Technischen Universität München Winter Semester 2012/2013

TRACKING and DETECTION in Tracking

Slobodan Ilić Agenda

Mean Shift Theory • What is Mean Shift ? • Density Estimation Methods • Deriving the Mean Shift • Mean shift properties

Applications • Clustering • Object Tracking

Mean Shift Tracking Ilic Slobodan Intuitive Description

Objective : Find the densest region Distribution of identical billiard balls Mean Shift Tracking Ilic Slobodan Intuitive Description Region of interest

Objective : Find the densest region Distribution of identical billiard balls Mean Shift Tracking Ilic Slobodan Intuitive Description Region of interest

Center of mass

Objective : Find the densest region Distribution of identical billiard balls Mean Shift Tracking Ilic Slobodan Intuitive Description Region of interest

Center of mass

Mean Shift Objective : Find the densest region vector Distribution of identical billiard balls Mean Shift Tracking Ilic Slobodan Intuitive Description Region of interest

Center of mass

Mean Shift Objective : Find the densest region vector Distribution of identical billiard balls Mean Shift Tracking Ilic Slobodan Intuitive Description Region of interest

Center of mass

Mean Shift Objective : Find the densest region vector Distribution of identical billiard balls Mean Shift Tracking Ilic Slobodan Intuitive Description Region of interest

Center of mass

Mean Shift Objective : Find the densest region vector Distribution of identical billiard balls Mean Shift Tracking Ilic Slobodan Intuitive Description Region of interest

Center of mass

Mean Shift Objective : Find the densest region vector Distribution of identical billiard balls Mean Shift Tracking Ilic Slobodan Intuitive Description Region of interest

Center of mass

Mean Shift Objective : Find the densest region vector Distribution of identical billiard balls Mean Shift Tracking Ilic Slobodan Intuitive Description Region of interest

Center of mass

Mean Shift Objective : Find the densest region vector Distribution of identical billiard balls Mean Shift Tracking Ilic Slobodan Intuitive Description Region of interest

Center of mass

Mean Shift Objective : Find the densest region vector Distribution of identical billiard balls Mean Shift Tracking Ilic Slobodan Intuitive Description Region of interest

Center of mass

Mean Shift Objective : Find the densest region vector Distribution of identical billiard balls Mean Shift Tracking Ilic Slobodan Intuitive Description Region of interest

Center of mass

Mean Shift Objective : Find the densest region vector Distribution of identical billiard balls Mean Shift Tracking Ilic Slobodan Intuitive Description Region of interest

Center of mass

Mean Shift Objective : Find the densest region vector Distribution of identical billiard balls Mean Shift Tracking Ilic Slobodan Intuitive Description Region of interest

Center of mass

Mean Shift Tracking Ilic Slobodan Intuitive Description Region of interest

Center of mass

Mean Shift Tracking Ilic Slobodan What is Mean Shift ?

A tool for: Finding modes in a set of data samples representing an underlying probability density function (PDF) in RN

Mean Shift Tracking Ilic Slobodan What is Mean Shift ?

A tool for: Finding modes in a set of data samples representing an underlying probability density function (PDF) in RN

PDF in feature space

Mean Shift Tracking Ilic Slobodan What is Mean Shift ?

A tool for: Finding modes in a set of data samples representing an underlying probability density function (PDF) in RN

PDF in feature space • Color space

Mean Shift Tracking Ilic Slobodan What is Mean Shift ?

A tool for: Finding modes in a set of data samples representing an underlying probability density function (PDF) in RN

PDF in feature space • Color space • Scale space

Mean Shift Tracking Ilic Slobodan What is Mean Shift ?

A tool for: Finding modes in a set of data samples representing an underlying probability density function (PDF) in RN

PDF in feature space • Color space • Scale space • Actually any feature space you can conceive

Mean Shift Tracking Ilic Slobodan What is Mean Shift ?

A tool for: Finding modes in a set of data samples representing an underlying probability density function (PDF) in RN

PDF in feature space • Color space • Scale space • Actually any feature space you can conceive • …

Mean Shift Tracking Ilic Slobodan What is Mean Shift ?

A tool for: Finding modes in a set of data samples representing an underlying probability density function (PDF) in RN

Data

Mean Shift Tracking Ilic Slobodan What is Mean Shift ?

A tool for: Finding modes in a set of data samples representing an underlying probability density function (PDF) in RN

Non-parametric Density Estimation Discrete PDF Representation

Data

Mean Shift Tracking Ilic Slobodan What is Mean Shift ?

A tool for: Finding modes in a set of data samples representing an underlying probability density function (PDF) in RN

Non-parametric Density Estimation Discrete PDF Representation

Data

Non-parametric Density GRADIENT Estimation (Mean Shift) PDF Analysis Mean Shift Tracking Ilic Slobodan Non-Parametric Density Estimation

Assumption : The data points are sampled from an underlying PDF

Assumed Underlying PDF Real Data Samples

Mean Shift Tracking Ilic Slobodan Non-Parametric Density Estimation

Assumption : The data points are sampled from an underlying PDF

Assumed Underlying PDF Real Data Samples

Mean Shift Tracking Ilic Slobodan Non-Parametric Density Estimation

Assumption : The data points are sampled from an underlying PDF

Assumed Underlying PDF Real Data Samples

Mean Shift Tracking Ilic Slobodan Non-Parametric Density Estimation

Assumption : The data points are sampled from an underlying PDF

Assumed Underlying PDF Real Data Samples

Mean Shift Tracking Ilic Slobodan Non-Parametric Density Estimation

Assumption : The data points are sampled from an underlying PDF

Assumed Underlying PDF Real Data Samples

Mean Shift Tracking Ilic Slobodan Non-Parametric Density Estimation

Assumption : The data points are sampled from an underlying PDF

Data point density implies PDF value !

Assumed Underlying PDF Real Data Samples

Mean Shift Tracking Ilic Slobodan Non-Parametric Density Estimation

Assumed Underlying PDF Real Data Samples

Mean Shift Tracking Ilic Slobodan Non-Parametric Density Estimation

Assumed Underlying PDF Real Data Samples

Mean Shift Tracking Ilic Slobodan Non-Parametric Density Estimation

Assumed Underlying PDF Real Data Samples

Mean Shift Tracking Ilic Slobodan Non-Parametric Density Estimation

Assumed Underlying PDF Real Data Samples

Mean Shift Tracking Ilic Slobodan Non-Parametric? Density Estimation

Assumed Underlying PDF Real Data Samples

Mean Shift Tracking Ilic Slobodan Parametric Density

Assumption : The data points are sampled from an underlying PDF

Assumed Underlying PDF Real Data Samples

Mean Shift Tracking Ilic Slobodan Parametric Density

Assumption : The data points are sampled from an underlying PDF µ

Assumed Underlying PDF Real Data Samples

Mean Shift Tracking Ilic Slobodan Parametric Density

Assumption : The data points are sampled from an underlying PDF µ

Estimate

Assumed Underlying PDF Real Data Samples

Mean Shift Tracking Ilic Slobodan Density Estimation Parzen Windows - Function Forms

A function of some finite number of data points x1…xn

Data

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation Parzen Windows - Function Forms

A function of some finite number of data points x1…xn

Data

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation Parzen Windows - Function Forms

A function of some finite number of data points x1…xn

In practice one uses the forms: Data

Same function on each dimension

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation Parzen Windows - Function Forms

A function of some finite number of data points x1…xn

In practice one uses the forms: Data

or

Same function on each dimension Function of vector length only

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation Various Kernels A function of some finite number of

data points x1…xn

Data

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation Various Kernels A function of some finite number of

data points x1…xn

Data

Examples:

• Epanechnikov Kernel

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation Various Kernels A function of some finite number of

data points x1…xn

Data

Examples:

• Epanechnikov Kernel

• Uniform Kernel

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation Various Kernels A function of some finite number of

data points x1…xn

Data

Examples:

• Epanechnikov Kernel

• Uniform Kernel

• Normal Kernel

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation Gradient

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation Gradient

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation Gradient

Give up estimating the PDF ! Estimate ONLY the gradient

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation Gradient

Give up estimating the PDF ! Estimate ONLY the gradient

Using the Kernel form:

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation Gradient

Give up estimating the PDF ! Estimate ONLY the gradient

Using the Kernel form:

Size of window

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation Gradient

Give up estimating the PDF ! Estimate ONLY the gradient

Using the Kernel form: We get :

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation Gradient

Mean Shift Tracking Ilic Slobodan Kernel Density Estimation Gradient

Mean Shift Tracking Ilic Slobodan Computing The Mean Shift

Mean Shift Tracking Ilic Slobodan Computing The Mean Shift

Mean Shift Tracking Ilic Slobodan Computing The Mean Shift

Mean Shift Tracking Ilic Slobodan Computing The Mean Shift

Yet another Kernel density estimation !

Mean Shift Tracking Ilic Slobodan Computing The Mean Shift

Yet another Kernel density estimation !

Mean Shift Tracking Ilic Slobodan Computing The Mean Shift

Yet another Kernel density estimation !

Mean Shift Tracking Ilic Slobodan Computing The Mean Shift

Mean Shift Tracking Ilic Slobodan Computing The Mean Shift

Mean Shift Tracking Ilic Slobodan Computing The Mean Shift

Mean Shift Tracking Ilic Slobodan Computing The Mean Shift

Simple Mean Shift procedure: • Compute mean shift vector

Mean Shift Tracking Ilic Slobodan Computing The Mean Shift

Simple Mean Shift procedure: • Compute mean shift vector

•Translate the Kernel window by m(x) Mean Shift Tracking Ilic Slobodan Mean Shift Detection

Mean Shift Tracking Ilic Slobodan Mean Shift Mode Detection

What happens if we reach a saddle point ?

Mean Shift Tracking Ilic Slobodan Mean Shift Mode Detection

What happens if we reach a saddle point ?

Perturb the mode position and check if we return back

Mean Shift Tracking Ilic Slobodan Mean Shift Mode Detection

What happens if we reach a saddle point ?

Perturb the mode position and check if we return back

Mean Shift Tracking Ilic Slobodan Mean Shift Mode Detection

What happens if we reach a saddle point ?

Perturb the mode position and check if we return back

Mean Shift Tracking Ilic Slobodan Mean Shift Mode Detection

What happens if we reach a saddle point ?

Perturb the mode position and check if we return back

Updated Mean Shift Procedure:

Mean Shift Tracking Ilic Slobodan Mean Shift Mode Detection

What happens if we reach a saddle point ?

Perturb the mode position and check if we return back

Updated Mean Shift Procedure: • Find all modes using the Simple Mean Shift Procedure

Mean Shift Tracking Ilic Slobodan Mean Shift Mode Detection

What happens if we reach a saddle point ?

Perturb the mode position and check if we return back

Updated Mean Shift Procedure: • Find all modes using the Simple Mean Shift Procedure • Prune modes by perturbing them (find saddle points and plateaus)

Mean Shift Tracking Ilic Slobodan Mean Shift Mode Detection

What happens if we reach a saddle point ?

Perturb the mode position and check if we return back

Updated Mean Shift Procedure: • Find all modes using the Simple Mean Shift Procedure • Prune modes by perturbing them (find saddle points and plateaus) • Prune nearby – take highest mode in the window Mean Shift Tracking Ilic Slobodan Mean Shift Properties

Mean Shift Tracking Ilic Slobodan Mean Shift Properties

• Automatic convergence speed – the mean shift vector size depends on the gradient itself.

• Near maxima, the steps are small and refined

Mean Shift Tracking Ilic Slobodan Mean Shift Properties

• Automatic convergence speed – the mean shift vector size depends on the gradient itself. Adaptive Gradient Ascent • Near maxima, the steps are small and refined

Mean Shift Tracking Ilic Slobodan Mean Shift Properties

• Automatic convergence speed – the mean shift vector size depends on the gradient itself. Adaptive Gradient Ascent • Near maxima, the steps are small and refined

• Convergence is guaranteed for infinitesimal steps only infinitely convergent, (therefore set a lower bound)

Mean Shift Tracking Ilic Slobodan Mean Shift Properties

• Automatic convergence speed – the mean shift vector size depends on the gradient itself. Adaptive Gradient Ascent • Near maxima, the steps are small and refined

• Convergence is guaranteed for infinitesimal steps only infinitely convergent, (therefore set a lower bound)

• For Uniform Kernel ( ), convergence is achieved in a finite number of steps

• Normal Kernel ( ) exhibits a smooth trajectory, but is slower than Uniform Kernel ( ).

Mean Shift Tracking Ilic Slobodan Real Modality Analysis

Mean Shift Tracking Ilic Slobodan Real Modality Analysis

Run the procedure in parallel Mean Shift Tracking Ilic Slobodan Real Modality Analysis

Run the procedure in parallel Mean Shift Tracking Ilic Slobodan Real Modality Analysis

The blue data points were traversed by the windows towards the mode Mean Shift Tracking Ilic Slobodan Real Modality Analysis An example

Window tracks signify the steepest ascent directions Mean Shift Tracking Ilic Slobodan Mean Shift Strengths & Weaknesses

Mean Shift Tracking Ilic Slobodan Mean Shift Strengths & Weaknesses

Strengths :

Mean Shift Tracking Ilic Slobodan Mean Shift Strengths & Weaknesses

Strengths :

• Application independent tool

Mean Shift Tracking Ilic Slobodan Mean Shift Strengths & Weaknesses

Strengths :

• Application independent tool • Suitable for real data analysis

Mean Shift Tracking Ilic Slobodan Mean Shift Strengths & Weaknesses

Strengths :

• Application independent tool • Suitable for real data analysis • Does not assume any prior shape (e.g. elliptical) on data clusters

Mean Shift Tracking Ilic Slobodan Mean Shift Strengths & Weaknesses

Strengths :

• Application independent tool • Suitable for real data analysis • Does not assume any prior shape (e.g. elliptical) on data clusters • Can handle arbitrary feature spaces

Mean Shift Tracking Ilic Slobodan Mean Shift Strengths & Weaknesses

Strengths :

• Application independent tool • Suitable for real data analysis • Does not assume any prior shape (e.g. elliptical) on data clusters • Can handle arbitrary feature spaces • Only ONE parameter to choose

Mean Shift Tracking Ilic Slobodan Mean Shift Strengths & Weaknesses

Strengths :

• Application independent tool • Suitable for real data analysis • Does not assume any prior shape (e.g. elliptical) on data clusters • Can handle arbitrary feature spaces • Only ONE parameter to choose • h (window size) has a physical meaning, unlike K-Means

Mean Shift Tracking Ilic Slobodan Mean Shift Strengths & Weaknesses

Strengths : Weaknesses : • Application independent tool • Suitable for real data analysis • Does not assume any prior shape (e.g. elliptical) on data clusters • Can handle arbitrary feature spaces • Only ONE parameter to choose • h (window size) has a physical meaning, unlike K-Means

Mean Shift Tracking Ilic Slobodan Mean Shift Strengths & Weaknesses

Strengths : Weaknesses :

• Application independent tool • The window size (bandwidth • Suitable for real data analysis selection) is not trivial • Does not assume any prior shape (e.g. elliptical) on data clusters • Can handle arbitrary feature spaces • Only ONE parameter to choose • h (window size) has a physical meaning, unlike K-Means

Mean Shift Tracking Ilic Slobodan Mean Shift Strengths & Weaknesses

Strengths : Weaknesses :

• Application independent tool • The window size (bandwidth • Suitable for real data analysis selection) is not trivial • Does not assume any prior shape • Inappropriate window size (e.g. elliptical) on data clusters can cause modes to be • Can handle arbitrary feature merged, or generate additional spaces “shallow” modes • Only ONE parameter to choose • h (window size) has a physical meaning, unlike K-Means

Mean Shift Tracking Ilic Slobodan Mean Shift Strengths & Weaknesses

Strengths : Weaknesses :

• Application independent tool • The window size (bandwidth • Suitable for real data analysis selection) is not trivial • Does not assume any prior shape • Inappropriate window size (e.g. elliptical) on data clusters can cause modes to be • Can handle arbitrary feature merged, or generate additional spaces “shallow” modes • Only ONE parameter to choose • Use adaptive window • h (window size) has a physical size meaning, unlike K-Means

Mean Shift Tracking Ilic Slobodan Mean Shift Applications

Mean Shift Tracking Ilic Slobodan Clustering

Cluster : All data points in the attraction basin of a mode

Mean Shift : A robust Approach Toward Feature Space Analysis, by Comaniciu, Meer

Mean Shift Tracking Ilic Slobodan Clustering

Cluster : All data points in the attraction basin of a mode

Attraction basin : the region for which all trajectories lead to the same mode

Mean Shift : A robust Approach Toward Feature Space Analysis, by Comaniciu, Meer

Mean Shift Tracking Ilic Slobodan Clustering

Cluster : All data points in the attraction basin of a mode

Attraction basin : the region for which all trajectories lead to the same mode

Mean Shift : A robust Approach Toward Feature Space Analysis, by Comaniciu, Meer

Mean Shift Tracking Ilic Slobodan Clustering

Cluster : All data points in the attraction basin of a mode

Attraction basin : the region for which all trajectories lead to the same mode

Mean Shift : A robust Approach Toward Feature Space Analysis, by Comaniciu, Meer

Mean Shift Tracking Ilic Slobodan Clustering

Cluster : All data points in the attraction basin of a mode

Attraction basin : the region for which all trajectories lead to the same mode

Mean Shift : A robust Approach Toward Feature Space Analysis, by Comaniciu, Meer

Mean Shift Tracking Ilic Slobodan Clustering Synthetic Examples

Simple Modal Structures

Mean Shift Tracking Ilic Slobodan Clustering Synthetic Examples

Simple Modal Structures

Complex Modal Structures Mean Shift Tracking Ilic Slobodan Clustering Real Example

Feature space: L*u*v representation

Mean Shift Tracking Ilic Slobodan Clustering Real Example

Feature space: Initial window L*u*v representation centers

Modes found Modes after Final clusters pruning

Mean Shift Tracking Ilic Slobodan Clustering Real Example

L*u*v space representation

Mean Shift Tracking Ilic Slobodan Clustering Real Example

2D (L*u) space Final clusters representation

Mean Shift Tracking Ilic Slobodan Clustering Real Example

2D (L*u) space Final clusters representation

Not all trajectories in the attraction basin reach the same mode

Mean Shift Tracking Ilic Slobodan Non-Rigid Object Tracking

… …

Mean Shift Tracking Ilic Slobodan Non-Rigid Object Tracking

Real-Time Object-Based Driver Video Surveillance Assistance Compression

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking General Framework: Target Representation

… Current … frame Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking General Framework: Target Representation

Choose a reference model in the current frame

… Current … frame Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking General Framework: Target Representation

Choose a reference Choose a model in the feature space current frame

… Current … frame Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking General Framework: Target Representation

Choose a Represent the reference Choose a model in the model in the feature space chosen feature current frame space

… Current … frame Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking General Framework: Target Representation

Model Candidate … Current … frame Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking General Framework: Target Representation Start from the position of the model in the current frame

Model Candidate … Current … frame Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking General Framework: Target Representation Start from the Search in the position of the model’s model in the neighborhood in current frame next frame

Model Candidate … Current … frame Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking General Framework: Target Representation Start from the Search in the Find best position of the model’s candidate by model in the neighborhood in maximizing a current frame next frame similarity func.

Model Candidate … Current … frame Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking General Framework: Target Representation Start from the Search in the Find best position of the model’s candidate by model in the neighborhood in maximizing a current frame next frame similarity func.

Repeat the same process in the next pair of frames

Model Candidate … Current … frame Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking General Framework: Target Representation

Choose a reference target model

Kernel Based Object Tracking, by Comaniniu, Ramesh, Meer Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking General Framework: Target Representation

Choose a Choose a reference feature space target model

Quantized Color Space

Kernel Based Object Tracking, by Comaniniu, Ramesh, Meer Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking General Framework: Target Representation

Choose a Represent the Choose a reference model by its feature space target model PDF in the feature space

0.30

Quantized 0.23

Color Space 0.15 Probability 0.08

0 1 2 3 . . . m color Kernel Based Object Tracking, by Comaniniu, Ramesh, Meer Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking PDF Representation

Target Model Target Candidate (centered at 0) (centered at y)

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking PDF Representation

Target Model Target Candidate (centered at 0) (centered at y)

0.30

0.23

0.15 Probability 0.08

0 1 2 3 . . . m color

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking PDF Representation

Target Model Target Candidate (centered at 0) (centered at y)

0.30 0.30

0.23 0.23

0.15 0.15 Probability Probability 0.08 0.08

0 0 1 2 3 . . . m 1 2 3 . . . m color color

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking PDF Representation

Target Model Target Candidate (centered at 0) (centered at y)

0.30 0.30

0.23 0.23

0.15 0.15 Probability Probability 0.08 0.08

0 0 1 2 3 . . . m 1 2 3 . . . m color color

Similarity Function: Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Finding the PDF of the target model

model Target pixel locations

0

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Finding the PDF of the target model

model Target pixel locations

0 A differentiable, isotropic, convex, monotonically decreasing kernel • Peripheral pixels are affected by occlusion and background interference

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Finding the PDF of the target model

model Target pixel locations

0 A differentiable, isotropic, convex, monotonically decreasing kernel • Peripheral pixels are affected by occlusion and background interference

The color bin index (1..m) of pixel x

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Finding the PDF of the target model

model Target pixel locations

0 A differentiable, isotropic, convex, monotonically decreasing kernel • Peripheral pixels are affected by occlusion and background interference

The color bin index (1..m) of pixel x

Probability of feature u in model

0.30

0.23

0.15 Probability 0.08

0 1 2 3 . . . m Mean Shift Tracking color Ilic Slobodan Mean-Shift Object Tracking Finding the PDF of the target model

model Target pixel locations

0 A differentiable, isotropic, convex, monotonically decreasing kernel • Peripheral pixels are affected by occlusion and background interference

The color bin index (1..m) of pixel x

Probability of feature u in model

0.30

0.23 Normalization 0.15 Pixel weight factor Probability 0.08

0 1 2 3 . . . m Mean Shift Tracking color Ilic Slobodan Mean-Shift Object Tracking Finding the PDF of the target model

model candidate Target pixel locations

0 y A differentiable, isotropic, convex, monotonically decreasing kernel • Peripheral pixels are affected by occlusion and background interference

The color bin index (1..m) of pixel x

Probability of feature u in model Probability of feature u in candidate

0.30 0.30

0.23 0.23 Normalization 0.15 Pixel weight 0.15 factor Probability Probability 0.08 0.08

0 0 1 2 3 . . . m 1 2 3 . . . m Mean Shift Tracking color color Ilic Slobodan Mean-Shift Object Tracking Finding the PDF of the target model

model candidate Target pixel locations

0 y A differentiable, isotropic, convex, monotonically decreasing kernel • Peripheral pixels are affected by occlusion and background interference

The color bin index (1..m) of pixel x

Probability of feature u in model Probability of feature u in candidate

0.30 0.30

0.23 0.23 Normalization Normalization 0.15 Pixel weight 0.15 Pixel weight factor factor Probability Probability 0.08 0.08

0 0 1 2 3 . . . m 1 2 3 . . . m Mean Shift Tracking color color Ilic Slobodan Mean-Shift Object Tracking Similarity Function Target model:

Target candidate:

Similarity function:

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Similarity Function Target model:

Target candidate:

Similarity function: The Bhattacharyya Coefficient 1

1

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Similarity Function Target model:

Target candidate:

Similarity function: The Bhattacharyya Coefficient 1

1

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Target Localization Algorithm

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Target Localization Algorithm Start from the position of the model in the current frame

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Target Localization Algorithm Start from the Search in the position of the model’s model in the neighborhood in current frame next frame

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Target Localization Algorithm Start from the Search in the Find best position of the model’s candidate by model in the neighborhood in maximizing a current frame next frame similarity func.

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Approximating the Similarity Function

Model location: Candidate location:

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Approximating the Similarity Function

Model location: Candidate location:

Linear approx.

(around y0)

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Approximating the Similarity Function

Model location: Candidate location:

Linear approx.

(around y0)

Independent of y

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Approximating the Similarity Function

Model location: Candidate location:

Linear approx.

(around y0)

Independent of y

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Approximating the Similarity Function

Model location: Candidate location:

Linear approx.

(around y0)

Independent of y

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Approximating the Similarity Function

Model location: Candidate location:

Linear approx.

(around y0)

Independent of y

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Approximating the Similarity Function

Model location: Candidate location:

Linear approx.

(around y0)

Independent of y

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Approximating the Similarity Function

Model location: Candidate location:

Linear approx.

(around y0)

Independent of y

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Approximating the Similarity Function

Model location: Candidate location:

Linear approx.

(around y0)

Independent of y Density estimate! (as a function of y)

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Maximizing the Similarity Function

The mode of = sought maximum

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Maximizing the Similarity Function

The mode of = sought maximum

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Maximizing the Similarity Function

The mode of = sought maximum

Important Assumption:

The target representation provides sufficient discrimination

One mode in the searched neighborhood

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Applying Mean-Shift

The mode of = sought maximum

Original Find mode of using Mean-Shift:

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Applying Mean-Shift

The mode of = sought maximum

Original Find mode of using Mean-Shift:

Extended Find mode of using Mean-Shift:

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Applying Mean-Shift

The mode of = sought maximum

Original Find mode of using Mean-Shift:

Extended Find mode of using Mean-Shift:

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking About Kernels and Profiles

Extended Find mode of using Mean-Shift:

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking About Kernels and Profiles A special class of radially symmetric kernels: The profile of kernel K

Extended Find mode of using Mean-Shift:

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking About Kernels and Profiles A special class of radially symmetric kernels: The profile of kernel K

Extended Find mode of using Mean-Shift:

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Choosing the Kernel A special class of radially symmetric kernels:

Epanechnikov kernel:

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Choosing the Kernel A special class of radially symmetric kernels:

Epanechnikov kernel: Uniform kernel:

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Choosing the Kernel A special class of radially symmetric kernels:

Epanechnikov kernel: Uniform kernel:

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Adaptive Scale Problem : The scale of The scale (h) the target of the kernel changes in must be time adapted

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Adaptive Scale Problem : The scale of The scale (h) the target of the kernel changes in must be time adapted

Solution : Run localization 3 times with different h

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Adaptive Scale Problem : The scale of The scale (h) the target of the kernel changes in must be time adapted

Solution : Run localization 3 times with different h

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Adaptive Scale Problem : The scale of The scale (h) the target of the kernel changes in must be time adapted

Solution : Run localization 3 times with different h

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Adaptive Scale Problem : The scale of The scale (h) the target of the kernel changes in must be time adapted

Solution : Run localization 3 times with different h

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Adaptive Scale Problem : The scale of The scale (h) the target of the kernel changes in must be time adapted

Solution : Run Choose h that localization 3 achieves times with maximum different h similarity

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Results

Feature space: 16×16×16 quantized RGB Target: manually selected on 1st frame Average mean-shift iterations: 4

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Results

Partial occlusion Distraction Motion blur

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Results

Partial occlusion Distraction Motion blur

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking Results

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking The Scale Selection Problem Kernel too big

Kernel too small

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking The Scale Selection Problem Kernel too big

h mustn’t get Poor too big or too localization Kernel too small small!

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking The Scale Selection Problem Kernel too big

h mustn’t get Poor too big or too localization Kernel too small small!

In uniformly Problem colored regions, : similarity is invariant to h

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking The Scale Selection Problem Kernel too big

h mustn’t get Poor too big or too localization Kernel too small small!

In uniformly Smaller h may Problem colored regions, achieve better similarity is : similarity invariant to h

Mean Shift Tracking Ilic Slobodan Mean-Shift Object Tracking The Scale Selection Problem Kernel too big

h mustn’t get Poor too big or too localization Kernel too small small!

In uniformly Smaller h may Nothing keeps h Problem colored regions, achieve better from shrinking similarity is : similarity too small! invariant to h

Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Motivation

Spatial Simultaneou localization s localization for several in space and scales scale Previous method This method Mean-shift Blob Tracking through Scale Space, by R. Collins Mean Shift Tracking Ilic Slobodan Lindeberg’s Theory Selecting the best scale for describing image features

y

x

σ

Scale-space Differential operator 50 strongest representation applied responses Mean Shift Tracking Ilic Slobodan Lindeberg’s Theory Selecting the best scale for describing image features

Mean Shift Tracking Ilic Slobodan Lindeberg’s Theory Selecting the best scale for describing image features

Scale-space representation Mean Shift Tracking Ilic Slobodan Lindeberg’s Theory Selecting the best scale for describing image features

Scale-space Laplacian of representation Gaussian (LOG) Mean Shift Tracking Ilic Slobodan Lindeberg’s Theory Selecting the best scale for describing image features 2D LOG filter with scale σ

Laplacian of Gaussian (LOG) Mean Shift Tracking Ilic Slobodan Lindeberg’s Theory Selecting the best scale for describing image features 2D LOG filter with scale σ

3D scale-space representation

y

x

σ

Mean Shift Tracking Ilic Slobodan Lindeberg’s Theory Selecting the best scale for describing image features 2D LOG filter with scale σ

3D scale-space representation

y

x

σ

Best features are at (x,σ) that maximize L Mean Shift Tracking Ilic Slobodan Lindeberg’s Theory Multi-Scale Process

Original Image

Mean Shift Tracking Ilic Slobodan Lindeberg’s Theory Multi-Scale Feature Selection Process

3D scale-space function Original Image

Convolve

Mean Shift Tracking Ilic Slobodan Lindeberg’s Theory Multi-Scale Feature Selection Process

250 strongest responses 3D scale-space (Large circle = large scale) function Original Image

Convolve Maximize

Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Approximating LOG using DOG

2D LOG filter 2D DOG filter with scale σ with scale σ

Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Approximating LOG using DOG

2D Gaussian 2D Gaussian 2D LOG filter 2D DOG filter with μ=0 and with μ=0 and with scale σ with scale σ scale σ scale 1.6σ

Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Approximating LOG using DOG

2D Gaussian 2D Gaussian 2D LOG filter 2D DOG filter with μ=0 and with μ=0 and with scale σ with scale σ scale σ scale 1.6σ

Why DOG? • Gaussian pyramids are created faster • Gaussian can be used as a mean-shift kernel

Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Approximating LOG using DOG

2D Gaussian 2D Gaussian 2D LOG filter 2D DOG filter with μ=0 and with μ=0 and with scale σ with scale σ scale σ scale 1.6σ

Why DOG? • Gaussian pyramids are created faster • Gaussian can be used as a mean-shift kernel DOG filters at 3D spatial multiple scales kernel

Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Approximating LOG using DOG

2D Gaussian 2D Gaussian 2D LOG filter 2D DOG filter with μ=0 and with μ=0 and with scale σ with scale σ scale σ scale 1.6σ

Why DOG? • Gaussian pyramids are created faster • Gaussian can be used as a mean-shift kernel DOG filters at 3D spatial multiple scales kernel

Scale-space filter bank

Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Using Lindeberg’s Theory

Recall:

Model: at

Candidate:

Color bin:

The likelihood Pixel weight: that each candidate pixel belongs to the target Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Using Lindeberg’s Theory

Weight image

Recall:

Model: at

Candidate:

Color bin:

The likelihood Pixel weight: that each candidate pixel belongs to the target Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Using Lindeberg’s Theory

3D spatial kernel Weight image (DOG) Recall: Centered at current location Model: at and scale

Candidate:

Color bin:

The likelihood Pixel weight: that each candidate pixel belongs to the target Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Using Lindeberg’s Theory

1D scale kernel (Epanechnikov) 3D spatial kernel Weight image (DOG) Recall: Centered at current location Model: at and scale

Candidate:

Color bin:

The likelihood Pixel weight: that each candidate pixel belongs to the target Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Using Lindeberg’s Theory

1D scale kernel 3D scale-space (Epanechnikov) representation 3D spatial kernel Weight image (DOG) Recall: Modes are blobs in Centered at current location the scale-space at Model: and scale neighborhood Candidate:

Color bin:

The likelihood Pixel weight: that each candidate pixel belongs to the target Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Using Lindeberg’s Theory

1D scale kernel 3D scale-space (Epanechnikov) representation 3D spatial kernel Weight image (DOG) Recall: Modes are blobs in Centered at current location the scale-space at Model: and scale neighborhood Candidate:

Color bin: Need a mean-shift

The likelihood procedure that finds Pixel weight: that each local modes in candidate pixel belongs to the E(x,σ) target Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Example

Image of 3 blobs

A slice through the 3D scale- space representation

Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Applying Mean-Shift

Use interleaved spatial/scale mean-shift Scale Spatial stage: stage: Fix σ and Fix x and look for the look for the best x best σ

Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Applying Mean-Shift

Use interleaved spatial/scale mean-shift Scale Spatial stage: stage: Fix σ and Fix x and look for the look for the best x best σ

Iterate stages until convergence of x and σ Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Applying Mean-Shift

Use interleaved spatial/scale mean-shift Scale Spatial stage: stage: Fix σ and Fix x and look for the look for the best x best σ

σ

σopt

Iterate stages σ until 0 convergence of x x0 xopt x and σ Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Applying Mean-Shift

Use interleaved spatial/scale mean-shift Scale Spatial stage: stage: Fix σ and Fix x and look for the look for the best x best σ

σ

σopt

Iterate stages σ until 0 convergence of x x0 xopt x and σ Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Applying Mean-Shift

Use interleaved spatial/scale mean-shift Scale Spatial stage: stage: Fix σ and Fix x and look for the look for the best x best σ

σ

σopt

Iterate stages σ until 0 convergence of x x0 xopt x and σ Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Results Fixed-scale

Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Results Fixed-scale

± 10% scale adaptation

Mean Shift Tracking Ilic Slobodan Tracking Through Scale Space Results Fixed-scale

± 10% scale adaptation

Tracking through scale space

Mean Shift Tracking Ilic Slobodan