GENERALIZED COMPLEX GEOMETRY, SASAKIAN MANIFOLDS and ADS/CFT Tarun Chitra Cornell University 2011
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Particles-Versus-Strings.Pdf
Particles vs. strings http://insti.physics.sunysb.edu/~siegel/vs.html In light of the huge amount of propaganda and confusion regarding string theory, it might be useful to consider the relative merits of the descriptions of the fundamental constituents of matter as particles or strings. (More-skeptical reviews can be found in my physics parodies.A more technical analysis can be found at "Warren Siegel's research".) Predictability The main problem in high energy theoretical physics today is predictions, especially for quantum gravity and confinement. An important part of predictability is calculability. There are various levels of calculations possible: 1. Existence: proofs of theorems, answers to yes/no questions 2. Qualitative: "hand-waving" results, answers to multiple choice questions 3. Order of magnitude: dimensional analysis arguments, 10? (but beware hidden numbers, like powers of 4π) 4. Constants: generally low-energy results, like ground-state energies 5. Functions: complete results, like scattering probabilities in terms of energy and angle Any but the last level eventually leads to rejection of the theory, although previous levels are acceptable at early stages, as long as progress is encouraging. It is easy to write down the most general theory consistent with special (and for gravity, general) relativity, quantum mechanics, and field theory, but it is too general: The spectrum of particles must be specified, and more coupling constants and varieties of interaction become available as energy increases. The solutions to this problem go by various names -- "unification", "renormalizability", "finiteness", "universality", etc. -- but they are all just different ways to realize the same goal of predictability. -
Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory. -
Part III Essay on Serre's Conjecture
Serre’s conjecture Alex J. Best June 2015 Contents 1 Introduction 2 2 Background 2 2.1 Modular forms . 2 2.2 Galois representations . 6 3 Obtaining Galois representations from modular forms 13 3.1 Congruences for Ramanujan’s t function . 13 3.2 Attaching Galois representations to general eigenforms . 15 4 Serre’s conjecture 17 4.1 The qualitative form . 17 4.2 The refined form . 18 4.3 Results on Galois representations associated to modular forms 19 4.4 The level . 21 4.5 The character and the weight mod p − 1 . 22 4.6 The weight . 24 4.6.1 The level 2 case . 25 4.6.2 The level 1 tame case . 27 4.6.3 The level 1 non-tame case . 28 4.7 A counterexample . 30 4.8 The proof . 31 5 Examples 32 5.1 A Galois representation arising from D . 32 5.2 A Galois representation arising from a D4 extension . 33 6 Consequences 35 6.1 Finiteness of classes of Galois representations . 35 6.2 Unramified mod p Galois representations for small p . 35 6.3 Modularity of abelian varieties . 36 7 References 37 1 1 Introduction In 1987 Jean-Pierre Serre published a paper [Ser87], “Sur les representations´ modulaires de degre´ 2 de Gal(Q/Q)”, in the Duke Mathematical Journal. In this paper Serre outlined a conjecture detailing a precise relationship between certain mod p Galois representations and specific mod p modular forms. This conjecture and its variants have become known as Serre’s conjecture, or sometimes Serre’s modularity conjecture in order to distinguish it from the many other conjectures Serre has made. -
Roots of L-Functions of Characters Over Function Fields, Generic
Roots of L-functions of characters over function fields, generic linear independence and biases Corentin Perret-Gentil Abstract. We first show joint uniform distribution of values of Kloost- erman sums or Birch sums among all extensions of a finite field Fq, for ˆ almost all couples of arguments in Fq , as well as lower bounds on dif- ferences. Using similar ideas, we then study the biases in the distribu- tion of generalized angles of Gaussian primes over function fields and primes in short intervals over function fields, following recent works of Rudnick–Waxman and Keating–Rudnick, building on cohomological in- terpretations and determinations of monodromy groups by Katz. Our results are based on generic linear independence of Frobenius eigenval- ues of ℓ-adic representations, that we obtain from integral monodromy information via the strategy of Kowalski, which combines his large sieve for Frobenius with a method of Girstmair. An extension of the large sieve is given to handle wild ramification of sheaves on varieties. Contents 1. Introduction and statement of the results 1 2. Kloosterman sums and Birch sums 12 3. Angles of Gaussian primes 14 4. Prime polynomials in short intervals 20 5. An extension of the large sieve for Frobenius 22 6. Generic maximality of splitting fields and linear independence 33 7. Proof of the generic linear independence theorems 36 References 37 1. Introduction and statement of the results arXiv:1903.05491v2 [math.NT] 17 Dec 2019 Throughout, p will denote a prime larger than 5 and q a power of p. ˆ 1.1. Kloosterman and Birch sums. -
Motives, Volume 55.2
http://dx.doi.org/10.1090/pspum/055.2 Recent Titles in This Series 55 Uwe Jannsen, Steven Kleiman, and Jean-Pierre Serre, editors, Motives (University of Washington, Seattle, July/August 1991) 54 Robert Greene and S. T. Yau, editors, Differential geometry (University of California, Los Angeles, July 1990) 53 James A. Carlson, C. Herbert Clemens, and David R. Morrison, editors, Complex geometry and Lie theory (Sundance, Utah, May 1989) 52 Eric Bedford, John P. D'Angelo, Robert £. Greene, and Steven G. Krantz, editors, Several complex variables and complex geometry (University of California, Santa Cruz, July 1989) 51 William B. Arveson and Ronald G. Douglas, editors, Operator theory/operator algebras and applications (University of New Hampshire, July 1988) 50 James Glimm, John Impagliazzo, and Isadore Singer, editors, The legacy of John von Neumann (Hofstra University, Hempstead, New York, May/June 1988) 49 Robert C. Gunning and Leon Ehrenpreis, editors, Theta functions - Bowdoin 1987 (Bowdoin College, Brunswick, Maine, July 1987) 48 R. O. Wells, Jr., editor, The mathematical heritage of Hermann Weyl (Duke University, Durham, May 1987) 47 Paul Fong, editor, The Areata conference on representations of finite groups (Humboldt State University, Areata, California, July 1986) 46 Spencer J. Bloch, editor, Algebraic geometry - Bowdoin 1985 (Bowdoin College, Brunswick, Maine, July 1985) 45 Felix E. Browder, editor, Nonlinear functional analysis and its applications (University of California, Berkeley, July 1983) 44 William K. Allard and Frederick J. Almgren, Jr., editors, Geometric measure theory and the calculus of variations (Humboldt State University, Areata, California, July/August 1984) 43 Francois Treves, editor, Pseudodifferential operators and applications (University of Notre Dame, Notre Dame, Indiana, April 1984) 42 Anil Nerode and Richard A. -
Surveys in Differential Geometry
Surveys in Differential Geometry Vol. 1: Lectures given in 1990 edited by S.-T. Yau and H. Blaine Lawson Vol. 2: Lectures given in 1993 edited by C.C. Hsiung and S.-T. Yau Vol. 3: Lectures given in 1996 edited by C.C. Hsiung and S.-T. Yau Vol. 4: Integrable systems edited by Chuu Lian Terng and Karen Uhlenbeck Vol. 5: Differential geometry inspired by string theory edited by S.-T. Yau Vol. 6: Essay on Einstein manifolds edited by Claude LeBrun and McKenzie Wang Vol. 7: Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer edited by S.-T. Yau Vol. 8: Papers in honor of Calabi, Lawson, Siu, and Uhlenbeck edited by S.-T. Yau Vol. 9: Eigenvalues of Laplacians and other geometric operators edited by A. Grigor’yan and S-T. Yau Vol. 10: Essays in geometry in memory of S.-S. Chern edited by S.-T. Yau Vol. 11: Metric and comparison geometry edited by Jeffrey Cheeger and Karsten Grove Vol. 12: Geometric flows edited by Huai-Dong Cao and S.-T. Yau Vol. 13: Geometry, analysis, and algebraic geometry edited by Huai-Dong Cao and S.-T.Yau Vol. 14: Geometry of Riemann surfaces and their moduli spaces edited by Lizhen Ji, Scott A. Wolpert, and S.-T. Yau Volume XIV Surveys in Differential Geometry Geometry of Riemann surfaces and their moduli spaces edited by Lizhen Ji, Scott A. Wolpert, and Shing-Tung Yau International Press www.intlpress.com Series Editor: Shing-Tung Yau Surveys in Differential Geometry, Volume 14 Geometry of Riemann surfaces and their moduli spaces Volume Editors: Lizhen Ji, University of Michigan Scott A. -
The Work of Pierre Deligne
THE WORK OF PIERRE DELIGNE W.T. GOWERS 1. Introduction Pierre Deligne is indisputably one of the world's greatest mathematicians. He has re- ceived many major awards, including the Fields Medal in 1978, the Crafoord Prize in 1988, the Balzan Prize in 2004, and the Wolf Prize in 2008. While one never knows who will win the Abel Prize in any given year, it was virtually inevitable that Deligne would win it in due course, so today's announcement is about as small a surprise as such announcements can be. This is the third time I have been asked to present to a general audience the work of the winner of the Abel Prize, and my assignment this year is by some way the most difficult of the three. Two years ago, I talked about John Milnor, whose work in geometry could be illustrated by several pictures. Last year, the winner was Endre Szemer´edi,who has solved several problems with statements that are relatively simple to explain (even if the proofs were very hard). But Deligne's work, though it certainly has geometrical aspects, is not geometrical in a sense that lends itself to pictorial explanations, and the statements of his results are far from elementary. So I am forced to be somewhat impressionistic in my description of his work and to spend most of my time discussing the background to it rather than the work itself. 2. The Ramanujan conjecture One of the results that Deligne is famous for is solving a conjecture of Ramanujan. This conjecture is not the obvious logical starting point for an account of Deligne's work, but its solution is the most concrete of his major results and therefore the easiest to explain. -
Pierre Deligne
www.abelprize.no Pierre Deligne Pierre Deligne was born on 3 October 1944 as a hobby for his own personal enjoyment. in Etterbeek, Brussels, Belgium. He is Profes- There, as a student of Jacques Tits, Deligne sor Emeritus in the School of Mathematics at was pleased to discover that, as he says, the Institute for Advanced Study in Princeton, “one could earn one’s living by playing, i.e. by New Jersey, USA. Deligne came to Prince- doing research in mathematics.” ton in 1984 from Institut des Hautes Études After a year at École Normal Supériure in Scientifiques (IHÉS) at Bures-sur-Yvette near Paris as auditeur libre, Deligne was concur- Paris, France, where he was appointed its rently a junior scientist at the Belgian National youngest ever permanent member in 1970. Fund for Scientific Research and a guest at When Deligne was around 12 years of the Institut des Hautes Études Scientifiques age, he started to read his brother’s university (IHÉS). Deligne was a visiting member at math books and to demand explanations. IHÉS from 1968-70, at which time he was His interest prompted a high-school math appointed a permanent member. teacher, J. Nijs, to lend him several volumes Concurrently, he was a Member (1972– of “Elements of Mathematics” by Nicolas 73, 1977) and Visitor (1981) in the School of Bourbaki, the pseudonymous grey eminence Mathematics at the Institute for Advanced that called for a renovation of French mathe- Study. He was appointed to a faculty position matics. This was not the kind of reading mat- there in 1984. -
The Abel Prize Laureate 2017
The Abel Prize Laureate 2017 Yves Meyer École normale supérieure Paris-Saclay, France www.abelprize.no Yves Meyer receives the Abel Prize for 2017 “for his pivotal role in the development of the mathematical theory of wavelets.” Citation The Abel Committee The Norwegian Academy of Science and or “wavelets”, obtained by both dilating infinite sequence of nested subspaces Meyer’s expertise in the mathematics Letters has decided to award the Abel and translating a fixed function. of L2(R) that satisfy a few additional of the Calderón-Zygmund school that Prize for 2017 to In the spring of 1985, Yves Meyer invariance properties. This work paved opened the way for the development of recognised that a recovery formula the way for the construction by Ingrid wavelet theory, providing a remarkably Yves Meyer, École normale supérieure found by Morlet and Alex Grossmann Daubechies of orthonormal bases of fruitful link between a problem set Paris-Saclay, France was an identity previously discovered compactly supported wavelets. squarely in pure mathematics and a theory by Alberto Calderón. At that time, Yves In the following decades, wavelet with wide applicability in the real world. “for his pivotal role in the Meyer was already a leading figure analysis has been applied in a wide development of the mathematical in the Calderón-Zygmund theory of variety of arenas as diverse as applied theory of wavelets.” singular integral operators. Thus began and computational harmonic analysis, Meyer’s study of wavelets, which in less data compression, noise reduction, Fourier analysis provides a useful way than ten years would develop into a medical imaging, archiving, digital cinema, of decomposing a signal or function into coherent and widely applicable theory. -
Hep-Th/0011078V1 9 Nov 2000 1 Okspotdi Atb H ..Dp.O Nryudrgrant Under Energy of Dept
CALT-68-2300 CITUSC/00-060 hep-th/0011078 String Theory Origins of Supersymmetry1 John H. Schwarz California Institute of Technology, Pasadena, CA 91125, USA and Caltech-USC Center for Theoretical Physics University of Southern California, Los Angeles, CA 90089, USA Abstract The string theory introduced in early 1971 by Ramond, Neveu, and myself has two-dimensional world-sheet supersymmetry. This theory, developed at about the same time that Golfand and Likhtman constructed the four-dimensional super-Poincar´ealgebra, motivated Wess and Zumino to construct supersymmet- ric field theories in four dimensions. Gliozzi, Scherk, and Olive conjectured the arXiv:hep-th/0011078v1 9 Nov 2000 spacetime supersymmetry of the string theory in 1976, a fact that was proved five years later by Green and myself. Presented at the Conference 30 Years of Supersymmetry 1Work supported in part by the U.S. Dept. of Energy under Grant No. DE-FG03-92-ER40701. 1 S-Matrix Theory, Duality, and the Bootstrap In the late 1960s there were two parallel trends in particle physics. On the one hand, many hadron resonances were discovered, making it quite clear that hadrons are not elementary particles. In fact, they were found, to good approximation, to lie on linear parallel Regge trajectories, which supported the notion that they are composite. Moreover, high energy scattering data displayed Regge asymptotic behavior that could be explained by the extrap- olation of the same Regge trajectories, as well as one with vacuum quantum numbers called the Pomeron. This set of developments was the focus of the S-Matrix Theory community of theorists. -
Strings, Boundary Fermions and Coincident D-Branes
Strings, boundary fermions and coincident D-branes Linus Wulff Department of Physics Stockholm University Thesis for the degree of Doctor of Philosophy in Theoretical Physics Department of Physics, Stockholm University Sweden c Linus Wulff, Stockholm 2007 ISBN 91-7155-371-1 pp 1-85 Printed in Sweden by Universitetsservice US-AB, Stockholm 2007 Abstract The appearance in string theory of higher-dimensional objects known as D- branes has been a source of much of the interesting developements in the subject during the past ten years. A very interesting phenomenon occurs when several of these D-branes are made to coincide: The abelian gauge theory liv- ing on each brane is enhanced to a non-abelian gauge theory living on the stack of coincident branes. This gives rise to interesting effects like the natural ap- pearance of non-commutative geometry. The theory governing the dynamics of these coincident branes is still poorly understood however and only hints of the underlying structure have been seen. This thesis focuses on an attempt to better this understanding by writing down actions for coincident branes using so-called boundary fermions, orig- inating in considerations of open strings, instead of matrices to describe the non-abelian fields. It is shown that by gauge-fixing and by suitably quantiz- ing these boundary fermions the non-abelian action that is known, the Myers action, can be reproduced. Furthermore it is shown that under natural assump- tions, unlike the Myers action, the action formulated using boundary fermions also posseses kappa-symmetry, the criterion for being the correct supersym- metric action for coincident D-branes. -
Notas De Física CBPF-NF-007/10 February 2010
ISSN 0029-3865 CBPF - CENTRO BRASILEIRO DE PESQUISAS FíSICAS Rio de Janeiro Notas de Física CBPF-NF-007/10 February 2010 A criticaI Iook at 50 years particle theory from the perspective of the crossing property Bert Schroer Ministét"iQ da Ciência e Tecnologia A critical look at 50 years particle theory from the perspective of the crossing property Dedicated to Ivan Todorov on the occasion of his 75th birthday to be published in Foundations of Physics Bert Schroer CBPF, Rua Dr. Xavier Sigaud 150 22290-180 Rio de Janeiro, Brazil and Institut fuer Theoretische Physik der FU Berlin, Germany December 2009 Contents 1 The increasing gap between foundational work and particle theory 2 2 The crossing property and the S-matrix bootstrap approach 7 3 The dual resonance model, superseded phenomenology or progenitor of a new fundamental theory? 15 4 String theory, a TOE or a tower of Babel within particle theory? 21 5 Relation between modular localization and the crossing property 28 6 An exceptional case of localization equivalence: d=1+1 factorizing mod- els 35 7 Resum´e, some personal observations and a somewhat downbeat outlook 39 8 Appendix: a sketch of modular localization 47 8.1 Modular localization of states . 47 8.2 Localized subalgebras . 51 CBPF-NF-007/10 CBPF-NF-007/10 2 Abstract The crossing property, which originated more than 5 decades ago in the after- math of dispersion relations, was the central new concept which opened an S-matrix based line of research in particle theory. Many constructive ideas in particle theory outside perturbative QFT, among them the S-matrix bootstrap program, the dual resonance model and the various stages of string theory have their historical roots in this property.