On the Strong Metric Dimension of Antiprism Graph, King Graph, and Km ⊙ Kn Graph

Total Page:16

File Type:pdf, Size:1020Kb

On the Strong Metric Dimension of Antiprism Graph, King Graph, and Km ⊙ Kn Graph On the strong metric dimension of antiprism graph, king graph, and Km ⊙ Kn graph Yuyun Mintarsih and Tri Atmojo Kusmayadi Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia E-mail: [email protected], [email protected] Abstract. Let G be a connected graph with a set of vertices V (G) and a set of edges E(G). The interval I[u; v] between u and v to be the collection of all vertices that belong to some shortest u-v path. A vertex s 2 V (G) is said to be strongly resolved for vertices u, v 2 V (G) if v 2 I[u; s] or u 2 I[v; s]. A vertex set S ⊆ V (G) is a strong resolving set for G if every two distinct vertices of G are strongly resolved by some vertices of S. The strong metric dimension of G, denoted by sdim(G), is defined as the smallest cardinality of a strong resolving set. In this paper, we determine the strong metric dimension of an antiprism An graph, a king Km;n graph, and a Km ⊙ Kn graph. We obtain the strong metric dimension of an antiprim graph An are n for n odd and n + 1 for n even. The strong metric dimension of King graph Km;n is m + n − 1. The strong metric dimension of Km ⊙ Kn graph are n for m = 1, n ≥ 1 and mn − 1 for m ≥ 2, n ≥ 1. 1. Introduction The strong metric dimension was introduced by Seb¨oand Tannier [6] in 2004. Let G be a connected graph with a set of vertices V (G) and a set of edges E(G). Oelermann and Peters- Fransen [5] defined the interval I[u; v] between u and v to be the collection of all vertices that belong to some shortest u − v path. A vertex s 2 S is said to strongly resolve two vertices u and v if u 2 I[v; s] or v 2 I[u; v]. A vertex set S of G is a strong resolving set for G if every two distinct vertices of G are strongly resolved by some vertices of S. The strong metric basis of G is a strong resolving set with minimal cardinality. The strong metric dimension of a graph G is defined as the cardinality of strong metric basis denoted by sdim(G). Some authors have investigated the strong metric dimension to some graph classes. Seb¨oand Tannier [6] observed the strong metric dimension of complete graph Kn, cycle graph Cn, and tree. Kratica et al. [2] observed the strong metric dimension of hamming graph Hn;k. At the same year, Kratica et al [3] determined the strong metric dimension of convex polytope Dn and Tn. Yi [8] determined that sdim(G) = 1 if only if G is path graph and sdim(G) = n−1 if only if G is complete graph. Kusmayadi et al. [4] determined the strong metric dimension of sunflower graph, t-fold wheel graph, helm graph, and friendship graph. In this paper, we determine the strong metric dimension of an antiprism graph, a king graph, and a Km ⊙ Kn graph. 2. Main Results 2.1. Strong Metric Dimension Let G be a connected graph with a set of vertices V (G), a set of edges E(G), and S=fs1; s2; : : : ; skg 2 V (G). Oelermann and Peters-Fransen [5] defined the interval I[u; v] between u and v to be the collection of all vertices that belong to some shortest u − v path. A vertex s 2 S is said to strongly resolve two vertices u and v if u 2 I[v; s] or v 2 I[u; s]. A vertex set S of G is a strong resolving set for G if every two distinct vertices of G are strongly resolved by some vertices of S. The strong metric basis of G is a strong resolving set with minimal cardinality. The strong metric dimension of a graph G is defined as the cardinality of strong metric basis denoted by sdim(G). We often make use of the following lemma and properties about strong metric dimension given by Kratica et al. [3]. Lemma 2.1 Let u, v 2 V(G), u =6 v, (i) d(w,v) ≤ d(u,v) for each w such that u w 2 E(G), and (ii) d(u,w) ≤ d(u,v) for each w such that v w 2 E(G). Then there does not exist vertex a 2 V(G), a =6 u,v that strongly resolves vertices u and v. Property 2.1 If S ⊂ V(G) is strong resolving set of graph G, then for every two vertices u, v 2 V(G) satisfying conditions 1 and 2 of Lemma 2:1, obtained u 2 S or v 2 S. Property 2.2 If S ⊂ V(G) is strong resolving set of graph G, then for every two vertices u, v 2 V(G) satisfying d(u, v) = diam(G), obtained u 2 S or v 2 S. 2.2. The Strong Metric Dimension of antiprism graph Baˇca [1] defined the antiprism graph An for n ≥ 3 is a 4-regular graph with 2n vertices and 4n edges. It consists of outer and inner Cn, while the two cycles connected by edges viui and viu1+i(mod n) for i = 1, 2, 3, . , n. The antiprism graph An can be depicted as in Figure 1. Figure 1. Antiprism graph An Lemma 2.2 For every integer n ≥ 3 and n odd, if S is a strong resolving set of antiprism graph An then j S j ≥ n. Proof. We know that S is a strong resolving set of antiprism graph An. Suppose that S contains at most n - 1 vertices, then j S j < n. Let V1, V2 ⊂ V (An), with V1 = fu1; u2; : : : ; ung and V2 = fv1; v2; : : : ; vng. Now, we define S1 = V1 \ S and S2 = V2 \ S. Without loss of generality, we may take j S1 j = p, p > 0 and j S2 j = q, q ≥ 0. Clearly p + q ≥ n, if not then there are two distinct vertices va and vb where va 2 V1 n S1 and vb 2 V2 n S2 such that for every s 2 S, we obtain va 2= I[vb; s] and vb 2= I[va; s]. This contradicts with the supposition that S is a strong resolving set. Thus, j S j ≥ n. ut Lemma 2.3 For every integer n ≥ 3 and n odd, a set S = fu1; u2; : : : ; ung is a strong resolving set of antiprism graph An. Proof. For every integer i; j 2 [1, n] with 1 ≤ i < j ≤ n, a vertex ui 2 S which strongly resolves vi dan vj so that vj 2 I[vi; uj]. Thus, S = fu1; u2; : : : ; ung is a strong resolving set of antiprism graph An. ut Lemma 2.4 For every integer n ≥ 3 and n even, if S is a strong resolving set of antiprism graph An then j S j ≥ n+1. Proof. We know that S is a strong resolving set of antiprism graph An. Suppose that S contains at most n vertices, then j S j < n + 1. Let V1, V2 ⊂ V (An), with V1 = fu1; u2; : : : ; ung and V2 = fv1; v2; : : : ; vng. Now, we define S1 = V1 \ S and S2 = V2 \ S. Without loss of generality, we may take j S1 j = p, p ≥ 0 and j S2 j = q, q ≥ 0. Clearly p + q ≥ n + 1, if not then there are two distinct vertices va and vb where va 2 V1 n S1 and vb 2 V2 n S2 such that for every s 2 S, we obtain va 2= I[vb, s] and vb 2= I[va, s]. This contradicts with the supposition that S is a strong resolving set. Thus, j S j ≥ n+1. ut Lemma 2.5 For every integer n ≥ 3 and n even, a set S = fu1; u2; : : : ; u n ; u n ; v1; v2; : : : ; v n g 2 2 +1 2 is a strong resolving set of antiprism graph An. Proof. We prove that for every two distinct vertices u; v 2 V (An)nS, u =6 v there exists a vertex s 2 S which strongly resolves u and v. There are three possible pairs of vertices. n n 6 (i) A pair of vertices (ui; uj) with i; j = 2 + 2; 2 + 3; : : : ; n, i = j. 2 n For every integer i; j [ 2 + 2; n] with i < j, we obtain the shortest ui - u1 path: ui; ui+1; : : : ; uj; : : : ; un; u1. Thus, uj 2 I[ui; u1]. n n 6 (ii) A pair of vertices (vi; vj) with i; j = 2 + 1; 2 + 2; : : : ; n, i = j. 2 n For every integer i; j [ 2 + 1; n] with i < j, we obtain the shortest vi - v1 path: vi; vi+1; : : : ; vj; : : : ; vn; v1. Thus, vj 2 I[vi; v1]. n n n n (iii) A pair of vertices (ui; vj) with i = 2 + 2; 2 + 3; : : : ; n dan j = 2 + 1; 2 + 2; : : : ; n. 2 n 2 n ≤ For every integer i [ 2 + 2; n] and j [ 2 + 1; n] with i j, we obtain the shortest ui - v1 2 2 n path: ui; vi; : : : ; vj, :::, vn, v1. Thus, vj I[ui; v1]. Then, for every integer i [ 2 +2; n] and n j 2 [ + 1; n] with i > j, we obtain the shortest ui - v n path: ui; vi−1; : : : ; vj; : : : ; v n ; v n .
Recommended publications
  • COMPUTING the TOPOLOGICAL INDICES for CERTAIN FAMILIES of GRAPHS 1Saba Sultan, 2Wajeb Gharibi, 2Ali Ahmad 1Abdus Salam School of Mathematical Sciences, Govt
    Sci.Int.(Lahore),27(6),4957-4961,2015 ISSN 1013-5316; CODEN: SINTE 8 4957 COMPUTING THE TOPOLOGICAL INDICES FOR CERTAIN FAMILIES OF GRAPHS 1Saba Sultan, 2Wajeb Gharibi, 2Ali Ahmad 1Abdus Salam School of Mathematical Sciences, Govt. College University, Lahore, Pakistan. 2College of Computer Science & Information Systems, Jazan University, Jazan, KSA. [email protected], [email protected], [email protected] ABSTRACT. There are certain types of topological indices such as degree based topological indices, distance based topological indices and counting related topological indices etc. Among degree based topological indices, the so-called atom-bond connectivity (ABC), geometric arithmetic (GA) are of vital importance. These topological indices correlate certain physico-chemical properties such as boiling point, stability and strain energy etc. of chemical compounds. In this paper, we compute formulas of General Randi´c index ( ) for different values of α , First zagreb index, atom-bond connectivity (ABC) index, geometric arithmetic GA index, the fourth ABC index ( ABC4 ) , fifth GA index ( GA5 ) for certain families of graphs. Key words: Atom-bond connectivity (ABC) index, Geometric-arithmetic (GA) index, ABC4 index, GA5 index. 1. INTRODUCTION AND PRELIMINARY RESULTS Cheminformatics is a new subject which relates chemistry, is connected graph with vertex set V(G) and edge set E(G), du mathematics and information science in a significant manner. The is the degree of vertex and primary application of cheminformatics is the storage, indexing and search of information relating to compounds. Graph theory has provided a vital role in the aspect of indexing. The study of ∑ Quantitative structure-activity (QSAR) models predict biological activity using as input different types of structural parameters of where .
    [Show full text]
  • Some Families of Convex Polytopes Labeled by 3-Total Edge Product Cordial Labeling
    Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 49(3)(2017) pp. 119-132 Some Families of Convex Polytopes Labeled by 3-Total Edge Product Cordial Labeling Umer Ali Department of Mathematics, UMT Lahore, Pakistan. Email: [email protected] Muhammad bilal Department of Mathematics, UMT Lahore, Pakistan. Email: [email protected] Sohail Zafar Department of Mathematics, UMT Lahore, Pakistan. Email: [email protected] Zohaib Zahid Department of Mathematics, UMT Lahore, Pakistan. Email: zohaib [email protected] Received: 03 January, 2017 / Accepted: 10 April, 2017 / Published online: 18 August, 2017 Abstract. For a graph G = (VG;EG), consider a mapping h : EG ! ∗ f0; 1; 2; : : : ; k − 1g, 2 ≤ k ≤ jEGj which induces a mapping h : VG ! ∗ Qn f0; 1; 2; : : : ; k − 1g such that h (v) = i=1 h(ei)( mod k), where ei is an edge incident to v. Then h is called k-total edge product cordial ( k- TEPC) labeling of G if js(i) − s(j)j ≤ 1 for all i; j 2 f1; 2; : : : ; k − 1g: Here s(i) is the sum of all vertices and edges labeled by i. In this paper, we study k-TEPC labeling for some families of convex polytopes for k = 3. AMS (MOS) Subject Classification Codes: 05C07 Key Words: 3-TEPC labeling, The graphs of convex polytopes. 119 120 Umer Ali, Muhammad Bilal, Sohail Zafar and Zohaib Zahid 1. INTRODUCTION AND PRELIMINARIES Let G be an undirected, simple and finite graph with vertex-set VG and edge-set EG. Order of a graph G is the number of vertices and size of a graph G is the number of edges.
    [Show full text]
  • ISOMETRIC SUBGRAPHS of HAMMING GRAPHS and D-CONVEXITY
    4. K.V. Rudakov, "Completeness and universal constraints in the problem of correction of heuristic classification algorithms," Kibernetika, No, 3, 106-109 (1987). 5. K.V. Rudakov, "Symmetry and function constraints in the problem of correction of heur- istic classification algorithms," Kibernetika, No. 4, 74-77 (1987). 6. K.V. Rudakov, On Some Classes of Recognition Algorithms (General Results) [in Russian], VTs AN SSSR, Moscow (1980). ISOMETRIC SUBGRAPHS OF HAMMING GRAPHS AND d-CONVEXITY V. D. Chepoi UDC 519.176 In this study, we provide criteria of isometric embeddability of graphs in Hamming graphs. We consider ordinary connected graphs with a finite vertex set endowed with the natural metric d(x, y), equal to the number of edges in the shortest chain between the ver- tices x and y. Let al,...,a n be natural numbers. The Hamming graph Hal...a n is the graph with the ver- tex set X = {x = (x l..... xn):l~xi~a~, ~ = l,...n} in which two vertices are joined by an edge if and only if the corresponding vectors differ precisely in one coordinate [i, 2]. In other words, the graph Hal...a n is the Cartesian product of the graphs Hal,...,Han, where Hal is the ai-vertex complete graph. It is easy to show that in the Hamming graph the distance d(x, y) between the vertices x, y is equal to the number of different pairs of coordinates in the tuples corresponding to these vertices, i.e., it is equal to the Hamming distance between these tuples. It is also easy to show that the graph of the n-dimensional cube Qn may be treated as the Hamming graph H2..
    [Show full text]
  • Towards a Classification of Distance-Transitive Graphs
    数理解析研究所講究録 1063 巻 1998 年 72-83 72 Towards a classification of distance-transitive graphs John van Bon Abstract We outline the programme of classifying all finite distance-transitive graphs. We men- tion the most important classification results obtained so far and give special attention to the so called affine graphs. 1. Introduction The graphs in this paper will be always assumed to be finite, connected, undirected and without loops or multiple edges. The edge set of a graph can thus be identified with a subset of the set of unoidered pairs of vertices. Let $\Gamma=(V\Gamma, E\Gamma)$ be a graph and $x,$ $y\in V\Gamma$ . With $d(x, y)$ we will denote the usual distance $\Gamma$ in between the vertices $x$ and $y$ (i.e., the length of the shortest path connecting $x$ and $y$ ) and with $d$ we will denote the diameter of $\Gamma$ , the maximum of all possible values of $d(x, y)$ . Let $\Gamma_{i}(x)=\{y|y\in V\Gamma, d(x, y)=i\}$ be the set of all vertices at distance $i$ of $x$ . An $aut_{omo}rph7,sm$ of a graph is a permutation of the vertex set that maps edges to edges. Let $G$ be a group acting on a graph $\Gamma$ (i.e. we are given a morphism $Garrow Aut(\Gamma)$ ). For a $x\in V\Gamma$ $x^{g}$ vertex and $g\in G$ the image of $x$ under $g$ will be denoted by . The set $\{g\in G|x^{g}=x\}$ is a subgroup of $G$ , called that stabilizer in $G$ of $x$ and will be denoted by $G_{x}$ .
    [Show full text]
  • On the Classification of Locally Hamming Distance-Regular Graphs
    数理解析研究所講究録 第 76850巻 1991 年 50-61 On the Classification of Locally Hamming Distance-Regular Graphs BY MAKOTO MATSUMOTO Abstract. A distance-regular graph is locally Hamming if it is locally isomorphic to a Hamming scheme $H(r, 2)$ . This paper rediscovers the connection among locally Ham- ming distance-regular graphs, designs, and multiply transitive permutation groups, through which we classify some of locally Hamming distance-transitive graphs. \S 1. Introduction. By a graph we shall mean a finite undirected graph with no loops and no multiple edges. For a graph $G,$ $V(G)$ denotes the vertex set and $E(G)$ denotes the edge set of $G$ . For a vertex $v$ of a graph $G,$ $N(v)$ denotes the set of adjacent vertices with $v$ . By $\ovalbox{\tt\small REJECT}_{2}$ we denote the two-element field, and by $H(r)$ we denote the r-dimensional Hamming scheme for $r\geq 1$ ; that is, $H(r)$ is such a graph that its vertex set is the $\#_{2}^{=r}$ vector space a,nd $\tau\iota,$ $v\in\#_{2}^{=r}$ are adjacent if and only if the Hamming distance $d(u, v)=1$ ; i.e., $\#\{i u_{i}\neq v_{i}\}=1$ where $u=(u_{1}, \ldots u_{r})$ and $v=(v_{1}, \ldots , v_{r})$ . The graph obtained from $H(r)$ by identifying antipodal points is called a folded Hamming sheme(or a folded Hamming cube in [3, p.140]). The graph $H(3)$ is called a cube, and the induced subgraph obtained by removing one vertex tog$e$ ther with the three incident edges from a cube is called a tulip.
    [Show full text]
  • On the Generalized Θ-Number and Related Problems for Highly Symmetric Graphs
    On the generalized #-number and related problems for highly symmetric graphs Lennart Sinjorgo ∗ Renata Sotirov y Abstract This paper is an in-depth analysis of the generalized #-number of a graph. The generalized #-number, #k(G), serves as a bound for both the k-multichromatic number of a graph and the maximum k-colorable subgraph problem. We present various properties of #k(G), such as that the series (#k(G))k is increasing and bounded above by the order of the graph G. We study #k(G) when G is the graph strong, disjunction and Cartesian product of two graphs. We provide closed form expressions for the generalized #-number on several classes of graphs including the Kneser graphs, cycle graphs, strongly regular graphs and orthogonality graphs. Our paper provides bounds on the product and sum of the k-multichromatic number of a graph and its complement graph, as well as lower bounds for the k-multichromatic number on several graph classes including the Hamming and Johnson graphs. Keywords k{multicoloring, k-colorable subgraph problem, generalized #-number, Johnson graphs, Hamming graphs, strongly regular graphs. AMS subject classifications. 90C22, 05C15, 90C35 1 Introduction The k{multicoloring of a graph is to assign k distinct colors to each vertex in the graph such that two adjacent vertices are assigned disjoint sets of colors. The k-multicoloring is also known as k-fold coloring, n-tuple coloring or simply multicoloring. We denote by χk(G) the minimum number of colors needed for a valid k{multicoloring of a graph G, and refer to it as the k-th chromatic number of G or the multichromatic number of G.
    [Show full text]
  • Finite Primitive Distance-Transitive Graphs
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector European Journal of Combinatorics 28 (2007) 517–532 www.elsevier.com/locate/ejc Finite primitive distance-transitive graphs John van Bon Dipartimento di Matematica, Università della Calabria, 87036 Arcavacata di Rende, Italy Available online 8 September 2005 Abstract The status of the project of classifying finite primitive distance-transitive graphs is surveyed. Particular attention is given to the structure of the proof of the recently obtained classification of finite primitive affine distance-transitive graphs. © 2005 Elsevier Ltd. All rights reserved. 1. Introduction Let Γ be a finite connected undirected graph of diameter d, without loops or multiple edges. Let V Γ denote the vertex set of Γ and Aut(Γ ) denote the automorphism group of Γ .LetG be a subgroup of Aut(Γ ). We say that G acts distance-transitively on Γ if G acts transitively on each of the sets Γi ={(x, y) ∈ V Γ × V Γ | d(x, y) = i}, for i = 0, 1,...,d. In this case G will be called a distance-transitive group and a graph Γ admitting such a group will be called a distance-transitive graph. Observe that if Γ is a distance-transitive graph, then Aut(Γ ) is a distance-transitive group, but there might be many subgroups of it still acting distance-transitively on Γ . Distance-transitive graphs are vertex transitive and they are highly symmetric; in a certain sense they have the largest group of automorphisms possible. Some well known examples of distance- transitive graphs are the Hamming graphs, Johnson graphs and Grassmann graphs; see [15] for a detailed description of these graphs and for many others.
    [Show full text]
  • A Note on the Automorphism Group of the Hamming Graph
    Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 10 No. 2 (2021), pp. 129-136. ⃝c 2021 University of Isfahan www.ui.ac.ir www.ui.ac.ir A NOTE ON THE AUTOMORPHISM GROUP OF THE HAMMING GRAPH SEYED MORTEZA MIRAFZAL∗ AND MEYSAM ZIAEE Abstract. Let m > 1 be an integer and Ω be an m-set. The Hamming graph H(n; m) has Ωn as its vertex-set, with two vertices are adjacent if and only if they differ in exactly one coordinate. In this paper, we provide a new proof on the automorphism group of the Hamming graph H(n; m). Although our result is not new (CE Praeger, C Schneider, Permutation groups and Cartesian decompositions, Cambridge University Press, 2018), we believe that our proof is shorter and more elementary than the known proofs for determining the automorphism group of Hamming graph. 1. Introduction Let m > 1 be an integer and Ω be an m-set. The Hamming graph H(n; m) has Ωn as its vertex-set, with two vertices are adjacent if and only if they differ in exactly one coordinate. The latter graph is very famous and much is known about it. For instance this graph is actually the Cartesian product of n complete graphs Km, that is, Km□ ··· □Km. Without lose of generality, we can assume that Ω = f1; 2; : : : ; mg. In general, the connection between Hamming graphs and coding theory is of major importance. If m = 2, then H(n; m) = Qn, where Qn is the hypercube of dimension n.
    [Show full text]
  • Amplitudes and Correlators to Ten Loops Using Simple, Graphical Bootstraps
    Amplitudes and Correlators to Ten Loops Using Simple, Graphical Bootstraps Paul Heslop September 7th Workshop on New formulations for scattering amplitudes ASC Munich based on: arXiv:1609.00007 with Bourjaily, Tran Outline Four-point stress-energy multiplet correlation function integrands in planar N = 4 SYM to 10 loops ) 10 loop 4-pt amplitude, 9 loop 5-point (parity even) amplitude, 8 loop 5-point (full) amplitude Method (Bootstrappy): Symmetries (extra symmetry of correlators), analytic properties, planarity ) basis of planar graphs Fix coefficients of these graphs using simple graphical rules: the triangle, square and pentagon rules Discussion of results to 10 loops [higher point correlators + correlahedron speculations] Correlators in N = 4 SYM (Correlation functions of gauge invariant operators) Gauge invariant operators: gauge invariant products (ie traces) of the fundamental fields Simplest operator O(x)≡Tr(φ(x)2) (φ one of the six scalars) The simplest non-trivial correlation function is G4(x1; x2; x3; x4) ≡ hO(x1)O(x2)O(x3)O(x4)i O(x) 2 stress energy supermultiplet. (We can consider correlators of all operators in this multiplet using superspace.) Correlators in N = 4 AdS/CFT 5 Supergravity/String theory on AdS5 × S = N =4 super Yang-Mills Correlation functions of gauge invariant operators in SYM $ string scattering in AdS Contain data about anomalous dimensions of operators and 3 point functions via OPE !integrability / bootstrap Finite Big Bonus more recently: Correlators give scattering amplitudes Method for computing correlation
    [Show full text]
  • Distance-Transitive Graphs
    Distance-Transitive Graphs Submitted for the module MATH4081 Robert F. Bailey (4MH) Supervisor: Prof. H.D. Macpherson May 10, 2002 2 Robert Bailey Department of Pure Mathematics University of Leeds Leeds, LS2 9JT May 10, 2002 The cover illustration is a diagram of the Biggs-Smith graph, a distance-transitive graph described in section 11.2. Foreword A graph is distance-transitive if, for any two arbitrarily-chosen pairs of vertices at the same distance, there is some automorphism of the graph taking the first pair onto the second. This project studies some of the properties of these graphs, beginning with some relatively simple combinatorial properties (chapter 2), and moving on to dis- cuss more advanced ones, such as the adjacency algebra (chapter 7), and Smith’s Theorem on primitive and imprimitive graphs (chapter 8). We describe four infinite families of distance-transitive graphs, these being the Johnson graphs, odd graphs (chapter 3), Hamming graphs (chapter 5) and Grass- mann graphs (chapter 6). Some group theory used in describing the last two of these families is developed in chapter 4. There is a chapter (chapter 9) on methods for constructing a new graph from an existing one; this concentrates mainly on line graphs and their properties. Finally (chapter 10), we demonstrate some of the ideas used in proving that for a given integer k > 2, there are only finitely many distance-transitive graphs of valency k, concentrating in particular on the cases k = 3 and k = 4. We also (chapter 11) present complete classifications of all distance-transitive graphs with these specific valencies.
    [Show full text]
  • From Silent Circles to Hamiltonian Cycles Arxiv:1602.01396V3
    Making Walks Count: From Silent Circles to Hamiltonian Cycles Max A. Alekseyev and G´erard P. Michon Leonhard Euler (1707{1783) famously invented graph theory in 1735, by solving a puzzle of interest to the inhabitants of K¨onigsberg. The city comprised three distinct land masses, connected by seven bridges. The residents sought a walk through the city that crossed each bridge exactly once, but were consistently unable to find one. Euler reduced the problem to its bare bones by representing each land mass as a node and each bridge as an edge connecting two nodes. He then showed that such a puzzle would have a solution if and only if every node was at the origin of an even number of edges, with at most two exceptions| which could only be at the start or the end of the journey. Since this was not the case in K¨onigsberg, the puzzle had no solution. The sort of diagram Euler employed, in which the nodes were represented by dots and the edges by line segments connecting the dots, is today referred to as a graph. Sometimes it is convenient to use arrows instead of line segments, to imply that the connection goes in only one direction. The resulting construct is now referred to as a directed graph, or digraph for short. Except for tiny examples like the one inspired by K¨onigsberg, a sketch on paper is rarely an adequate description of a graph. One convenient representation of a digraph is given by its adjacency matrix A, where the element Ai;j is the number of edges going from node i to node j (in a simple graph, that number is either 0 or 1).
    [Show full text]
  • Research Article Fibonacci Mean Anti-Magic Labeling Of
    Kong. Res. J. 5(1): 1-3, 2018 ISSN 2349-2694, All Rights Reserved, Publisher: Kongunadu Arts and Science College, Coimbatore. http://krjscience.com RESEARCH ARTICLE FIBONACCI MEAN ANTI-MAGIC LABELING OF SOME GRAPHS Ameenal Bibi, K. and T. Ranjani* P.G. and Research Department of Mathematics, D.K.M College for Women (Autonomous), Vellore - 632 001, Tamil Nadu, India. ABSTRACT In this paper, we introduced Fibonacci mean anti-magic labeling in graphs. A graph G with p vertices and q edges is said to have Fibonacci mean anti-magic labeling if there is an injective function 푓: 퐸(퐺) → 퐹푗 , ie, it is possible to label the edges with the Fibonacci number Fj where (j= 0,1,1,2…n) in such a way that the edge uv is labeled with ∣푓 푢 +푓 푣 ∣ 푖푓 ∣ 푓 푢 + 푓 푣 ∣ 푖푠 푒푣푒푛, 2 ∣ 푓 푢 +푓 푣 ∣+1 푖푓 ∣ 푓 푢 + 푓 푣 ∣ 푖푠 표푑푑 and the resulting vertex labels admit mean 2 anti-magic labeling. In this paper, we discussed the Fibonacci mean anti-magic labeling for some special classes of graphs. Keywords: Fibonacci mean labeling, circulant graph, Bistar, Petersen graph, Fibonacci mean anti-magic labeling. AMS Subject Classification (2010): 05c78. 1. INTRODUCTION The concept of Fibonacci labeling was Definition 1.2. introduced by David W. Bange and Anthony E. A graph G with p vertices and q edges Barkauskas in the form Fibonacci graceful (1). The admits mean anti-magic labeling if there is an concept of skolem difference mean labeling was injective function 푓from the edges 퐸 퐺 → introduced by Murugan and Subramanian (2).
    [Show full text]