On the Bitopological Nature of Stone Duality
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Topological Duality and Lattice Expansions Part I: a Topological Construction of Canonical Extensions
TOPOLOGICAL DUALITY AND LATTICE EXPANSIONS PART I: A TOPOLOGICAL CONSTRUCTION OF CANONICAL EXTENSIONS M. ANDREW MOSHIER AND PETER JIPSEN 1. INTRODUCTION The two main objectives of this paper are (a) to prove topological duality theorems for semilattices and bounded lattices, and (b) to show that the topological duality from (a) provides a construction of canonical extensions of bounded lattices. The paper is first of two parts. The main objective of the sequel is to establish a characterization of lattice expansions, i.e., lattices with additional operations, in the topological setting built in this paper. Regarding objective (a), consider the following simple question: Is there a subcategory of Top that is dually equivalent to Lat? Here, Top is the category of topological spaces and continuous maps and Lat is the category of bounded lattices and lattice homomorphisms. To date, the question has been answered positively either by specializing Lat or by generalizing Top. The earliest examples are of the former sort. Tarski [Tar29] (treated in English, e.g., in [BD74]) showed that every complete atomic Boolean lattice is represented by a powerset. Taking some historical license, we can say this result shows that the category of complete atomic Boolean lattices with complete lat- tice homomorphisms is dually equivalent to the category of discrete topological spaces. Birkhoff [Bir37] showed that every finite distributive lattice is represented by the lower sets of a finite partial order. Again, we can now say that this shows that the category of finite distributive lattices is dually equivalent to the category of finite T0 spaces and con- tinuous maps. -
EPIREFLECTIONS WHICH ARE COMPLETIONS by G
CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES G. C. L. BRUMMER E. GIULI H. HERRLICH Epireflections which are completions Cahiers de topologie et géométrie différentielle catégoriques, tome 33, no 1 (1992), p. 71-93 <http://www.numdam.org/item?id=CTGDC_1992__33_1_71_0> © Andrée C. Ehresmann et les auteurs, 1992, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE VOL. XXXIII-1 (1992) ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES EPIREFLECTIONS WHICH ARE COMPLETIONS by G. C. L. BRUMMER, E. GIULI and H. HERRLICH We dedicate this paper to the memory of Siegfried Grässer Resume. Nous axiomatisons la situation ou tout ob jet d’une categorie X a un complete et ou tout plongement dense dans un objet complet quelconque est une r6flexion dans la sous- categorie pleine des objets complets. On dit alors que X admet une sous-categorie S-fermement E-r6flexive. Ici, S est une classe de morphismes de X ayant des propri6t6s analogues aux plongements, et la classe E represente la densite appro- pri6e. Pour le cas E = EpiX nous relions cette notion avec celles de fermeture S-absolue, de S-saturation, et de (E n S)- injectivit6; nous en donnons plusieurs caract6risations, en par- ticulier la pr6servation des S-morphismes; et nous considerons beaucoup d’exemples topologiques et alg6briques. -
Bitopological Duality for Distributive Lattices and Heyting Algebras
BITOPOLOGICAL DUALITY FOR DISTRIBUTIVE LATTICES AND HEYTING ALGEBRAS GURAM BEZHANISHVILI, NICK BEZHANISHVILI, DAVID GABELAIA, ALEXANDER KURZ Abstract. We introduce pairwise Stone spaces as a natural bitopological generalization of Stone spaces—the duals of Boolean algebras—and show that they are exactly the bitopolog- ical duals of bounded distributive lattices. The category PStone of pairwise Stone spaces is isomorphic to the category Spec of spectral spaces and to the category Pries of Priestley spaces. In fact, the isomorphism of Spec and Pries is most naturally seen through PStone by first establishing that Pries is isomorphic to PStone, and then showing that PStone is isomorphic to Spec. We provide the bitopological and spectral descriptions of many algebraic concepts important for the study of distributive lattices. We also give new bitopo- logical and spectral dualities for Heyting algebras, thus providing two new alternatives to Esakia’s duality. 1. Introduction It is widely considered that the beginning of duality theory was Stone’s groundbreaking work in the mid 30s on the dual equivalence of the category Bool of Boolean algebras and Boolean algebra homomorphism and the category Stone of compact Hausdorff zero- dimensional spaces, which became known as Stone spaces, and continuous functions. In 1937 Stone [33] extended this to the dual equivalence of the category DLat of bounded distributive lattices and bounded lattice homomorphisms and the category Spec of what later became known as spectral spaces and spectral maps. Spectral spaces provide a generalization of Stone 1 spaces. Unlike Stone spaces, spectral spaces are not Hausdorff (not even T1) , and as a result, are more difficult to work with. -
3 Lecture 3: Spectral Spaces and Constructible Sets
3 Lecture 3: Spectral spaces and constructible sets 3.1 Introduction We want to analyze quasi-compactness properties of the valuation spectrum of a commutative ring, and to do so a digression on constructible sets is needed, especially to define the notion of constructibility in the absence of noetherian hypotheses. (This is crucial, since perfectoid spaces will not satisfy any kind of noetherian condition in general.) The reason that this generality is introduced in [EGA] is for the purpose of proving openness and closedness results on the locus of fibers satisfying reasonable properties, without imposing noetherian assumptions on the base. One first proves constructibility results on the base, often by deducing it from constructibility on the source and applying Chevalley’s theorem on images of constructible sets (which is valid for finitely presented morphisms), and then uses specialization criteria for constructible sets to be open. For our purposes, the role of constructibility will be quite different, resting on the interesting “constructible topology” that is introduced in [EGA, IV1, 1.9.11, 1.9.12] but not actually used later in [EGA]. This lecture is organized as follows. We first deal with the constructible topology on topological spaces. We discuss useful characterizations of constructibility in the case of spectral spaces, aiming for a criterion of Hochster (see Theorem 3.3.9) which will be our tool to show that Spv(A) is spectral, our ultimate goal. Notational convention. From now on, we shall write everywhere (except in some definitions) “qc” for “quasi-compact”, “qs” for “quasi-separated”, and “qcqs” for “quasi-compact and quasi-separated”. -
The Fixed-Point Property for Represented Spaces Mathieu Hoyrup
The fixed-point property for represented spaces Mathieu Hoyrup To cite this version: Mathieu Hoyrup. The fixed-point property for represented spaces. 2021. hal-03117745v1 HAL Id: hal-03117745 https://hal.inria.fr/hal-03117745v1 Preprint submitted on 21 Jan 2021 (v1), last revised 28 Jan 2021 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The fixed-point property for represented spaces Mathieu Hoyrup Universit´ede Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France [email protected] January 21, 2021 Abstract We investigate which represented spaces enjoy the fixed-point property, which is the property that every continuous multi-valued function has a fixed-point. We study the basic theory of this notion and of its uniform version. We provide a complete characterization of countable-based spaces with the fixed-point property, showing that they are exactly the pointed !-continuous dcpos. We prove that the spaces whose lattice of open sets enjoys the fixed-point property are exactly the countably-based spaces. While the role played by fixed-point free functions in the diagonal argument is well-known, we show how it can be adapted to fixed-point free multi-valued functions, and apply the technique to identify the base-complexity of the Kleene-Kreisel spaces, which was an open problem. -
New York Journal of Mathematics Suprema in Spectral Spaces and The
New York Journal of Mathematics New York J. Math. 26 (2020) 1064{1092. Suprema in spectral spaces and the constructible closure Carmelo Antonio Finocchiaro and Dario Spirito Abstract. Given an arbitrary spectral space X, we endow it with its specialization order ≤ and we study the interplay between suprema of subsets of (X; ≤) and the constructible topology. More precisely, we examine when the supremum of a set Y ⊆ X exists and belongs to the constructible closure of Y . We apply such results to algebraic lattices of sets and to closure operations on them, proving density properties of some distinguished spaces of rings and ideals. Furthermore, we pro- vide topological characterizations of some class of domains in terms of topological properties of their ideals. Contents 1. Introduction 1064 2. Preliminaries 1066 3. Suprema of subsets and the constructible closure 1068 4. Algebraic lattices of sets 1073 5. Spaces of modules and ideals 1079 6. Overrings of an integral domain 1084 References 1090 1. Introduction A topological space X is said to be a spectral space if it is homeomorphic to the spectrum of a (commutative, unitary) ring, endowed with the Zariski topology; as shown by Hochster [17], being a spectral space is a topologi- cal condition, in the sense that it is possible to define spectral spaces ex- clusively through topological properties, without mentioning any algebraic notion. His proof relies heavily on the passage from the starting topology to a new topology, the patch or constructible topology (see Section 2.1), which remains spectral but becomes Hausdorff; this topology has recently been interpreted as the topology of ultrafilter limit points with respect to the Received September 27, 2019. -
Bitopological Duality for Distributive Lattices and Heyting Algebras
BITOPOLOGICAL DUALITY FOR DISTRIBUTIVE LATTICES AND HEYTING ALGEBRAS GURAM BEZHANISHVILI, NICK BEZHANISHVILI, DAVID GABELAIA, ALEXANDER KURZ Abstract. We introduce pairwise Stone spaces as a natural bitopological generalization of Stone spaces—the duals of Boolean algebras—and show that they are exactly the bitopolog- ical duals of bounded distributive lattices. The category PStone of pairwise Stone spaces is isomorphic to the category Spec of spectral spaces and to the category Pries of Priestley spaces. In fact, the isomorphism of Spec and Pries is most naturally seen through PStone by first establishing that Pries is isomorphic to PStone, and then showing that PStone is isomorphic to Spec. We provide the bitopological and spectral descriptions of many alge- braic concepts important for the study of distributive lattices. We also give new bitopological and spectral dualities for Heyting algebras, co-Heyting algebras, and bi-Heyting algebras, thus providing two new alternatives of Esakia’s duality. 1. Introduction It is widely considered that the beginning of duality theory was Stone’s groundbreaking work in the mid 30ies on the dual equivalence of the category Bool of Boolean algebras and Boolean algebra homomorphism and the category Stone of compact Hausdorff zero- dimensional spaces, which became known as Stone spaces, and continuous functions. In 1937 Stone [28] extended this to the dual equivalence of the category DLat of bounded distributive lattices and bounded lattice homomorphisms and the category Spec of what later became known as spectral spaces and spectral maps. Spectral spaces provide a generalization of Stone 1 spaces. Unlike Stone spaces, spectral spaces are not Hausdorff (not even T1) , and as a result, are more difficult to work with. -
PROFINITE TOPOLOGICAL SPACES 1. Introduction
Theory and Applications of Categories, Vol. 30, No. 53, 2015, pp. 1841{1863. PROFINITE TOPOLOGICAL SPACES G. BEZHANISHVILI, D. GABELAIA, M. JIBLADZE, P. J. MORANDI Abstract. It is well known [Hoc69, Joy71] that profinite T0-spaces are exactly the spectral spaces. We generalize this result to the category of all topological spaces by showing that the following conditions are equivalent: (1)( X; τ) is a profinite topological space. (2) The T0-reflection of (X; τ) is a profinite T0-space. (3)( X; τ) is a quasi spectral space (in the sense of [BMM08]). (4)( X; τ) admits a stronger Stone topology π such that (X; τ; π) is a bitopological quasi spectral space (see Definition 6.1). 1. Introduction A topological space is profinite if it is (homeomorphic to) the inverse limit of an inverse system of finite topological spaces. It is well known [Hoc69, Joy71] that profinite T0- spaces are exactly the spectral spaces. This can be seen as follows. A direct calculation shows that the inverse limit of an inverse system of finite T0-spaces is spectral. Con- versely, by [Cor75], the category Spec of spectral spaces and spectral maps is isomorphic to the category Pries of Priestley spaces and continuous order preserving maps. This isomorphism is a restriction of a more general isomorphism between the category StKSp of stably compact spaces and proper maps and the category Nach of Nachbin spaces and continuous order preserving maps [GHKLMS03]. Priestley spaces are exactly the profinite objects in Nach, and the proof of this fact is a straightforward generalization of the proof that Stone spaces are profinite objects in the category of compact Hausdorff spaces and continuous maps. -
Topological Spaces and Observation Frames
Theoretical Computer Science ELSEVIER Theoretical Computer Science 151 (1995) 79-124 Duality beyond sober spaces: Topological spaces and observation frames Marcello M. Bonsangue a,*, Bart Jacobs b, Joost N. Kok” a Department of Computer Science, Vrge Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam. Netherlands b Centrum voor Wiskunde en Informatica, P.O. Box 94079, 1090 GB Amsterdam, Netherlands c Department of Computer Science, Utrecht University, P.O. Box 80089, 3508 TB Utrecht, Netherlands Abstract We introduce observation frames as an extension of ordinary frames. The aim is to give an abstract representation of a mapping from observable predicates to all predicates of a specific system. A full subcategory of the category of observation frames is shown to be dual to the category of F! topological spaces. The notions we use generalize those in the adjunction between frames and topological spaces in the sense that we generalize finite meets to infinite ones. We also give a predicate logic of observation frames with both infinite conjunctions and disjunctions, just like there is a geometric logic for (ordinary) frames with infinite disjunctions but only finite conjunctions. This theory is then applied to two situations: firstly to upper power spaces, and secondly we restrict the adjunction between the categories of topological spaces and of observation frames in order to obtain dualities for various subcategories of .Fo spaces. These involve nonsober spaces. 1. Introduction A topological duality is a correspondence between two mathematical structures in- volving points and predicates such that isomorphic structures can be identified. Stone [31] first found such a duality between topology and logic. -
Duality and Canonical Extensions for Stably Compact Spaces
Duality and canonical extensions for stably compact spaces∗ Sam van Gool† 6 September, 2011 Abstract We construct a canonical extension for strong proximity lattices in order to give an alge- braic, point-free description of a finitary duality for stably compact spaces. In this setting not only morphisms, but also objects may have distinct π- and σ-extensions. Introduction Strong proximity lattices were introduced, after groundwork of Michael Smyth [26], by Achim Jung and Philipp S¨underhauf [21], who showed that these structures are dual to stably compact spaces, which generalise spectral spaces and are relevant to domain theory in logical form (cf. for example [1] and [18]). The canonical extension, which first appeared in a paper by Bjarni J´onsson and Alfred Tarski [17], has proven to be a powerful method in the study of logics whose operations are based on lattices, such as classical modal logic ([17], [16]), distributive modal logic ([8], [9]), and also intuitionistic logic ([11]). Canonical extensions are interesting because they provide a formulaic, algebraic description of Stone-type dualities between algebras and topological spaces. In this paper, we re-examine the Jung-S¨underhauf duality [21] and put it in a broader perspective by connecting it with the theory of canonical extensions. We now briefly outline arXiv:1009.3410v2 [math.GN] 8 Oct 2011 the contents. Careful study of the duality in [21] led us to conclude that the axioms for strong proximity lattices were stronger than necessary. The advantage of assuming one axiom less, as we will do here, is that it will become more apparent how the inherent self-duality of stably compact spaces is reflected in the representing algebraic structures. -
Heyting Duality
Heyting Duality Vikraman Choudhury April, 2018 1 Heyting Duality Pairs of “equivalent” concepts or phenomena are ubiquitous in mathematics, and dualities relate such two different, even opposing concepts. Stone’s Representa- tion theorem (1936), due to Marshall Stone, states the duality between Boolean algebras and topological spaces. It shows that, for classical propositional logic, the Lindenbaum-Tarski algebra of a set of propositions is isomorphic to the clopen subsets of the set of its valuations, thereby exposing an algebraic viewpoint on logic. In this essay, we consider the case for intuitionistic propositional logic, that is, a duality result for Heyting algebras. It borrows heavily from an exposition of Stone and Heyting duality by van Schijndel and Landsman [2017]. 1.1 Preliminaries Definition (Lattice). A lattice is a poset which admits all finite meets and joins. Categorically, it is a (0, 1) − 푐푎푡푒푔표푟푦 (or a thin category) with all finite limits and finite colimits. Alternatively, a lattice is an algebraic structure in the signature (∧, ∨, 0, 1) that satisfies the following axioms. • ∧ and ∨ are each idempotent, commutative, and associative with respective identities 1 and 0. • the absorption laws, 푥 ∨ (푥 ∧ 푦) = 푥, and 푥 ∧ (푥 ∨ 푦) = 푥. Definition (Distributive lattice). A distributive lattice is a lattice in which ∧and ∨ distribute over each other, that is, the following distributivity axioms are satisfied. Categorically, this makes it a distributive category. 1 • 푥 ∨ (푦 ∧ 푧) = (푥 ∨ 푦) ∧ (푥 ∨ 푧) • 푥 ∧ (푦 ∨ 푧) = (푥 ∧ 푦) ∨ (푥 ∧ 푧) Definition (Complements in a lattice). A complement of an element 푥 of a lattice is an element 푦 such that, 푥 ∧ 푦 = 0 and 푥 ∨ 푦 = 1. -
Bitopological Duality for Distributive Lattices and Heyting Algebras Guram Bezhanishvili New Mexico State University
Chapman University Chapman University Digital Commons Engineering Faculty Articles and Research Fowler School of Engineering 2010 Bitopological Duality for Distributive Lattices and Heyting Algebras Guram Bezhanishvili New Mexico State University Nick Bezhanishvili University of Leicester David Gabelaia Razmadze Mathematical Institute Alexander Kurz Chapman University, [email protected] Follow this and additional works at: https://digitalcommons.chapman.edu/engineering_articles Part of the Algebra Commons, Logic and Foundations Commons, Other Computer Engineering Commons, Other Computer Sciences Commons, and the Other Mathematics Commons Recommended Citation G. Bezhanishvili, N. Bezhanishvili, D. Gabelaia, and A. Kurz, “Bitopological duality for distributive lattices and Heyting algebras,” Mathematical Structures in Computer Science, vol. 20, no. 03, pp. 359–393, Jun. 2010. DOI: 10.1017/S0960129509990302 This Article is brought to you for free and open access by the Fowler School of Engineering at Chapman University Digital Commons. It has been accepted for inclusion in Engineering Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact [email protected]. Bitopological Duality for Distributive Lattices and Heyting Algebras Comments This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Mathematical Structures in Computer Science, volume 20, number 3, in 2010 following peer review. The definitive publisher- authenticated