Glucocorticoid Receptor: a Multifaceted Actor in Breast Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RUNX1 Control of Mammary Epithelial and Breast Cancer Cell Phenotypes
University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2017-12-12 RUNX1 Control of Mammary Epithelial and Breast Cancer Cell Phenotypes Deli Hong University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Cancer Biology Commons, and the Cell Biology Commons Repository Citation Hong D. (2017). RUNX1 Control of Mammary Epithelial and Breast Cancer Cell Phenotypes. GSBS Dissertations and Theses. https://doi.org/10.13028/M21Q2F. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/949 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. RUNX1 CONTROL OF MAMMARY EPITHELIAL AND BREAST CANCER CELL PHENOTYPES A Dissertation Presented By Deli Hong Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 12, 2017 Program of Cell Biology RUNX1 CONTROL OF MAMMARY EPITHELIAL AND BREAST CANCER CELL PHENOTYPES A Dissertation Presented By Deli Hong This work was undertaken in the Graduate School of Biomedical Sciences Program of Cell Biology The signature of the Thesis Advisor signifies validation of Dissertation content Gary S. Stein, Ph. D., Thesis Advisor The signatures of the Dissertation Defense Committee signify completion and approval as to style and content of the Dissertation Leslie Shaw, Ph. -
GATA3 As an Adjunct Prognostic Factor in Breast Cancer Patients with Less Aggressive Disease: a Study with a Review of the Literature
diagnostics Article GATA3 as an Adjunct Prognostic Factor in Breast Cancer Patients with Less Aggressive Disease: A Study with a Review of the Literature Patrizia Querzoli 1, Massimo Pedriali 1 , Rosa Rinaldi 2 , Paola Secchiero 3, Paolo Giorgi Rossi 4 and Elisabetta Kuhn 5,6,* 1 Section of Anatomic Pathology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44124 Ferrara, Italy; [email protected] (P.Q.); [email protected] (M.P.) 2 Section of Anatomic Pathology, ASST Mantova, Ospedale Carlo Poma, 46100 Mantova, Italy; [email protected] 3 Surgery and Experimental Medicine and Interdepartmental Center of Technology of Advanced Therapies (LTTA), Department of Morphology, University of Ferrara, 44121 Ferrara, Italy; [email protected] 4 Epidemiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; [email protected] 5 Division of Pathology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy 6 Department of Biomedical, Surgical, and Dental Sciences, University of Milan, 20122 Milano, Italy * Correspondence: [email protected]; Tel.: +39-02-5032-0564; Fax: +39-02-5503-2860 Abstract: Background: GATA binding protein 3 (GATA3) expression is positively correlated with Citation: Querzoli, P.; Pedriali, M.; estrogen receptor (ER) expression, but its prognostic value as an independent factor remains unclear. Rinaldi, R.; Secchiero, P.; Rossi, P.G.; Thus, we undertook the current study to evaluate the expression of GATA3 and its prognostic value Kuhn, E. GATA3 as an Adjunct in a large series of breast carcinomas (BCs) with long-term follow-up. Methods: A total of 702 Prognostic Factor in Breast Cancer consecutive primary invasive BCs resected between 1989 and 1993 in our institution were arranged Patients with Less Aggressive in tissue microarrays, immunostained for ER, progesterone receptor (PR), ki-67, HER2, p53, and Disease: A Study with a Review of GATA3, and scored. -
Genome-Wide CRISPR Screening Identifies BRD9 As a Druggable Component Of
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429732; this version posted February 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Genome-Wide CRISPR Screening Identifies BRD9 as a Druggable Component of 2 Interferon-Stimulated Gene Expression and Antiviral Activity 3 Jacob Börolda,b,†, Davide Elettoa,†,#, Idoia Busnadiegoa, Nina K. Maira,b, Eva Moritza, 4 Samira Schiefera,b, Nora Schmidta,$, Philipp P. Petricc,d, W. Wei-Lynn Wonge, Martin 5 Schwemmlec & Benjamin G. Halea,* 6 7 aInstitute of Medical Virology, University of Zurich, Zurich, Switzerland. 8 bLife Science Zurich Graduate School, ETH and University of Zurich, Zurich, 9 Switzerland. 10 cInstitute of Virology, Freiburg University Medical Center, Faculty of Medicine, University 11 of Freiburg, Freiburg, Germany. 12 dSpemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, 13 Germany. 14 eInstitute of Experimental Immunology, University of Zurich, Zurich, Switzerland. 15 *Correspondence: Benjamin G. Hale, [email protected] 16 †Equal first authors listed in alphabetical order. 17 #Present address: Department of Biosystems Science and Engineering, ETH Zurich, 18 Basel, Switzerland. 19 $Present address: Helmholtz Institute for RNA-based Infection Research, Helmholtz- 20 Center for Infection Research, Wurzburg, Germany. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429732; this version posted February 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Cancer Drug Pharmacology Table
CANCER DRUG PHARMACOLOGY TABLE Cytotoxic Chemotherapy Drugs are classified according to the BC Cancer Drug Manual Monographs, unless otherwise specified (see asterisks). Subclassifications are in brackets where applicable. Alkylating Agents have reactive groups (usually alkyl) that attach to Antimetabolites are structural analogues of naturally occurring molecules DNA or RNA, leading to interruption in synthesis of DNA, RNA, or required for DNA and RNA synthesis. When substituted for the natural body proteins. substances, they disrupt DNA and RNA synthesis. bendamustine (nitrogen mustard) azacitidine (pyrimidine analogue) busulfan (alkyl sulfonate) capecitabine (pyrimidine analogue) carboplatin (platinum) cladribine (adenosine analogue) carmustine (nitrosurea) cytarabine (pyrimidine analogue) chlorambucil (nitrogen mustard) fludarabine (purine analogue) cisplatin (platinum) fluorouracil (pyrimidine analogue) cyclophosphamide (nitrogen mustard) gemcitabine (pyrimidine analogue) dacarbazine (triazine) mercaptopurine (purine analogue) estramustine (nitrogen mustard with 17-beta-estradiol) methotrexate (folate analogue) hydroxyurea pralatrexate (folate analogue) ifosfamide (nitrogen mustard) pemetrexed (folate analogue) lomustine (nitrosurea) pentostatin (purine analogue) mechlorethamine (nitrogen mustard) raltitrexed (folate analogue) melphalan (nitrogen mustard) thioguanine (purine analogue) oxaliplatin (platinum) trifluridine-tipiracil (pyrimidine analogue/thymidine phosphorylase procarbazine (triazine) inhibitor) -
Increased ACTL6A Occupancy Within Mswi/SNF Chromatin Remodelers
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.435873; this version posted March 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Increased ACTL6A Occupancy Within mSWI/SNF Chromatin Remodelers Drives Human Squamous Cell Carcinoma Chiung-Ying Chang1,2,7, Zohar Shipony3,7, Ann Kuo1,2, Kyle M. Loh4,5, William J. Greenleaf3,6, Gerald R. Crabtree1,2,5* 1Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA. 2Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA. 3Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA. 4Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA. 5Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA. 6Department of Applied Physics, Stanford University, Stanford, California 94305, USA. 7These authors contributed equally. *Corresponding author: Gerald R. Crabtree, [email protected] Summary Mammalian SWI/SNF (BAF) chromatin remodelers play dosage-sensitive roles in many human malignancies and neurologic disorders. The gene encoding the BAF subunit, ACTL6A, is amplified at an early stage in the development of squamous cell carcinomas (SCCs), but its oncogenic role remains unclear. Here we demonstrate that ACTL6A overexpression leads to its stoichiometric assembly into BAF complexes and drives its interaction and engagement with specific regulatory regions in the genome. In normal epithelial cells, ACTL6A was sub-stoichiometric to other BAF subunits. However, increased ACTL6A levels by ectopic expression or in SCC cells led to near-saturation of ACTL6A within BAF complexes. -
In Vivo Characterization of Combination Antitumor Chemotherapy with Calcium Channel Blockers and Ci5-Diamminedichloroplatinum(II)1
(CANCER RESEARCH 49, 2844-2850. June 1, 1989] In Vivo Characterization of Combination Antitumor Chemotherapy with Calcium Channel Blockers and ci5-Diamminedichloroplatinum(II)1 James M. Onoda,2 Kevin K. Nelson, John D. Taylor, and Kenneth V. Honn Departments of Radiation Oncology [J. M. O., K. K. N., J. D. T., K. V. H.], Biological Sciences [J. D. T.], and Chemistry ¡K.V. H.], Wayne State University, Detroit, Michigan 48202; and the Cershenson Radiation Oncology Center [J. M. O., K. K. N., J. D. T., K. V. H.], Harper/Grace Hospitals, Detroit, Michigan 4820I ABSTRACT dulin antagonists to enhance the antitumor actions of the more We have examined nifedipine, a dihydropyridine class calcium channel commonly prescribed organic or natural product chemothera blocker, for ability to overcome m-diamminedichloroplatinum(II) (cis- peutic agents (3, 4). The ability of verapamil to reverse multi- platin) resistance in a murine tumor line variant, B16a-Pt, which we drug resistance or pleiotropic drug resistance correlates with developed for resistance to cisplatin. Nifedipine significantly enhanced the expression of a M, 170,000 glycoprotein in drug-resistant the antitumor actions of cisplatin against primary subcutaneous B16a-Pt tumor cell plasma membranes (5, 6). This glycoprotein is now tumors and their spontaneous pulmonary métastases.We have charac commonly referred to as the P-glycoprotein (7, 8) and is re terized, in vivo, the pharmacokinetics and dose-response interactions sponsible for the active efflux of many organic/natural product between nifedipine and cisplatin. We now report our studies designed to cytotoxic chemotherapeutic agents (9-11). The current hypoth compare, in vivo, the efficacy of nifedipine and other calcium active esis suggests that verapamil interacts with the P-glycoprotein compounds including: (a) structurally similar calcium channel blockers to block drug efflux (12, 13); and that its actions are independ (nimodipine, nicardipine) from the dihydropyridine class, (b) structurally ent of the classical slow-inward Ca2+ channel (14, 15). -
Progesterone Receptor Isoform B Regulates the Oxtr-Plcl2-Trpc3 Pathway to Suppress Uterine Contractility
Progesterone receptor isoform B regulates the Oxtr-Plcl2-Trpc3 pathway to suppress uterine contractility Mary C. Peaveya,1, San-Pin Wub,1, Rong Lib, Jian Liub, Olivia M. Emeryb, Tianyuan Wangc, Lecong Zhouc, Margeaux Wetendorfd, Chandra Yallampallie, William E. Gibbonse, John P. Lydond, and Francesco J. DeMayob,2 aDepartment of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC 27599; bReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; cIntegrative Bioinformatic Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; dDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and eDepartment of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030 Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved January 19, 2021 (received for review June 6, 2020) Uterine contractile dysfunction leads to pregnancy complications The “progesterone receptor isoform switch” concept was posited such as preterm birth and labor dystocia. In humans, it is hypoth- to explain the transition from a quiescent to a contractile myometrial esized that progesterone receptor isoform PGR-B promotes a re- phenotype in the presence of high levels of progesterone (10, 11, laxed state of the myometrium, and PGR-A facilitates uterine 26–30). Progesterone acts via the nuclear receptor isoforms, PGR-A contraction. This hypothesis was tested in vivo using transgenic and PGR-B, which are coexpressed at different levels throughout mouse models that overexpress PGR-A or PGR-B in smooth muscle pregnancy (31–35). Progesterone can transactivate different tran- cells. Elevated PGR-B abundance results in a marked increase in scriptional programs determined by the relative levels of PGR-A and gestational length compared to control mice (21.1 versus 19.1 d PGR-B isoforms in the myometrium (36–41). -
Essential Genes and Their Role in Autism Spectrum Disorder
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Essential Genes And Their Role In Autism Spectrum Disorder Xiao Ji University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, and the Genetics Commons Recommended Citation Ji, Xiao, "Essential Genes And Their Role In Autism Spectrum Disorder" (2017). Publicly Accessible Penn Dissertations. 2369. https://repository.upenn.edu/edissertations/2369 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2369 For more information, please contact [email protected]. Essential Genes And Their Role In Autism Spectrum Disorder Abstract Essential genes (EGs) play central roles in fundamental cellular processes and are required for the survival of an organism. EGs are enriched for human disease genes and are under strong purifying selection. This intolerance to deleterious mutations, commonly observed haploinsufficiency and the importance of EGs in pre- and postnatal development suggests a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication and repetitive behavior. More and more genetic evidence points to a polygenic model of ASD and it is estimated that hundreds of genes contribute to ASD. The central question addressed in this dissertation is whether genes with a strong effect on survival and fitness (i.e. EGs) play a specific oler in ASD risk. I compiled a comprehensive catalog of 3,915 mammalian EGs by combining human orthologs of lethal genes in knockout mice and genes responsible for cell-based essentiality. -
Ten Commandments for a Good Scientist
Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre. -
Identification of Protein Complexes Associated with Myocardial Infarction Using a Bioinformatics Approach
MOLECULAR MEDICINE REPORTS 18: 3569-3576, 2018 Identification of protein complexes associated with myocardial infarction using a bioinformatics approach NIANHUI JIAO1, YONGJIE QI1, CHANGLI LV2, HONGJUN LI3 and FENGYONG YANG1 1Intensive Care Unit; 2Emergency Department, Laiwu People's Hospital, Laiwu, Shandong 271199; 3Emergency Department, The Central Hospital of Tai'an, Tai'an, Shandong 271000, P.R. China Received November 3, 2016; Accepted January 3, 2018 DOI: 10.3892/mmr.2018.9414 Abstract. Myocardial infarction (MI) is a leading cause of clinical outcomes regarding high-risk MI. For example, muta- mortality and disability worldwide. Determination of the tions in the myocardial infarction-associated transcript have molecular mechanisms underlying the disease is crucial for been reported to cause susceptibility to MI (5). In addition, it identifying possible therapeutic targets and designing effective was demonstrated that mutations in the oxidized low-density treatments. On the basis that MI may be caused by dysfunc- lipoprotein receptor 1 gene may significantly increase the tional protein complexes rather than single genes, the present risk of MI (6). Although some MI-related genes have been study aimed to use a bioinformatics approach to identifying detected, many were identified independently and functional complexes that may serve important roles in the develop- associations among the genes have rarely been explored. ment of MI. By investigating the proteins involved in these Therefore, it is necessary to investigate MI from a systematic identified complexes, numerous proteins have been reported perspective, as the complex disease was reported to occur due that are related to MI, whereas other proteins interacted to the dysregulation of functional gene sets (7). -
Identifying the Role of Wilms Tumor 1 Associated Protein in Cancer Prediction Using Integrative Genomic Analyses
MOLECULAR MEDICINE REPORTS 14: 2823-2831, 2016 Identifying the role of Wilms tumor 1 associated protein in cancer prediction using integrative genomic analyses LI‑SHENG WU1*, JIA-YI QIAN2*, MINGHAI WANG3* and HAIWEI YANG4 1Department of General Surgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001; 2Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029; 3Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241002; 4Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China Received August 31, 2015; Accepted June 2, 2016 DOI: 10.3892/mmr.2016.5528 Abstract. The Wilms tumor suppressor, WT1 was first iden- regulatory factor 1, glucocorticoid receptor and peroxisome tified due to its essential role in the normal development of proliferator‑activated receptor γ transcription factor binding the human genitourinary system. Wilms tumor 1 associated sites were identified in the upstream (promoter) region of the protein (WTAP) was subsequently revealed to interact with human WTAP gene, suggesting that these transcription factors WT1 using yeast two‑hybrid screening. The present study may be involved in WTAP functions in tumor formation. identified 44 complete WTAP genes in the genomes of verte- brates, including fish, amphibians, birds and mammals. The Introduction vertebrate WTAP proteins clustered into the primate, rodent and teleost lineages using phylogenetic tree analysis. From The Wilms tumor suppressor gene WT1 was first identified 1,347 available SNPs in the human WTAP gene, 19 were due to its essential role in the normal development of the identified to cause missense mutations. -
The Novel Progesterone Receptor
0013-7227/99/$03.00/0 Vol. 140, No. 3 Endocrinology Printed in U.S.A. Copyright © 1999 by The Endocrine Society The Novel Progesterone Receptor Antagonists RTI 3021– 012 and RTI 3021–022 Exhibit Complex Glucocorticoid Receptor Antagonist Activities: Implications for the Development of Dissociated Antiprogestins* B. L. WAGNER†, G. POLLIO, P. GIANGRANDE‡, J. C. WEBSTER, M. BRESLIN, D. E. MAIS, C. E. COOK, W. V. VEDECKIS, J. A. CIDLOWSKI, AND D. P. MCDONNELL Department of Pharmacology and Cancer Biology (B.L.W., G.P., P.G., D.P.M.), Duke University Medical Center, Durham, North Carolina 27710; Molecular Endocrinology Group (J.C.W., J.A.C.), NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Biochemistry and Molecular Biology (M.B., W.V.V.), Louisiana State University Medical School, New Orleans, Louisiana 70112; Ligand Pharmaceuticals, Inc. (D.E.M.), San Diego, California 92121; Research Triangle Institute (C.E.C.), Chemistry and Life Sciences, Research Triangle Park, North Carolina 27709 ABSTRACT by agonists for DNA response elements within target gene promoters. We have identified two novel compounds (RTI 3021–012 and RTI Accordingly, we observed that RU486, RTI 3021–012, and RTI 3021– 3021–022) that demonstrate similar affinities for human progeste- 022, when assayed for PR antagonist activity, accomplished both of rone receptor (PR) and display equivalent antiprogestenic activity. As these steps. Thus, all three compounds are “active antagonists” of PR with most antiprogestins, such as RU486, RTI 3021–012, and RTI function. When assayed on GR, however, RU486 alone functioned as 3021–022 also bind to the glucocorticoid receptor (GR) with high an active antagonist.