Information Theory, Graph Theory and Bayesian Statistics Based Improved and Robust Methods in Genome Assembly
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Istls Information Services to Life Science Internet Bioinformatics Resources Josef Maier [E-Mail: [email protected]] Last Checked August, 17Th, 2011
IStLS Information Services to Life Science Internet Bioinformatics Resources Josef Maier [e-mail: [email protected]] Last checked August, 17th, 2011 IStLS Bioinformatics Resources http://www.istls.de/bioinfolinks.php Courses and lectures Bioinformatics - Online Courses and Tutorials http://www.bioinformatik.de/cgi-bin/browse/Catalog/Research_and_Education/Online_Courses_and_Tutorials/ EMBRACE Network of Excellence http://www.embracegrid.info/page.php EMBNet Quick Guides http://www.embnet.org/node/64 EMBNet Courses http://www.embnet.org/ Sequence Analysis with distributed Resources http://bibiserv.techfak.uni-bielefeld.de/sadr/ Tutorial Protein Structures (EXPASY) SwissModel http://swissmodel.expasy.org/course/course-index.htm CMBI Courses for protein structure http://swift.cmbi.ru.nl/teach/courses/index.html 2Can Support Portal - Bioinformatics educational resource http://www.ebi.ac.uk/2can Bioconductor Workshops http://www.bioconductor.org/workshops/ CBS Bioinformatics Courses http://www.cbs.dtu.dk/courses.php The European School In Bioinformatics (Biosapiens) http://www.biosapiens.info/page.php?page=esb Institutes Centers Networks Bioinformatics Institutes Germany WSI Wilhelm-Schickard-Institut für Informatik - Universitaet Tuebingen http://www.uni-tuebingen.de/en/faculties/faculty-of-science/departments/computer-science/department.html WSI Huson - Algorithms in Bioinformatics http://www-ab.informatik.uni-tuebingen.de/welcome.html WSI Prof. Zell - Computer Architecture http://www.ra.cs.uni-tuebingen.de/ WSI Kohlbacher - Div. for Simulation -
Cryptic Inoviruses Revealed As Pervasive in Bacteria and Archaea Across Earth’S Biomes
ARTICLES https://doi.org/10.1038/s41564-019-0510-x Corrected: Author Correction Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes Simon Roux 1*, Mart Krupovic 2, Rebecca A. Daly3, Adair L. Borges4, Stephen Nayfach1, Frederik Schulz 1, Allison Sharrar5, Paula B. Matheus Carnevali 5, Jan-Fang Cheng1, Natalia N. Ivanova 1, Joseph Bondy-Denomy4,6, Kelly C. Wrighton3, Tanja Woyke 1, Axel Visel 1, Nikos C. Kyrpides1 and Emiley A. Eloe-Fadrosh 1* Bacteriophages from the Inoviridae family (inoviruses) are characterized by their unique morphology, genome content and infection cycle. One of the most striking features of inoviruses is their ability to establish a chronic infection whereby the viral genome resides within the cell in either an exclusively episomal state or integrated into the host chromosome and virions are continuously released without killing the host. To date, a relatively small number of inovirus isolates have been extensively studied, either for biotechnological applications, such as phage display, or because of their effect on the toxicity of known bacterial pathogens including Vibrio cholerae and Neisseria meningitidis. Here, we show that the current 56 members of the Inoviridae family represent a minute fraction of a highly diverse group of inoviruses. Using a machine learning approach lever- aging a combination of marker gene and genome features, we identified 10,295 inovirus-like sequences from microbial genomes and metagenomes. Collectively, our results call for reclassification of the current Inoviridae family into a viral order including six distinct proposed families associated with nearly all bacterial phyla across virtually every ecosystem. -
Microbial Gene Identification Using Interpolated Markov Models Steven L
544–548 Nucleic Acids Research, 1998, Vol. 26, No. 2 1998 Oxford University Press Microbial gene identification using interpolated Markov models Steven L. Salzberg1,2,*, Arthur L. Delcher3, Simon Kasif4 and Owen White1 1The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA, 2Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA, 3Department of Computer Science, Loyola College in Maryland, Baltimore, MD 21210, USA and 4Department of Electrical Engineering and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA Received September 10, 1997; Revised and Accepted November 11, 1997 ABSTRACT in new genomes still have no significant homology to known genes (1). For these genes, we must rely on computational methods of This paper describes a new system, GLIMMER, for scoring the coding region to identify the genes. The best-known finding genes in microbial genomes. In a series of tests program for this task is GeneMark (5), which uses a Markov chain on Haemophilus influenzae, Helicobacter pylori and model to score coding regions. GeneMark has been highly effective other complete microbial genomes, this system has and was used in the H.influenza and more recent genome projects. proven to be very accurate at locating virtually all the We have developed a new system, GLIMMER, that uses a technique genes in these sequences, outperforming previous called interpolated Markov models (IMMs) to find coding regions methods. A conservative estimate based on experiments in microbial sequences. IMMs are in principle more powerful than on H.pylori and H.influenzae is that the system finds Markov chains, and the computational experiments described below >97% of all genes. -
Debian Med Integrated Software Environment for All Medical Applications
Debian Med Integrated software environment for all medical applications Andreas Tille 27. February 2013 When people hear for the first time the term ‘Debian Med’ there are usually two kinds of misconceptions. Let us dispel these in advance, so as to clarify subsequent discussion of the project. People familiar with Debian as a large distribution of Free Software usually imag- ine Debian Med to be some kind of customised derivative of Debian tailored for use in a medical environment. Astonishingly, the idea that such customisation can be done entirely within Debian itself is not well known and the technical term Debian Pure Blend seems to be sufficiently unknown outside of the Debian milieu that many people fail to appreciate the concept correctly. There are no separate repositories like Personal Package Archives (PPA) as introduced by Ubuntu for additional software not belong- ing to the official distribution or something like that – a Debian Pure Blend (as the term ’pure’ implies) is Debian itself and if you have received Debian you have full De- bian Med at your disposal. There are other Blends inside Debian like Debian Science, Debian Edu, Debian GIS and others. People working in the health care professions sometimes acquire another miscon- ception about Debian Med, namely that Debian Med is some kind of software primarily dedicated to managing a doctor’s practice. Sometimes people even assume that people assume the Debian Med team actually develops this software. However, the truth about the Debian Med team is that we are a group of Debian developers hard at work incor- porating existing medical software right into the Debian distribution. -
Steven L. Salzberg
Steven L. Salzberg McKusick-Nathans Institute of Genetic Medicine Johns Hopkins School of Medicine, MRB 459, 733 North Broadway, Baltimore, MD 20742 Phone: 410-614-6112 Email: [email protected] Education Ph.D. Computer Science 1989, Harvard University, Cambridge, MA M.Phil. 1984, M.S. 1982, Computer Science, Yale University, New Haven, CT B.A. cum laude English 1980, Yale University Research Areas: Genomics, bioinformatics, gene finding, genome assembly, sequence analysis. Academic and Professional Experience 2011-present Professor, Department of Medicine and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University. Joint appointments as Professor in the Department of Biostatistics, Bloomberg School of Public Health, and in the Department of Computer Science, Whiting School of Engineering. 2012-present Director, Center for Computational Biology, Johns Hopkins University. 2005-2011 Director, Center for Bioinformatics and Computational Biology, University of Maryland Institute for Advanced Computer Studies 2005-2011 Horvitz Professor, Department of Computer Science, University of Maryland. (On leave of absence 2011-2012.) 1997-2005 Senior Director of Bioinformatics (2000-2005), Director of Bioinformatics (1998-2000), and Investigator (1997-2005), The Institute for Genomic Research (TIGR). 1999-2006 Research Professor, Departments of Computer Science and Biology, Johns Hopkins University 1989-1999 Associate Professor (1996-1999), Assistant Professor (1989-1996), Department of Computer Science, Johns Hopkins University. On leave 1997-99. 1988-1989 Associate in Research, Graduate School of Business Administration, Harvard University. Consultant to Ford Motor Co. of Europe and to N.V. Bekaert (Kortrijk, Belgium). 1985-1987 Research Scientist and Senior Knowledge Engineer, Applied Expert Systems, Inc., Cambridge, MA. Designed expert systems for financial services companies. -
By Katherine E. L. Cox a Dissertation Submitted to Johns Hopkins University in Conformity with the Requirements for the Degree O
EFFECTS OF CONJUGATIVE PLASMIDS ON BACTERIAL HOSTS, AND COEVOLUTION OF HOSTS AND PLASMIDS by Katherine E. L. Cox A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March, 2017 Abstract As agents of horizontal gene transfer, plasmids play a role in the spread of antibiotic resistance and virulence factors, and can carry genetic material between widely divergent species. Typically, plasmids are considered primarily in terms of the genes they carry and the known functions of those genes, such as providing antibiotic resistance or new metabolic pathways. However, plasmids can have a variety of effects on their hosts beyond simply providing new functionality. Interactions between hosts and plasmids can modify host behavior, for example, increasing biofilm formation, modifying of host gene expression, or influencing virulence. We wished to investigate the mechanisms by which plasmids influence host behavior, as well as the evolution of host/plasmid relationships. In this work, we used multiple approaches to explore host/plasmid interactions. We examined a specific plasmid (R1) in great detail, generating a complete sequence and annotation for this plasmid and providing a brief review of the known gene products. We probed the influence of the plasmid-borne traJ gene (a regulator of plasmid transfer) on the neonatal-meningitis clinical isolate E. coli RS218 by measuring changes in the virulence and gene expression of RS218 carrying either wild-type or disrupted copies of traJ. We then examined the evolution of host/plasmid relationships by introducing plasmids into new hosts and coevolving them for 500 generations. -
Impacting the Bioscience Progress by Backporting Software for Bio-Linux
Impacting the bioscience progress by backporting software for Bio-Linux Sasa Paporovic [email protected] v0.9 What is Bio-Linux and what is it good for - also its drawbacks: If someone says to use or to have a Linux this is correct as like it is imprecise. It does not exist a Linux as full functional operating system by itself. What was originally meant by the term Linux was the operating system core[1]. The so called kernel, or in a case of a Linux operating system the Linux kernel. It is originally designed and programmed by Linus Torvalds, who is also today the developer in chef or to say it with his words, he is the “alpha-male” of all developers[2]. Anyway, what we have today are Distributions[3]. It has become common to call them simply “a Linux”. This means that there are organizations out there, mostly private, some funded and some other commercial, which gather all what is needed to design around the Linux kernel a full functional operating system. This targets mostly Software, but also web and service infrastructure. Some of them have a history that is nearly as long as the Linux kernel is alive, like Debian. Some others are younger like Ubuntu and some more others are very young, like Bio-Linux[4]. The last Linux, the Bio-Linux, especially its latest version Bio-Linux 7 we are focusing here[5]. In year 2006 Bio-Linux with the work of Tim Booth[42] and team gives its rising[6] and provide an operating system that was and still specialized in providing a bioinformatic specific software environment for the working needs in this corner of bioscience. -
Operating Systems: from Every Palm to the Entire Cosmos in the 21St Century Lifestyle 5
55 pages including cover Knowledge Digest for IT Community Volume No. 40 | Issue No. 11 | February 2017 ` 50/- Operating ISSN 0970-647X ISSN Systems COVER STORY Computer Operating Systems: From every palm to the entire cosmos in the 21st Century Lifestyle 5 TECHNICAL TRENDS SECURITY CORNER Cyber Threat Analysis with Blockchain : A Disruptive Innovation 9 Memory Forensics 17 www.csi-india.org research FRONT ARTICLE Customized Linux Distributions for Top Ten Alternative Operating Bioinformatics Applications 14 Systems You Should Try Out 20 CSI CALENDAR 2016-17 Sanjay Mohapatra, Vice President, CSI & Chairman, Conf. Committee, Email: [email protected] Date Event Details & Contact Information MARCH INDIACOM 2017, Organized by Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New 01-03, 2017 Delhi http://bvicam.ac.in/indiacom/ Contact : Prof. M. N. Hoda, [email protected], [email protected], Tel.: 011-25275055 0 3-04, 2017 I International Conference on Smart Computing and Informatics (SCI -2017), venue : Anil Neerukonda Institute of Technology & Sciences Sangivalasa, Bheemunipatnam (Mandal), Visakhapatnam, Andhra Pradesh, http://anits.edu.in/ sci2017/, Contact: Prof. Suresh Chandra Satapathy. Mob.: 9000249712 04, 2017 Trends & Innovations for Next Generation ICT (TINICT) - International Summit-2017 Website digit organized by Hyderabad Chapter http://csihyderabad.org/Contact 040-24306345, 9490751639 Email id [email protected] ; [email protected] 24-25, 2017 First International Conference on “Computational Intelligence, Communications, and Business Analytics (CICBA - 2017)” at Calcutta Business School, Kolkata, India. Contact: [email protected]; (M) 94754 13463 / (O) 033 24205209 International Conference on Computational Intelligence, Communications, and Business Analytics (CICBA - 2017) at Calcutta Business School, Kolkata, India. -
COLLABORATIVE COMPUTATIONAL TECHNOLOGIES for BIOMEDICAL RESEARCH Wiley Series on Technologies for the Pharmaceutical Industry Sean Ekins , Series Editor
COLLABORATIVE COMPUTATIONAL TECHNOLOGIES FOR BIOMEDICAL RESEARCH Wiley Series on Technologies for the Pharmaceutical Industry Sean Ekins , Series Editor Editorial Advisory Board Dr. Ren é e J.G. Arnold (ACT LLC, USA) Dr. David D. Christ (SNC Partners LLC, USA) Dr. Michael J. Curtis (Rayne Institute, St Thomas ’ Hospital, UK) Dr. James H. Harwood (Delphi BioMedical Consultants, USA) Dr. Maggie A.Z. Hupcey (PA Consulting, USA) Dr. Dale Johnson (Emiliem, USA) Prof. Tsuguchika Kaminuma, (Tokyo Medical and Dental University, Japan) Dr. Mark Murcko, (Vertex, USA) Dr. Peter W. Swaan (University of Maryland, USA) Dr. Ana Szarfman (FDA, USA) Dr. David Wild (Indiana University, USA) Computational Toxicology: Risk Assessment for Pharmaceutical and Environmental Chemicals Edited by Sean Ekins Pharmaceutical Applications of Raman Spectroscopy Edited by Slobodan Š a š i c´ Pathway Analysis for Drug Discovery: Computational Infrastructure and Applications Edited by Anton Yuryev Drug Effi cacy, Safety, and Biologics Discovery: Enmerging Technologies and Tools Edited by Sean Ekins and Jinghai J. Xu The Engines of Hippocrates: From the Dawn of Medicine to Medical and Pharmaceutical Informatics Barry Robson and O.K. Baek Pharmaceutical Data Mining: Applications for Drug Discovery Edited by Konstantin V. Balakin The Agile Approach to Adaptive Research: Optimizing Effi ciency in Clinical Development Michael J. Rosenberg Pharmaceutical and Biomedical Project Management in a Changing Global Environment Scott D. Babler COLLABORATIVE COMPUTATIONAL TECHNOLOGIES FOR -
Improved Microbial Gene Identification with GLIMMER
4636–4641 Nucleic Acids Research, 1999, Vol. 27, No. 23 © 1999 Oxford University Press Improved microbial gene identification with GLIMMER Arthur L. Delcher1,2,*, Douglas Harmon1,SimonKasif3,OwenWhite4 and Steven L. Salzberg4 1Department of Computer Science, Loyola College in Maryland, Baltimore, MD 21210, USA, 2Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA, 3Department of Electrical Engineering and Computer Science, The University of Illinois at Chicago, Chicago, IL 60607-7053, USA and 4The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA Received July 7, 1999; Revised and Accepted October 17, 1999 ABSTRACT a generalization of Markov chain methods. GLIMMER 1.0 has been used as the gene finder for Borrelia burgdorferi (2), The GLIMMER system for microbial gene identification Treponema pallidum (3), Chlamydia trachomatis (4) and finds ~97–98% of all genes in a genome when Thermotoga maritima (5), and the software is in use at over compared with published annotation. This paper 100 laboratories and institutes. Below we describe the algorithm reports on two new results: (i) significant technical and performance results of GLIMMER 2.0, a gene finder that improvements to GLIMMER that improve its accuracy incorporates several technical improvements to the GLIMMER still further, and (ii) a comprehensive evaluation that 1.0 algorithm. As a result of these improvements, GLIMMER demonstrates that the accuracy of the system is 2.0 has slightly higher sensitivity than GLIMMER 1.0 and is likely to be higher than previously recognized. A much better at resolving overlapping gene calls. The latter significant proportion of the genes missed by the property is especially useful for genomes such as Deinococcus system appear to be hypothetical proteins whose radiodurans, which due to their high GC-content have existence is only supported by the predictions of numerous long open reading frames (ORFs) that can easily lead to other programs. -
The Effect of Machine Learning Algorithms on Metagenomics Gene
The Effect of Machine Learning Algorithms on Metagenomics Gene Prediction Amani Al-Ajlan Achraf El Allali Computer Science Department Computer Science Department College of Computer and Information Sciences College of Computer and Information Sciences King Saud University King Saud University Riyadh, Saudi Arabia Riyadh, Saudi Arabia [email protected] [email protected] analysis of metagenomics is used to discover new diseases and ABSTRACT help preserve human health. For example, studying microbes in our The development of next generation sequencing facilitates the environment can help us control diseases and introduce new study of metagenomics. Computational gene prediction aims to strategies for diagnosis. Recent advances in next generating find the location of genes in a given DNA sequence. Gene sequencing (NGS) technologies have facilitated and improved prediction in metagenomics is a challenging task because of the metagenomics research by generating high-throughput, low-cost short and fragmented nature of the data. Our previous framework sequencing data [6], [21], [29]. minimum redundancy maximum relevance - support vector Sequencing data taken directly from the environment are called machines (mRMR-SVM) produced promising results in metagenomes, and the study of these data is called metagenomics metagenomics gene prediction. In this paper, we review available [30]. Machine learning techniques play an important role in metagenomics gene prediction programs and study the effect of solving many metagenomics problems, such as gene prediction the machine learning approach on gene prediction by altering the taxonomic assignment, and comparative metagenomics analysis underlining machine learning algorithm in our previous [27]. Finding genes and identifying their functions is essential to framework. Overall, SVM produces the highest accuracy based on understanding the environment being studied and to annotating tests performed on a simulated dataset. -
Genome Sequencing and Annotation
An Introduction to Phage Whole- Genome Sequencing and Annotation Jason J. Gill Department of Animal Science Center for Phage Technology Texas A&M University “Phage genomics” • Not a narrowly-defined topic! – Whole-phage genome sequencing – Targeted phage metagenome sequencing – Metagenomics of viral consortia – Prophage mining/annotation Whole phage genome sequencing and annotation Mixed pool of phages Assembled contigs Sequencing and Contig A: 165,220 Phage 1 assembly Phage 2 Contig B: 44,355 Phage 3 Contig C: 42,500 Contig assignment End closure & contig completion (PCR) Annotation (PCR + Sanger sequencing) Phage 1 Phage 1 Contig A = Phage 2 Phage 2 Phage 2 Contig B = Phage 1 Contig C = Phage 3 Phage 3 Phage 3 • Phages can usually be mixed into a single index or pool if they are not similar to each other – Different hosts – Different morphotypes Shotgun sequencing Genomic DNA DNA is fragmented Fragmented DNA is sequenced Sequences are assembled The assembly recapitulates the original order of the genome The consensus sequence is produced from the assembly Sequencing technology summary Technology Read length Quality* Total yield Cost per base Pyrosequencing 400 – 600 bp Moderate Moderate Moderate (Ion Torrent) Illumina 50 – 350 bp High High Low PacBio 2 – 20 kbp Moderate Moderate Moderate Nanopore > 100 kbp ? Low Low-moderate Moderate * Can vary as sequencing chemistries and software improve Overlap-layout-consensus (OLC) assembly • The “classic” method of assembly – Used for assembling long-read data (e.g., Sanger, PacBio and Oxford