Primary Biliary Cirrhosis View Online At

Total Page:16

File Type:pdf, Size:1020Kb

Primary Biliary Cirrhosis View Online At Primary Biliary Cirrhosis View online at http://pier.acponline.org/physicians/diseases/d472/d472.html Module Updated: 2013-02-12 CME Expiration: 2016-02-12 Author Richard H. Moseley, MD Table of Contents 1. Screening ..........................................................................................................................2 2. Diagnosis ..........................................................................................................................3 3. Consultation ......................................................................................................................7 4. Hospitalization ...................................................................................................................8 5. Therapy ............................................................................................................................9 6. Patient Education ...............................................................................................................14 7. Follow-up ..........................................................................................................................15 References ............................................................................................................................16 Glossary................................................................................................................................20 Tables ...................................................................................................................................21 Quality Ratings: The preponderance of data supporting guidance statements are derived from: level 1 studies, which meet all of the evidence criteria for that study type; level 2 studies, which meet at least one of the evidence criteria for that study type; or level 3 studies, which meet none of the evidence criteria for that study type or are derived from expert opinion, commentary, or consensus. Study types and criteria are defined at http://smartmedicine.acponline.org/criteria.html Disclaimer: The information included herein should never be used as a substitute for clinical judgement and does not represent an official position of the American College of Physicians. Because all PIER modules are updated regularly, printed web pages or PDFs may rapidly become obsolete. Therefore, PIER users should compare the module updated date on the offical web site with any printout to ensure that the information is the most current available. CME Statement: The American College of Physicians is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing education for physicians. The American College of Physicians designates this enduring material for a maximum of 1 AMA PRA Category 1 CreditTM. Physicians should claim only credit commensurate with the extent of their participation in the activity. Purpose: This activity has been developed for internists to facilitate the highest quality professional work in clinical applications, teaching, consultation, or research. Upon completion of the CME activity, participants should be able to demonstrate an increase in the skills and knowledge required to maintain competence, strengthen their habits of critical inquiry and balanced judgement, and to contribute to better patient care. Disclosures: Richard H. Moseley, MD, current author of this module, has no financial relationships with pharmaceutical companies, biomedical device manufacturers, or health-care related organizations. Deborah Korenstein, MD, FACP, Co-Editor, PIER, has no financial relationships with pharmaceutical companies, biomedical device manufacturers, or health-care related organizations. Richard B. Lynn, MD, FACP, Co-Editor, PIER, has no financial relationships with pharmaceutical companies, biomedical device manufacturers, or health-care related organizations. PIER is copyrighted ©2013 by the American College of Physicians. 190 N. Independence Mall West, Philadelphia, PA 19106, USA. Primary Biliary Cirrhosis Top 1. Screening Although general population screening for primary biliary cirrhosis is not indicated, consider screening certain family members of known patients. 1.1 Consider screening first-degree relatives of patients with PBC. Recommendations • Obtain blood levels of antimitochondrial antibody, alkaline phosphatase, ALT, and AST. Evidence • In a retrospective study, the prevalence of PBC in family members of patients with this disease was markedly increased when compared with estimates in the general population (1). • In one British study of 160 patients with PCB, improved methodology suggested that the overall prevalence of PBC in first-degree relatives of patients with PBC was less than 1%, similar to values seen in other autoimmune diseases. The highest prevalence was seen in daughters of patients (2). • An interview-based study of 1032 patients showed that having a first-degree relative with PBC is significantly associated with increased risk for PBC (3). • A concordance rate of 63% has been reported in monozygotic twins with PBC (4). • In a study from the U.S., 13.1% of first-degree relatives of patients with PBC tested positive for antimitochondrial antibodies (5). • Familial clustering of PBC has also been reported outside of the U.S and the United Kingdom (6). Rationale • Screening should be considered because the risk for PBC is increased in first-degree relatives of patients with PBC. PIER is copyrighted ©2013 by the American College of Physicians. 190 N. Independence Mall West, Philadelphia, PA 19106, USA. Page 2 of 26 Primary Biliary Cirrhosis Top 2. Diagnosis Consider the diagnosis of PBC in patients with chronic cholestasis manifested by unexplained elevations of serum alkaline phosphatase or unexplained pruritus without a rash. 2.1 Recognize that the symptoms of PBC may be absent or nonspecific. Recommendations • Although patients with PBC may be asymptomatic, ask about: Factors associated with other autoimmune diseases, such as: o Sicca syndrome o CREST syndrome o Raynaud's phenomenon o Thyroid dysfunction o Rheumatoid arthritis o Celiac sprue Family history of cirrhosis Unexplained itching (pruritus) Unexplained fatigue Unexplained weight loss Urinary tract infections Medication history, including use of hormone replacement therapy Smoking history Evidence • Although fatigue and pruritus used to be the most common presenting symptoms of PBC, review articles indicate that the disease is now more widely recognized and many patients are diagnosed at earlier stages when they are asymptomatic (7; 8; 9). Fatigue may be a manifestation of untreated hypothyroidism, which occurs in approximately 20% of patients with PBC (8). • Approximately 50% to 60% of patients are asymptomatic at diagnosis (7; 8; 9; 10). • The cause of pruritus in PBC is unknown, but several hypotheses have been proposed, including bile acid accumulation and endogenous opioids (11). • A case-control study showed that smoking is strongly associated with PBC (OR, 2.04 [CI, 1.10 to 3.78]) (12). Rationale • Although PBC is uncommon, it can be diagnosed while asymptomatic and should be considered in patients with chronic cholestasis, especially patients who have other autoimmune diseases. • It is important to question patients about the use of medications, because some drugs may cause cholestasis similar to that associated with PBC. 2.2 Recognize that the clinical signs attributable to PBC may be absent or nonspecific. Recommendations • Although patients with PBC may have no clinical signs of the disease, look for: Fatigue Weight loss Hyperpigmentation PIER is copyrighted ©2013 by the American College of Physicians. 190 N. Independence Mall West, Philadelphia, PA 19106, USA. Page 3 of 26 Primary Biliary Cirrhosis Xanthomas Hepatosplenomegaly, suggesting chronic liver disease Signs of advanced stage of liver disease, such as: o Spider nevi o Temporal and proximal limb muscle wasting o Ascites o Edema Jaundice, usually a later manifestation of the disease Evidence • Comprehensive review articles and guidelines emphasize that patients with certain elements in their history and physical exam may be more likely to have PBC. For example, pruritus, hyperpigmentation of the skin, and hepatomegaly in women with a cholestatic pattern of liver function tests are common in PBC but unusual in other liver disorders, such as acute and chronic hepatitis and alcoholic liver disease (7; 8; 9). • A case-control study showed that a significant proportion of patients with PBC suffer from severe fatigue, which correlates with the degree of daytime somnolence (13). Rationale • Although the signs of PBC are likely to be nonspecific if present, physical findings (e.g., hyperpigmentation, xanthomas, jaundice) may provide clues to the diagnosis, as well as an indication of the severity of liver disease. 2.3 Recognize laboratory abnormalities suggesting PBC. Recommendations • Look for the following laboratory abnormalities: Elevated serum alkaline phosphatase and/or gamma glutamyl transpeptidase levels Normal or elevated conjugated bilirubin levels Slightly elevated ALT and AST levels A positive antimitochondrial antibody test Elevated serum levels of total immunoglobulin M Elevated serum cholesterol level Elevated serum ceruloplasmin level Negative tests for hepatitis A, B, and C viruses Normal serum iron, total iron binding capacity, and iron saturation levels • See table Laboratory and Other Studies for Primary Biliary Cirrhosis. Evidence • A major advance in our understanding
Recommended publications
  • 1.1. Bisphosphonates and Depressive Reactions
    1.1. Bisphosphonates and depressive reactions Introduction Bisphosphonates are the most commonly prescribed medications for the treatment of osteoporosis [1]. Alendronate (Fosamax ®) is indicated for the treatment and prevention of osteoporosis in postmenopausal women, treatment to increase bone mass in men with osteoporosis, treatment of glucocorticoid-induced osteoporosis in men and women receiving glucocorticoids in a daily dosage equivalent to 7.5 mg or greater of prednisone and who have low bone mineral density, and treatment of Paget’s disease of bone in men and women [2]. Alendronate with colecalciferol (vitamin D3) (Fosavance ®) is indicated for the treatment of postmenopausal osteoporosis in patients at risk of vitamin D insufficiency [3]. Risedronate (Actonel ®) is used for the same indications as alendronate [4]. Risedronate with calcium (Actokit ®) is indicated for the treatment and prevention of osteoporosis in postmenopausal women [5]. Etidronate with calciumcarbonate (Didrokit ®) is indicated for the prevention and treatment of osteoporosis in post-menopausal women and the prevention of corticosteroid induced osteoporosis [6]. Ibandronate (Bonviva ®) is indicated for the treatment of osteoporosis in postmenopausal women at increased risk of fracture [7]. Pamidronate (Pamipro ®) is used intravenously for a different indication than most other bisphosphonates, namely tumour-induced hypercalcaemia, osteolytic lesions in patients with breast cancer related bone metastasis and multiple myeloma stage III [8]. Intravenous pamidronate is also used as APD infusion for the indication osteoporosis . Zoledronate (Zometa ®) is indicated for prevention of skeletal related events in patients with advanced malignancies involving bone or treatment of tumour-induced hypercalcaemia [9]. The most commonly used bisphosphonate in the Netherlands [10], alendronate (Fosamax ®), was granted marketing authorization in 1996 [2].
    [Show full text]
  • Association Between Oral Anticoagulants and Osteoporosis
    Int. J. Med. Sci. 2020, Vol. 17 471 Ivyspring International Publisher International Journal of Medical Sciences 2020; 17(4): 471-479. doi: 10.7150/ijms.39523 Research Paper Association between oral anticoagulants and osteoporosis: Real-world data mining using a multi-methodological approach Satoshi Yokoyama1, Shoko Ieda2, Mirai Nagano1, Chihiro Nakagawa1, Makoto Iwase1, Kouichi Hosomi1, Mitsutaka Takada1 1. Division of Clinical Drug Informatics, School of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan 2. Department of Pharmacy, Kindai University Hospital, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan Corresponding author: Satoshi Yokoyama, Ph. D., Division of Clinical Drug Informatics, School of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan. Telephone number: +81-6-6721-2332; Fax number: +81-6-6730-1394; E-mail address: [email protected] © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.08.21; Accepted: 2020.01.08; Published: 2020.02.04 Abstract Introduction: Warfarin and direct oral anticoagulants (DOACs) have been widely used in antithrombotic therapy. Although warfarin use has been suspected to be associated with osteoporosis risk, several studies have shown otherwise. Conversely, a few reports have found an association between DOACs and osteoporosis. This study therefore clarifies the association between oral anticoagulants and osteoporosis by analyzing real-world data using different methodologies, algorithms, and databases. Methods: Real-world data from the US Food and Drug Administration Adverse Event Reporting System (FAERS; 2004–2016) and Japanese administrative claims database (2005–2017; JMDC Inc., Tokyo) were used.
    [Show full text]
  • Proton Pump Inhibitors and Fracture Risk: a Review of Current Evidence and Mechanisms Involved
    International Journal of Environmental Research and Public Health Review Proton Pump Inhibitors and Fracture Risk: A Review of Current Evidence and Mechanisms Involved Benjamin Ka Seng Thong , Soelaiman Ima-Nirwana and Kok-Yong Chin * Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Malaysia; [email protected] (B.K.S.T.), [email protected] (S.I.-N.) * Correspondence: [email protected]; Tel.: +60-3-9145-9573 Received: 5 March 2019; Accepted: 30 April 2019; Published: 5 May 2019 Abstract: The number of patients with gastroesophageal problems taking proton pump inhibitors (PPIs) is increasing. Several studies suggested a possible association between PPIs and fracture risk, especially hip fractures, but the relationship remains contentious. This review aimed to investigate the longitudinal studies published in the last five years on the relationship between PPIs and fracture risk. The mechanism underlying this relationship was also explored. Overall, PPIs were positively associated with elevated fracture risk in multiple studies (n = 14), although some studies reported no significant relationship (n = 4). Increased gastrin production and hypochlorhydria are the two main mechanisms that affect bone remodeling, mineral absorption, and muscle strength, contributing to increased fracture risk among PPI users. As a conclusion, there is a potential relationship between PPIs and fracture risks. Therefore, patients on long-term PPI treatment should pay attention to bone health status and consider prophylaxis to decrease fracture risk. Keywords: bone; compression; omeprazole; osteoporosis; pantoprazole 1. Introduction Proton pump inhibitors (PPIs) are lipophilic weak bases (pKa 4.0–5.0) consisting of two components: a substituted pyridine and a benzimidazole.
    [Show full text]
  • Prevention of Glucocorticoid-Induced Osteoporosis
    Supporting Evidence Document: Prevention of Glucocorticoid-induced Osteoporosis Background The recommendations for adult patients (> 18 years 2. The role of bisphosphonates old) found in the BCR GN protocols for reducing A bisphosphonate is recommended for the the risk of glucocorticoid- induced osteoporosis following patient groups taking prednisone are based on the 2010 and 2017 American > 2.5 mg/day for ≥ 3 months - as long as College of Rheumatology (ACR) guidelines for the no contraindications exist [conditional prevention and treatment of glucocorticoid-induced recommendation]: osteoporosis.1,2 1. Patients with a history of fragility fracture, or Many of the ACR recommendations are conditional, an established diagnosis of osteoporosis.1 meaning the desirable effects probably outweigh the 2. Postmenopausal women and men ≥ 50 years.2 undesirable ones. Therefore, these recommendations 3. Patients ≥ 30 years who require an initial apply to the majority of patients, but not all. As such, prednisone dose ≥ 30 mg/day, and who have conditional recommendations are preference-sensitive received a cumulative prednisone dose > 5 and always warrant a shared decision-making grams in the previous year (e.g. 30 mg daily approach. for 6 months).1 1. The role of calcium and vitamin D 3. The Fracture Risk Assessment Tool Calcium intake of 1000 to 1200 mg/day The latest guidelines from the United States and (supplement plus oral intake) and vitamin D United Kingdom have moved towards calculating supplementation of 600 to 800 units (supplement a 10-year
    [Show full text]
  • Bisphosphonates: Mechanisms of Action
    Bisphosphonates: mechanisms of action. G A Rodan, H A Fleisch J Clin Invest. 1996;97(12):2692-2696. https://doi.org/10.1172/JCI118722. Perspective Find the latest version: https://jci.me/118722/pdf Perspectives Bisphosphonates: Mechanisms of Action Gideon A. Rodan* and Herbert A. Fleisch‡ *Department of Bone Biology & Osteoporosis, Merck Research Laboratories, West Point, Pennsylvania 19486; and ‡Department of Pathophysiology, University of Berne, Berne 3010, Switzerland Introduction The key pharmacological action of bisphosphonates in clin- Bisphosphonates are pyrophosphate analogues in which the ical use (or development) is inhibition of bone resorption. The oxygen bridge has been replaced by a carbon with various side mechanism of action of these agents has not been fully eluci- chains (P-C-P). These compounds have been known to the dated and could differ among bisphosphonates. The aim of this chemists since the 19th century, the first synthesis dating back perspective is to review the current knowledge of this subject, to 1865 (1). They were first used in various industrial proce- to better understand the pharmacology of these compounds dures, among others as anticorrosive and antiscaling agents and gain further insights into the mechanisms of bone resorp- (2). After discovering that they can effectively control calcium tion in general. phosphate formation and dissolution in vitro (3, 4), as well as Bone resorption mineralization and bone resorption in vivo (3, 4), they were developed and used in the treatment of bone diseases, mostly The effects of bisphosphonates can be considered at three lev- Paget’s disease, hypercalcemia of malignancy, and, lately, os- els: the tissue, the cellular, and the molecular ones.
    [Show full text]
  • Conjugated Bisphosphonate with High Affinity for Bone As a Bone
    Development of a Novel 99mTc-Chelate– Conjugated Bisphosphonate with High Affinity for Bone as a Bone Scintigraphic Agent Kazuma Ogawa1,2, Takahiro Mukai1,3, Yasuyuki Inoue1, Masahiro Ono1, and Hideo Saji1 1Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; 2Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan; and 3Department of Biomolecular Recognition Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan Key Words: bone scintigraphy; bisphosphonate; 99mTc; MAG3; In bone scintigraphy using 99mTc with methylenediphosphonate HYNIC (99mTc-MDP) and hydroxymethylenediphosphonate (99mTc- J Nucl Med 2006; 47:2042–2047 HMDP), it takes 226 h after an injection before imaging can start. This interval could be shortened with a new radiopharma- ceutical with higher affinity for bone. Here, based on the con- cept of bifunctional radiopharmaceuticals, we designed a Over the last quarter of a century, complexes of 99mTc 99mTc-mercaptoacetylglycylglycylglycine (MAG3)-conjugated with methylenediphosphonate (99mTc-MDP) and hydroxy- 99m hydroxy-bisphosphonate (HBP) ( Tc-MAG3-HBP) and a methylenediphosphonate (99mTc-HMDP) have been widely 99mTc-6-hydrazinopyridine-3-carboxylic acid (HYNIC)-conjugated used as radiopharmaceuticals for bone scintigraphy in cases hydroxy-bisphosphonate (99mTc-HYNIC-HBP). Methods: 99mTc- MAG3-HBP was prepared by complexation of MAG3-HBP with of metastatic bone disease, Paget’s disease, fractures in 99m 99m 99m Tc using SnCl2 as a reductant. The precursor of Tc- osteoporosis, and so forth (1–4). With these Tc-labeled HYNIC-HBP, HYNIC-HBP, was obtained by deprotection of the bisphosphonates, however, an interval of 2–6 h is needed Boc group after the coupling of Boc-HYNIC to a bisphosphonate between injection and bone imaging (3).
    [Show full text]
  • Legacy Drug-Prescribing Patterns in Primary Care
    Legacy Drug-Prescribing Patterns in Primary Care Dee Mangin, MBChB, DPH, ABSTRACT FRNZCGP1,2 PURPOSE Polypharmacy is a key clinical challenge for primary care. Drugs that Jennifer Lawson, MLIS1 should be prescribed for an intermediate term (longer than 3 months, but not Jessica Cuppage, MD3 indefinitely) that are not appropriately discontinued could contribute to poly- pharmacy. We named this type of prescribing legacy prescribing. Commonly pre- Elizabeth Shaw, MD, CCFP, CFPC, scribed drugs with legacy prescribing potential include antidepressants, bisphos- FCFP1 phonates, and proton pump inhibitors (PPIs). We evaluated the proportion of Katalin Ivanyi, MD, CCFP, FCFP1,4 legacy prescribing within these drug classes. Amie Davis, MD, CCFP1,5 METHODS We conducted a population-based retrospective cohort study using prospectively collected data from the McMaster University Sentinel and Infor- Cathy Risdon, MD, DMan, CCFP, mation Collaboration (MUSIC) Primary Care Practice Based Research Network, 1 FCFP located in Hamilton, Ontario. All adult patients (aged 18 or older) in the MUSIC 1Department of Family Medicine, McMaster data set during 2010-2016 were included (N = 50,813). We calculated rates University, Hamilton, Ontario, Canada of legacy prescribing of antidepressants (prescription longer than 15 months), bisphosphonates (longer than 5.5 years), and PPIs (longer than 15 months). 2University of Otago, Christchurch, New Zealand RESULTS The proportion of patients having a legacy prescription at some time 3University of Toronto, Ontario, Canada during the study period was 46% (3,766 of 8,119) for antidepressants, 14% (228 of 1,592) for bisphosphonates, and 45% (2,885 of 6,414) for PPIs. Many of these 4Stonechurch Family Health Centre, patients held current prescriptions.
    [Show full text]
  • Denosumab: a New Therapy for Osteoporosis Editor by Candice Gehret, Pharm.D
    Volume XIII, No. I January/February 2010 Mandy C. Leonard, Pharm.D., BCPS Assistant Director, Drug Information Service Denosumab: A New Therapy for Osteoporosis Editor by Candice Gehret, Pharm.D. Meghan K. Lehmann, Pharm.D., BCPS Drug Information Specialist Introduction: Osteoporosis is defined Osteoclasts are responsible for bone Editor 2,4 a s the structural deterioration of bone resorption. They attach to bone and David A. White, B.S., R.Ph. due to an imbalance in bone removal degrade the area through acidification Restricted Drug Pharmacist ( resorption) and replacement.1 Increases and proteolytic digestion. Osteoblasts Associate Editor in bone resorption lead to low bone are responsible for bone formation. Marcia J. Wyman, Pharm.D. mass, increased bone fragility, and ulti- They follow osteoclasts and lay down Drug Information Pharmacist mately fractures of the hip, spine, and new bone at the site. Osteoclasts and Associate Editor wrist. Currently, 10 million people in osteoblasts are regulated by Receptor the United States have osteoporosis and Activator for Nuclear Factor B Amy Martin, Pharm.D. a n additional 34 million have osteopenia (RANK) and its ligand, RANKL. Drug Information Pharmacist 1 Associate Editor (low bone mass). Of the 10 million RANK is located on the surface of p eople with osteoporosis, 80% are osteoclasts and is responsible for os- M arigel Constantiner, MSc, BCPS, CGP females and 20% are males. Osteoporo- teoclast proliferation and subsequent IDnru gth Inisfo Irmssautioen Specialist s is is usually seen in elderly people; bone destruction. RANKL is ex- Associate Editor however, it may occur at any age. Peo- pressed on osteoblasts, T cells, and David Kvancz, M.S., R.Ph., FASHP ple of all ethnic backgrounds have a tumor cells and is responsible for os- Chief Pharmacy Officer significant risk of acquiring osteoporo- teoclast formation, function, and sur- sis; however, the risk for Hispanic vival.
    [Show full text]
  • Osteoporosis in Depression: Which Patients Are at Risk?
    Med/Psych Update Osteoporosis in depression: Which patients are at risk? Psychotropics increase fracture risk; depression compounds poor bone health s. P, age 44, is concerned about her risk of osteoporosis after her 70-year-old mother is Mhospitalized for a hip fracture. Ms. P has been taking fluoxetine, 40 mg/d, for 10 years to treat recurrent major depressive episodes that began at age 25. She was diagnosed with anorexia nervosa as a teenager, but recovered after 2 years of psychotherapy. She is lactose intolerant, has mild asthma that does not require steroids, and has no history of thyroid disease or bone fracture. Ms. P smokes 10 cigarettes a day but denies using alcohol or illicit drugs. She does not exercise, and her menses occur every 28 to 30 days. Osteoporosis is a skeletal disease characterized by low bone mineralization and deteriorating bone architecture that results in increased susceptibility to fracture. Ap- proximately 1 in 2 women and 1 in 5 men in the United © 2010 BRANDTNER & STAEDELI / GETTY 1 States will have an osteoporosis-related fracture. Proxi- Charles Hebert, MD mal femur and vertebral fractures are most common—1.5 Chief resident million per year—but other bones may be involved.2 Combined internal medicine and psychiatry residency Osteoporosis-related fractures are associated with Melanie McKean, DO, PhD substantial morbidity and mortality. After a hip frac- Resident Combined internal medicine and psychiatry residency ture, osteoporosis patients have a 10% to 20% risk of 3 Bezalel Dantz, MD death within a year. Those who recover from hip frac- Assistant professor of internal medicine and psychiatry ture have a 2.5-fold increased risk of recurrent fracture and often struggle with chronic pain, disability, and loss of self-esteem and independence.1,3-5 Rush University Medical Center Chicago, IL Evidence links osteoporosis and depression Research has shown that patients with major depres- Current Psychiatry sion are at higher risk of osteoporosis.6 In one study, Vol.
    [Show full text]
  • Dr Alex Comninos
    COMMON OSTEOPOROSIS QUERIES (THOSE PRESENTED AT MEETING) DR ALEXANDER COMNINOS What are the main secondary causes of low bone density? Why important to consider? - Not enough to just say that patient has osteoporosis - Why do they have osteoporosis? - Is there an underlying factor that has not been diagnosed or could be addressed before launching into osteoporosis treatment? Women: ~30% secondary cause Men: ~50-80% secondary cause MESSAGE: Consider secondary causes particularly in men and younger patients Baillie SP et al. Age Ageing 1992;21:139–41. Caplan GA et al. J R Soc Med 1994;87:200–2. Fitzpatrick LA et al. Mayo Clin Proc 2002;77:453-68. HISTORY (RISK FACTORS/SECONDARY CAUSES) Over lifetime DH Previous fragility fracture Current/previous drugs (steroids, aromatase inhibitors, progesterone, GnRH agonists, heparin, anticonvulsants, anti-retrovirals, Calcineurin inhibitors, PPIs, high dose statins) Severe illness during lifetime & immobility Dietary calcium (use online calculator) Late menarche/irregular menses/early menopause Vitamin D deficiency (?HRT protection) History of low BMI (<18.5) FH Family history (especially if parental hip #) PMH Malabsorption (Coeliac/IBD/Bariatric surgery) SH Rheumatoid arthritis or other inflammatory disorder Smoker/ex-smoker Diabetes or other endocrine disorder (hyperthyroid, EtOH ≥2u/day (women) or ≥3u/day (men) hyperparathyroid, GH deficiency, Cushings, hypogonadism) Other (MS, myeloma, MGUS, mastocytosis, sarcoid, collagen History of falls disorder, OI, hypercalciuria, hypophosphatasia) EXAMINATION
    [Show full text]
  • Guidelines for Bisphosphonate-Associated Osteonecrosis of the Jaw
    SUMMARY GUIDELINE Guidelines for bisphosphonate-associated osteonecrosis of the jaw Khan AA, Sándor GK, Dore E, et al. sion papers. The systematic review included searches of Medline, Embase Canadian consensus practice guidelines for bisphosphonate associ- and a manual search of the bibliographies of published articles. A draft ated osteonecrosis of the jaw. J Rheumatol 2008; 35:1391–1397 guideline was circulated to all members of the task force as well as external experts, and their feedback incorporated into the final document. Scope and purpose This guideline aimed to provide recommenda- Recommendations The main recommendations are summarised in tions for the diagnosis of bisphosphonate-associated osteonecrosis of Table 1. The task force also recommended that a registry be maintained the jaw in both the oncology and osteoporosis patient populations, for for all identified cases. dental and medical practitioners including dentists, oral surgeons, oral pathologists, general practitioners and internal medicine specialists. Commentary The recommendations are intended to address both prevention and Bisphosphonates are mainly used for the treatment of osteoporosis, but treatment strategies. they are also used in the treatment of cancer. Cancer patients often take Methods A consensus-based guideline was developed by a multidiscipli- them in higher doses than are used for noncancer treatments, and often nary task force including representatives from national and international do so intravenously. Bisphosphonate-associated osteonecrosis is
    [Show full text]
  • Risks of Bisphosphonate
    FPIN’s Clinical Inquiries Risks of Bisphosphonate Use MOLLIE ASHE SCOTT, PharmD, University of North Carolina Eshelman School of Pharmacy, Asheville, North Carolina LINDSY MEADOWCRAFT, PharmD, South Carolina College of Pharmacy, Charleston, South Carolina DEBBIE SKOLNIK, MLS, Mountain Area Health Education Center, Asheville, North Carolina Clinical Inquiries provides Clinical Question bisphosphonates for more than five years, answers to questions What are the risks of bisphosphonate use? only 71 (0.13%) sustained an atypical fracture. submitted by practicing family physicians to the A case-control study retrospectively Family Physicians Inquiries Evidence-Based Answer reviewed the medical records of 477 patients Network (FPIN). Members Bisphosphonates are associated with a small older than 50 years who were treated in a of the network select risk of atypical femoral shaft fractures, which Swiss hospital for subtrochanteric or femoral questions based on their 2 relevance to family medi- increases with duration of use. (Strength shaft fracture. Fractures were categorized as cine. Answers are drawn of Recommendation [SOR]: B, based on atypical (transverse or short oblique; n = from an approved set of case-control and cohort studies.) Bisphos- 39) or classic (spiral, wedge, segmental, or evidence-based resources phonates are associated with a small risk of complex irregular; n = 438). Researchers and undergo peer review. The strength of recom- osteonecrosis of the jaw, which is more com- compared bisphosphonate use and dura- mendations and the level mon in patients who are older, female, or tion of therapy in these groups and in 200 of evidence for individual have poor dental hygiene or cancer. (SOR: B, patients older than 50 years who did not studies are rated using based on systematic reviews.) Alendronate have fractures.
    [Show full text]