronen E. Mukamel and Alex Wright 16 March 2016 Abstract In this paper we present the first example of a primitive, totally geodesic subvariety F ⊂ Mg;n with dim(F ) > 1. The variety we consider is a surface F ⊂ M1;3 defined using the projective geometry of plane cubic curves. We also obtain a new series of Teichm¨ullercurves in M4, and new SL2(R){invariant varieties in the moduli spaces of quadratic differentials and holomorphic 1-forms. Contents 1 Introduction . 1 2 Cubic curves . 6 3 The flex locus . 11 4 The gothic locus . 14 5 F is totally geodesic . 20 6 F is primitive . 24 7 The Kobayashi metric on F ................... 26 8 Teichm¨ullercurves in M4 .................... 28 9 Explicit polygonal constructions . 30 Research supported in part by the NSF and the CMI (A.W.). Revised 15 Dec 2016. Typeset 2018-07-27 17:28. 1 Introduction Let Mg;n denote the moduli space of compact Riemann surfaces of genus g with n marked points. A complex geodesic is a holomorphic immersion f : H !Mg;n that is a local isometry for the Kobayashi metrics on its domain and range. It is known that Mg;n contains a complex geodesic through every point and in every possible direction. We say a subvariety V ⊂ Mg;n is totally geodesic if every complex geodesic tangent to V is contained in V . It is primitive if it does not arise from a simpler moduli space via a covering construction. -
P-Adic Class Invariants
LMS J. Comput. Math. 14 (2011) 108{126 C 2011 Author doi:10.1112/S1461157009000175e p-adic class invariants Reinier Br¨oker Abstract We develop a new p-adic algorithm to compute the minimal polynomial of a class invariant. Our approach works for virtually any modular function yielding class invariants. The main algorithmic tool is modular polynomials, a concept which we generalize to functions of higher level. 1. Introduction Let K be an imaginary quadratic number field and let O be an order in K. The ring class field HO of the order O is an abelian extension of K, and the Artin map gives an isomorphism s Pic(O) −−! Gal(HO=K) of the Picard group of O with the Galois group of HO=K. In this paper we are interested in explicitly computing ring class fields. Complex multiplication theory provides us with a means of doing so. Letting ∆ denote the discriminant of O, it states that we have j HO = K[X]=(P∆); j where P∆ is the minimal polynomial over Q of the j-invariant of the complex elliptic curve j C=O. This polynomial is called the Hilbert class polynomial. It is a non-trivial fact that P∆ has integer coefficients. The fact that ring class fields are closely linked to j-invariants of elliptic curves has its ramifications outside the context of explicit class field theory. Indeed, if we let p denote a j prime that is not inert in O, then the observation that the roots in Fp of P∆ 2 Fp[X] are j j-invariants of elliptic curves over Fp with endomorphism ring O made computing P∆ a key ingredient in the elliptic curve primality proving algorithm [12]. -
Chapter 2 Affine Algebraic Geometry
Chapter 2 Affine Algebraic Geometry 2.1 The Algebraic-Geometric Dictionary The correspondence between algebra and geometry is closest in affine algebraic geom- etry, where the basic objects are solutions to systems of polynomial equations. For many applications, it suffices to work over the real R, or the complex numbers C. Since important applications such as coding theory or symbolic computation require finite fields, Fq , or the rational numbers, Q, we shall develop algebraic geometry over an arbitrary field, F, and keep in mind the important cases of R and C. For algebraically closed fields, there is an exact and easily motivated correspondence be- tween algebraic and geometric concepts. When the field is not algebraically closed, this correspondence weakens considerably. When that occurs, we will use the case of algebraically closed fields as our guide and base our definitions on algebra. Similarly, the strongest and most elegant results in algebraic geometry hold only for algebraically closed fields. We will invoke the hypothesis that F is algebraically closed to obtain these results, and then discuss what holds for arbitrary fields, par- ticularly the real numbers. Since many important varieties have structures which are independent of the field of definition, we feel this approach is justified—and it keeps our presentation elementary and motivated. Lastly, for the most part it will suffice to let F be R or C; not only are these the most important cases, but they are also the sources of our geometric intuitions. n Let A denote affine n-space over F. This is the set of all n-tuples (t1,...,tn) of elements of F. -
Arithmetic of Elliptic Curves
Arithmetic of Elliptic Curves Galen Ballew & James Duncan May 6, 2016 Abstract Our research focuses on 9 specific elliptic curves E over Q, each with complex multiplication by the maximal order in an imaginary quadratic field. Viewed over C, each E gives rise to tori, defined by the generators !1;!2 2 C of the period lattice. Using SAGE, information and characteristics about the curves and their tori were calculated and compiled. Additionally, the tori were virtually constructed using 3D modeling software. These virtual meshes were converted to G-Code and printed on an Ultimaker2 3D printer. 1 Motivation Elliptic curves are interesting mathematical phenomena. Certain curves can be used to solve Diophantine equations (for example, in the proof of Fermat's Last Theorem), part of factoring algorithms, or used in cryptography. This research project is about developing an understanding of elliptic curves, their properties, and creating visualizations of them. 2 Elliptic Curves over Q In order to define an elliptic curve, we have to consider the more general class of curves to which elliptic curves belong. Definition 1. A cubic plane curve C defined over a field K is a curve in the plane given by the equation y2 = x3 + ax + b for a; b 2 K. The discriminant of C is defined as ∆ = −16(4a3 + 27b2): Theorem 1. Let C be a cubic plane curve. Then C is non-singular if and only if its discriminant is non-zero. Proof. ()) Let f(x) = x3 + ax + b. Define F (x; y) = y2 − x3 − ax − b, the left-hand side of the above equation. -
Kummer Surfaces for Primality Testing
Kummer surfaces for primality testing Eduardo Ru´ız Duarte & Marc Paul Noordman Universidad Nacional Aut´onoma de M´exico, University of Groningen [email protected], [email protected] Abstract We use the arithmetic of the Kummer surface associated to the Jacobian of a hyperelliptic curve to study the primality of integersof the form 4m25n 1. We providean algorithmcapable of proving the primality or compositeness of most of the− integers in these families and discuss in detail the necessary steps to implement this algorithm in a computer. Although an indetermination is possible, in which case another choice of initial parameters should be used, we prove that the probability of reaching this situation is exceedingly low and decreases exponentially with n. Keywords: Primality, Jacobians, Hyperelliptic Curves, Kummer Surface 2020 MSC: 11G25, 11Y11, 14H40, 14H45 Introduction Determining the primality of an arbitrary integer n is a fundamental problem in number theory. The first deterministic polynomial time primality test (AKS) was developed by Agrawal, Kayal and Saxena [3]. Lenstra and Pomerance in [25] proved that a variant of AKS has running time (log n)6(2+log log n)c where c isaneffectively computablereal number. The AKS algorithm has more theoretical relevance than practical. If rather than working with general integers, one fixes a sequence of integers, for example Fermat or Mersenne numbers, one can often find an algorithm to determine primality using more efficient methods; for these two examples P´epin’s and Lucas-Lehmer’s tests respectively provide fast primality tests. Using elliptic curves, in 1985, Wieb Bosma in his Master Thesis [5] found analogues of Lucas tests for elements in Z[i] or Z[ζ] (with ζ a third root of unity) by replacing the arithmetic of (Z/nZ)× with the arithmetic of elliptic curves modulo n with complex multiplication (CM). -
ATKIN's ECPP (Elliptic Curve Primality Proving) ALGORITHM
ATKIN’S ECPP (Elliptic Curve Primality Proving) ALGORITHM OSMANBEY UZUNKOL OCTOBER 2004 ATKIN’S ECPP (Elliptic Curve Primality Proving ) ALGORITHM A THESIS SUBMITTED TO DEPARTMENT OF MATHEMATICS OF TECHNICAL UNIVERSITY OF KAISERSLAUTERN BY OSMANBEY UZUNKOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN THE DEPARTMENT OF MATHEMATICS October 2004 abstract ATKIN’S ECPP ALGORITHM Uzunkol, Osmanbey M.Sc., Department of Mathematics Supervisor: Prof. Dr. Gerhard Pfister October 2004, cxxiii pages In contrast to using a strong generalization of Fermat’s theorem, as in Jacobi- sum Test, Goldwasser and Kilian used some results coming from Group Theory in order to prove the primality of a given integer N ∈ N. They developed an algorithm which uses the group of rational points of elliptic curves over finite fields. Atkin and Morain extended the idea of Goldwasser and Kilian and used the elliptic curves with CM (complex multiplication) to obtain a more efficient algorithm, namely Atkin’s ECPP (elliptic curve primality proving) Algorithm. Aim of this thesis is to introduce some primality tests and explain the Atkin’s ECPP Algorithm. Keywords: Cryptography, Algorithms, Algorithmic Number Theory. ii oz¨ Herg¨unbir yere konmak ne g¨uzel, Bulanmadan donmadan akmak ne ho¸s, D¨unleberaber gitti canca˘gızım! Ne kadar s¨ozvarsa d¨uneait, S¸imdi yeni ¸seylers¨oylemeklazım... ...............Mevlana Celaleddini’i Rumi............... iii I would like to thank first of all to my supervisor Prof. Dr . Gerhard Pfister for his help before and during this work. Secondly, I would like to thank also Hans Sch¨onemann and Ra¸sitS¸im¸sekfor their computer supports in computer algebra system SINGULAR and programming language C++, respectively. -
Institutionen För Matematik, KTH
Institutionen f¨ormatematik, KTH. Contents 4 Curves in the projective plane 1 4.1 Lines . 1 4.1.3 The dual projective plane (P2)∗ ............. 2 4.1.5 Automorphisms of P2 ................... 2 4.2 Conic sections . 3 4.2.1 Conics as the intersection of a plane and a cone . 3 4.2.2 Parametrization of irreducible conics . 3 4.2.6 The parameter space of conics . 5 4.2.8 Classification of conics . 5 4.2.13 The real case vs the complex case . 6 4.2.14 Pascal's Theorem . 6 5 Cubic curves 9 5.1 Normal forms for irreducible cubics . 9 5.2 Elliptic curves . 10 5.2.3 The group law on an elliptic curve . 11 5.2.6 A one-dimensional family of elliptic curves . 12 5.2.7 Flex points on an elliptic curve . 12 5.2.10 Singularities and the discriminant . 13 6 B´ezout'sTheorem 15 6.0.15 The degree of a projective curve . 15 6.0.17 Intersection multiplicity . 16 6.0.21 Proof of B´ezout'sTheorem . 16 6.0.24 The homogeneous coordinate ring of a projective plane curve . 17 iii Chapter 4 Curves in the projective plane We will in this chapter study different aspects of plane curves by which we mean curves in the projective plane defined by polynomial equations. Here we will start with the more classical setting and consider a plane curve as the set of solutions of one homogenous equation in three variables. We will start by choosing a field, k, which in most cases can be thought of as either R or C, but sometimes, it is interesting also to look at Q or finite fields. -
Cayley-Bacharach Theorems and Conjectures
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 33, Number 3, July 1996 CAYLEY-BACHARACH THEOREMS AND CONJECTURES DAVID EISENBUD, MARK GREEN, AND JOE HARRIS Abstract. A theorem of Pappus of Alexandria, proved in the fourth century A.D., began a long development in algebraic geometry. In its changing expres- sions one can see reflected the changing concerns of the field, from synthetic geometry to projective plane curves to Riemann surfaces to the modern de- velopment of schemes and duality. We survey this development historically and use it to motivate a brief treatment of a part of duality theory. We then explain one of the modern developments arising from it, a series of conjectures about the linear conditions imposed by a set of points in projective space on the forms that vanish on them. We give a proof of the conjectures in a new special case. Contents Introduction 295 Part I: The past 298 1.1. Pappas, Pascal, and Chasles 298 1.2. Cayley and Bacharach 303 1.3. The twentieth century 311 1.4. Proof of the final Cayley-Bacharach Theorem 316 Part II: The future? 318 2.1. Cayley-Bacharach Conjectures 318 2.2. A proof of Conjecture CB10 in case r 7 321 References≤ 323 Introduction Suppose that Γ is a set of γ distinct points in Rn (or Cn). In fields ranging from applied mathematics (splines and interpolation) to transcendental numbers, and of course also in algebraic geometry, it is interesting to ask about the polynomial functions that vanish on Γ. If we substitute the coordinates of a point p of Γ for the variables, then the condition that a polynomial f vanishes at p becomes a nontrivial linear condition on the coefficients of f. -
Constructive and Computational Aspects of Cryptographic Pairings
Constructive and Computational Aspects of Cryptographic Pairings Michael Naehrig Constructive and Computational Aspects of Cryptographic Pairings PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op donderdag 7 mei 2009 om 16.00 uur door Michael Naehrig geboren te Stolberg (Rhld.), Duitsland Dit proefschrift is goedgekeurd door de promotor: prof.dr. T. Lange CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Naehrig, Michael Constructive and Computational Aspects of Cryptographic Pairings / door Michael Naehrig. – Eindhoven: Technische Universiteit Eindhoven, 2009 Proefschrift. – ISBN 978-90-386-1731-2 NUR 919 Subject heading: Cryptology 2000 Mathematics Subject Classification: 94A60, 11G20, 14H45, 14H52, 14Q05 Printed by Printservice Technische Universiteit Eindhoven Cover design by Verspaget & Bruinink, Nuenen c Copyright 2009 by Michael Naehrig Fur¨ Lukas und Julius Promotor: prof.dr. T. Lange Commissie: prof.dr.dr.h.c. G. Frey (Universit¨at Duisburg-Essen) prof.dr. M. Scott (Dublin City University) prof.dr.ir. H.C.A. van Tilborg prof.dr. A. Blokhuis prof.dr. D.J. Bernstein (University of Illinois at Chicago) prof.dr. P.S.L.M. Barreto (Universidade de S˜ao Paulo) Alles, was man tun muss, ist, die richtige Taste zum richtigen Zeitpunkt zu treffen. Johann Sebastian Bach Thanks This dissertation would not exist without the help, encouragement, motivation, and company of many people. I owe much to my supervisor, Tanja Lange. I thank her for her support; for all the efforts she made, even in those years, when I was not her PhD student; for taking care of so many things; and for being a really good supervisor. -
Elliptic Curves: Number Theory and Cryptography
Elliptic Curves Number Theory and Cryptography Second Edition © 2008 by Taylor & Francis Group, LLC DISCRETE MATHEMATICS ITS APPLICATIONS !-%!. %/*- !))!/$ *.!)$ -*!'#**-*)/-* 0/%*)/** %)#$!*-4 *'#'%'",*#'#*-%/$(%*(%)/*-%.*)-/%'*- . -'("(''!-+))%)#-!!.) +/%(%5/%*)-*'!(. "*%&(+"*%&#+ )0(!-/%1!*(%)/*-%. '*#("' *"* *1,% ) **&*" ''%+/%) 4+!-!''%+/%0-1!-4+/*#-+$4 "*%+(%(-*'' *1 #'#,2 ) **&*"*(%)/*-%' !.%#).!*) %/%*) *,#' *#$+(''',"('122')/-* 0/%*)/*0(!-$!*-4 ,.' -*#'(#'!#('#'0#'!#' -(!.) !.*'1'! !.%#)..!. *)./-0/%*).) 3%./!)! '1 (%*!''#$-/%' ) **&*"+!!$* !-. ( ((&''(+)"4(-*$ ) **&*" %.-!/!) *(+0//%*)' !*(!/-4 !*) %/%*) (',"' *(++*(%)/*-%'!/$* .2%/$*(+0/!-++'%/%*). (',"' *(++'1%%' -+$$!*-4) /.++'%/%*).!*) %/%*) (',"' *(++'1%%' ) **&*" -+$$!*-4 **% '$*+(' *! **#+',*("'+(')/-* 0/%*)/*)"*-(/%*) $!*-4) /*(+-!..%*)!*) %/%*) *1% *&+#*(+%.*,2%"*%+(%(-*''("'.#,,!/2*-&!'%%'%/4 3+!-%(!)/.2%/$4(*'%'#!- )1%-*)(!)/ +%# (!' ) **&*"%)!-'#!- *$ (%,/#,",,#' #$' &(''4*#' ) **&*"*(+0//%*)' -*0+$!*-4 .#$+(''**1 #+',#')/'.*"(''!-+.%)-%!)/'!) *)*-%!)/'!0-"!. #"* %#&#% #!&('' *'+,,#,2#'!*++'%/%*).*"./-/'#!- 2%/$+'!7) 6!*) %/%*) ,*#$'-))'%*#!-%"%/%*)*"*(+0/!-* !.%)*(+0//%*)'%!)! ) )#%)!!-%)# © 2008 by Taylor & Francis Group, LLC Continued Titles #%%#&(1'('%*"* -+$.'#*-%/$(.) +/%(%5/%*) ('%*"*'(-!%+,#'+('*(%)/*-%''#*-%/$(. !)!-/%*) )0(!-/%*) ) !-$ "*%+#''*'"*#+,()"*(!*+ !.%#)$!*-4 '!-1%--4*" -+$'#*-%/$(.) +/%(%5/%*) % *'2+-%.'(*+"(,'(,,'+,(' ) **&*"++'%! -4+/*#-+$4 #"*(%%#''#!-%0(!-$!*-4 #"*(%%#'* !.$! 0% !/*!-!4"-*()%!)//** !-)%(!. #"*(%%#' 0) (!)/'0(!-$!*-42%/$++'%/%*).!*)