D-19374 Dorf-Friedrichsruhe). Mecklenburg, E

Total Page:16

File Type:pdf, Size:1020Kb

D-19374 Dorf-Friedrichsruhe). Mecklenburg, E Odonatological Abstracts 1996 D-19374 Dorf-Friedrichsruhe). 2 The reserve (surface over 320 km ) is situated in the (15517) GOHLERT, T, 1996. Bemerkenswerte faunis- Seenplatte of central Mecklenburg, E Germany. tische Nachweise in der Radeburger Heide. Veroff. Among the unusually numerous aquatic habitats Mas. WLausilz — of various there also lakes of Kamenz 19: 89-90. (Schweriner types, are over 50 a surface 1 ha. The odon. Str. 30, D-01067 Dresden). exceeding mapping was conducted at Lestes barbarus and Orthetrum coerulescens are during Apr.-Sept. 1996, 14 localities; listed from 32 12 of these red-listed in the locality nr Grossdiltmansdorf, Sax- spp. were recorded, are E The fauna is reviewed ony, Germany. Mecklenburg-Vorpommern. and the status and habitat requirements of the (15518) ROLFF, J., 1996. Experimented Untersuc- threatened spp. are outlined in detail. hungen zum Wirt-Parasit-System Coenagrionpuel- 1997 la (L.) (Odonata: Coenagrionidae) Arrenurus spp. (Acari: Arrenuridae). DiplArb. Zool. Inst., Tech. - Univ. 95 3 excl. (15520) ZORMAN, I., 1997. Vila - Braunschweig. pp., graphs (Dept Bagari. [Villa Anim. & Plant Biol., Univ. Sheffield,Sheffield,S10 Bagan], Mladinska knjiga, Ljubljana. 265 pp. ISBN 86-11-14975-0. 2TN, UK). (Slovene). A The study was conducted at Eckemkemp (Rieseberg, novel, framing a family story in Slovenia of Au- thor’s distr. Fleimstedt, Germany) in May and July 1995. It generation: on an old, upper middle class the is shown that the ectoparasitic A. cuspidatormites family, Bagaris, that went through the horrors return to water at the moment of C. puellaovipo- of communist revolution; some of its members sition. The infestation of the dragonflyby the mite were killed, those who survived were expropriated. was monitored the Their home, “Villa Bagari”, survived throughout emergence period. many genera- On of tions and various social and but 3 (out 18) days, the $ $ were significantly political systems, its restoration more parasitised to the is not more possi- than 3 6. Based on the intensity family any of its influence ble. Therefore, this is novel and violent ectoparasiteinfestation, on the drag- a ona tragic destruction of onfly populationdynamics is assessed. With the data a congruent, from a long historical tradition The gathered,asimple model could be constructed that grown family. opening chapter (pp. is “The birth the simulates the success of the return of mites to the 5-55) titled, of dragonfly The habitat, is used in metaphorical sense: bom for reproduction dependingon the life history dragonfly splendid of the host. light, destined to soon collapse into the darkness. (15519) ZIMMER, D., H. ABEL & M. HIPPKE, 1996. Faunistische Untersuchungen im Rahmen des 1998 Life-Projektes im Nalurpark NossentinerlSchwinzer (15521) CONTARINI, Heide. Erfassung Libellen. Okol. u. PlanungAbel & E„ 1998. Inselti della provin- Dorf-Friedrichsruhe. 46 - cia di Ravenna. Edizioni Zimmer, pp. (Dorfstr. 26, Mistral, Ravenna. 175 pp. 314 Odonatological Abstracts ISBN none. of meters) movement behaviours could be used to A generalpresentation ofinsect life of the Ravenna predict broader scale patterns of distribution on prov., Italy. 7 odon. spp. are dealt with on pp. 69-73. heterogeneous landscapes. The models were tai- A provincialchecklist is not provided. lored by empirical data on Calopteryx movements on 3 types of landscapes that differed in amount (15522) GLASER. E., 1998. Besiedlung von neu- of forest habitat. Surveys of C. aequabilis and C. geschaffenen Gewassern in der Chemnitzaue bei maculata demonstrated that both spp. occupied Heinersdorf durch Libellen. Fische und Lurche. streams and forest habitats on forested and par- Veroff. Mus. Nalurk. Chemnitz 21: 131-138. - (Al- tially forested landscapes, but were found primarily fred-Neubert-Str. 8, D-09123 Chemnitz). along streams on nonforested landscapes. Simula- A commented list of 27 odon, 6 spp„ occurring at tion models, whose parameters were derived using man-made (winter 1994/1995) ponds in the Chem- empirical movement data for both spp., showed that nitz Oxbow. Saxony, E Germany. fine-scale movement behaviours could be used to broader scale predict, on average, dispersion across 1999 of but that is a range landscapestructures, was nec- include information about broader scale essary to (15523) BULAnKOVA, E„ 1999. Changes in the landscape features in those models. In particular, dragonfly fauna of the Danubian Lowland in the the probability of crossing a patch boundary (patch last thirty years. Entomofauna carputhica 11: 1-5. boundary permeability) and the rate of movement (Slovak, with Engl. s.). — (Dept Ecol., Comenius in a given habitat patch (patch viscosity) were im- Fac. Univ., Nat. Sci., Mlynskadolina B-2, SK-84215 portant determinants of Calopteryx dispersion on Bratislava). heterogeneous landscapes. In other words, the re- The 1938-1968 and 1990-1997 sults that arise assemblages arecom- suggest Calopteryx dispersions may 50 recorded in the but 37 function of behavioural pared; spp. were past, only as a responses to spatial - OA were evidenced recently. Among the missingspp. are patterns at multiple scales. See also 13170. Coenagrionhastulatum,C. mercuriale,C, omatum, C.scitulum, Nehalennia speciosa, and Leucorrhinia (15526) MIFSUD, D., 2000. Present knowledge of the pectoralis. Since 1990 arenew to the area: Epitheca entomofauna of the Maltese Islands. Entomologica bimaculata, Somatochlora mctallica, Orthetrum basil. 22:75-86. — (Naturh. Mus., Augustinergasse brunneum and Sympetrum pedemontanum. The 2, CH-4001 Basel). recent expansion of Crocothemis erythraeawas also The odon, fauna was studied by A. Valletta, who noticed. recorded 10 82: - spp. (1949, Entomologist 85-87; 1957, ibidem 90: 306-307).Additional information J. (15524) HASSEL, J., 1999. Materialien zu Natur- on some of these was provided by Cilia (1972, schutz und Landschaftspjiege:Das Nalurschutzgebiet Maltese Naturalist 1[3]: 31-33). "Am Spietzberg". Staat. Umweltfachamt, Leipzig, 36 pp. — (Publishers: Postfach 241215, D-04332 2001 Leipzig). Includes (pp. 23-24) a commented checklist of 20 (15527) BUCZYNSKI, P„ 2001. Wazki (Insecta: Odo- odon. spp, recorded from the Reserve; - Saxony, nata) torfowisk wysokich i przejsciowych srodkowo- E Germany. -wschodniej Polski. — [Dragonflies (Insecta: Odo- nata) ofrised and transitional hogs in middle-eastern 2000 Poland ]. Ph.D. diss., Wydzial Biol, i Nauk o Ziemi, Univ. M. Lublin. 176 + 34 Curie-Skladowska, pp. (15525) JONSEN, J. & P.D. TAYLOR, 2000. Calop- tabs, 32 graphs, 19 col. habitat phot. excl. (Pol.). — teryx damselfly dispersions arising from rnultiscale (Author: Dept Zool., UMCS, Akademicka 19, PO- responses to landscape structure. Conserv. Ecol. 4(2): -20-033 Lublin). 4 (online)URL; http://www.consecol.org/vol4/iss2/ The study was conducted at 16 sites in the Poleski art4 Natn. Park (53 spp.) and its environs (total 65 spp.), extent Using spatiallyexplicit simulation models, the and focused on the inquire into the composition and was explored to which fine-scale (i.e. meters to tens structure of the odon. communities, spatial distri- Odonatological Abstracts 315 bution of larvae, and on the environmental features representation of the characteristics of the desired which these 5 on depend. species-groupsare defined mate, i.e. a template.Binary choice experimentswere with reference to the degree oftheir association with performed to test 3 mate choice between 2 differ- the bog habitats. The qualitative and quantitative ent 9 colour morphs in Ischnura elegans. Choice of their taxonomic di- composition communities, experiments were conducted before and after an versity, seasonal dynamics and the specificity are habituation period, duringwhich 33 were exposed described in much detail. The negative correlation to only 1 9 colour morph.Given the choice between between faunal and its specificity is shown, 9 diversity the 2 morphs, 33 did exhibit a choice for the and the methods based the on diversity assessments, most recently experienced 9 morph.This is the first used in the as peat bogbioindication,arechallenged. evidence for a reversible switch in mate choice in a The distribution of larvae in structured wa- In contrast with diversely frequency-dependentway. previous ter bodies is described, 6 factors that influence their studies on mate choice, template formation in 3 I. spatialdistribution arediscussed, and the selectivity elegans seems not to be based on quality. Switch- of spp. for defined microhabitats isanalysed. During ing mate choice in a frequency-dependent manner, the larvae yr, tend to changetheir microhabitats. The choosing the most common morph,probably allows odon. communities of the regional Sphagnumbogs 33 to minimize their search effortsand to maximize arecompared with those occurring in the other re- fitness. gions ofPoland and in the neighbouringcountries. The differences between the mountain and lowland 2002 rised bogs are stated. - A thoroughwork of con- siderable extralimital relevance. An internationally (15531) COSTA-NETO, E.M., 2002. Manual de more accessible publicationof its highlights would elnoenlomologia. Soc. Ent. Aragonesa, Zaragoza be tesis Vol. opportune. [Manuales y SEA, 4] 104 pp. ISBN 84- -932807-1-2. - (Publishers: Avda Radio Juventud (15528) SANSONI, G., 2001, Atlanteper il riconosci- 37, ES-50012 Zaragoza). mento dei macroinvertebrati dei corsi d'acqua ilaliani. In addition to a statement of a superstition about Prov. Autonoma Trento. 198 Hard- [4th edn], pp. dragonflies from NE Brazil
Recommended publications
  • Rospuda Valley Survey 2007
    Rospuda Valley Survey 2007 review of surveyed groups European species lists Biodiversity Survey final report - November 2008 Cite this report as: European Biodiversity Survey (): Biodiversity Survey Rospuda Valley, Final Report. Gronin- gen, European Biodiversity Survey. © European Biodiversity Survey (EBS). is is an open-access publication distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Photos on cover: top le corner: Nehallenia speciosa, by Tim Faasen. Middle right: Boloria eu- phrosyne, by Tim Faasen. Middle le: Colobochyla salicalis, by Wouter Moerland. Right bottom: Calcereous fen, by Bram Kuijper. European Biodiversity Survey Van Royenlaan A ES Groningen e-mail: info at biodiversitysurvey.eu www: www.biodiversitysurvey.eu is is not a eld guide. e Rospuda Vally and especially its valuable bogs are very vulnerable. ough more information on the distribution of species in the Rospuda Vally is important, please think twice before you enter the area. Contents Preface Introduction . Geography and natural history of the Rospuda area ................. . Pristine character ..................................... . ViaBaltica ......................................... . Vegetation zonation in the mire ............................. . Rationale for this survey ................................. . Methods .......................................... Aquatic fauna . Introduction .......................................
    [Show full text]
  • 1 June 2021 Researchgate: Researchgate.Net/Profile
    DAVID OUTOMURO PRIEDE, PH.D. CURRICULUM VITAE June 2021 Researchgate: researchgate.net/profile/David_Outomuro ORCID: orcid.org/0000-0002-1296-7273 EDUCATION Ph.D. 2011 University of Oviedo, Spain (Biology). Summa cum laude. (Dr. Francisco J. Ocharan) B.S. 2005 University of Oviedo, Spain (Biology). Valedictorian. PROFESSIONAL EXPERIENCE Aug 2017- Aug 2021 Postdoctoral researcher, Dept. Biological Sciences, University of Cincinnati, USA (Dr. Nathan Morehouse) Jul 2015-Jun 2017 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Drs. Frank Johansson, Anders Ödeen, & Karin Nordström) Jul 2014-Jul 2015 Visiting Professor, Dept. Ciencias Biológicas, Universidad de los Andes, Colombia Nov 2011-Dec 2013 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Dr. Frank Johansson) Jun 2006-May 2010 Graduate researcher and Teaching assistant, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) Jul 2005-Aug 2005 Intern, Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias (SERIDA), Spain (Dr. Isabel Feito Díaz) Sep 2004-Jun 2005 Undergraduate research fellow, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) RESEARCH INTERESTS I am a behavioral ecologist, interested in the micro- and macroevolutionary processes that promote diversity. My research has explored questions on the evolution of color signals, color vision, and flight morphology. I am particularly interested in understanding the evolution of color signals, how they are perceived by intended and unintended receivers and the role of these audiences in driving population and species divergence. I also study the evolution of flight morphology because wings are large conspicuous body surfaces that can be also used as motion signal vehicles for intra- and interspecific communication.
    [Show full text]
  • Tesis Doctoral Esther Soler Mo
    Facultat de Ciències Biològiques Institut Cavanilles de Biodiversitat i Biologia Evolutiva Programa de Doctorado de Biodiversidad y Biología Evolutiva ESTRUCTURA DE COMUNIDADES DE ODONATA EN SISTEMAS MEDITERRÁNEOS Tesis Doctoral Esther Soler Monzó Directores: Marcos Méndez Iglesias Joaquín Baixeras Almela Valencia, 2015 Marcos Méndez Iglesias, Profesor Titular de Universidad del Departamento de Biología y Geología de la Universidad Rey Juan Carlos, y Joaquín Baixeras Almela, Profesor Titular de Universidad del Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia CERTIFICAN: que el trabajo de investigación desarrollado en la memoria de tesis doctoral: “Estructura de comunidades de Odonata en sistemas mediterráneos”, es apto para ser presentado por Esther Soler Monzó ante el Tribunal que en su día se consigne, para aspirar al Grado de Doctor por la Universidad de Valencia. VºBº Director Tesis VºBº Director Tesis Dr. Marcos Méndez Iglesias Dr. Joaquín Baixeras Almela a Espe. Let the rain come down and wash away my tears Let it fill my soul and drown my tears Let it shatter the walls for a new sun A new day has come A new day has come. CÉLINE DION ποταμοῖς τοῖς αὐτοῖς ἐμβαίνομεν τε καὶ οὐκ ἐμβαίνομεν, εἶμεν τε καὶ οὐκ εἶμεν τε. En los mismos ríos entramos y no entramos, [pues] somos y no somos [los mismos]. HERÁCLITO, en Diels-Kranz, Die Fragmente Vorsokratiker, 22 B12. Agradecimientos Me ha costado mucho tiempo y esfuerzo llegar hasta aquí pero sin la ayuda de mucha gente no lo hubiese conseguido. Así que dedicarles un trocito de papel es lo mínimo que puedo hacer.
    [Show full text]
  • Critical Species of Odonata in Europe
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/228966602 Critical species of Odonata in Europe ARTICLE in INTERNATIONAL JOURNAL OF ODONATOLOGY · JULY 2004 Impact Factor: 0.5 · DOI: 10.1080/13887890.2004.9748223 CITATIONS DOWNLOADS VIEWS 25 181 148 5 AUTHORS, INCLUDING: Adolfo Cordero-Rivera University of Vigo 151 PUBLICATIONS 1,594 CITATIONS SEE PROFILE Frank Suhling Technische Universität Braun… 79 PUBLICATIONS 793 CITATIONS SEE PROFILE Available from: Frank Suhling Retrieved on: 13 September 2015 Guardians of the watershed. Global status of dragonflies: critical species, threat and conservation Critical species of Odonata in Europe Göran Sahlén 1, Rafal Bernard 2, Adolfo Cordero Rivera 3, Robert Ketelaar 4 & Frank Suhling 5 1 Ecology and Environmental Science, Halmstad University, P.O. Box 823, SE-30118 Halmstad, Sweden. <[email protected]> 2 Department of General Zoology, Adam Mickiewicz University, Fredry 10, PO-61-701 Poznan, Poland. <[email protected]> 3 Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, EUET Forestal, Campus Universitario, ES-36005 Pontevedra, Spain. <[email protected]> 4 Dutch Butterfly Conservation. Current address: Dutch Society for the Preservation of Nature, P.O. Box 494, NL-5613 CM, Eindhoven, The Netherlands. <[email protected]> 5 Institute of Geoecology, Dpt of Environmental System Analysis, Technical University of Braunschweig, Langer Kamp 19c, D-38102 Braunschweig, Germany. <[email protected]> Key words: Odonata, dragonfly, IUCN, FFH directive, endemic species, threatened species, conservation, Europe. Abstract The status of the odonate fauna of Europe is fairly well known, but the current IUCN Red List presents only six species out of ca 130, two of which are actually out of danger today.
    [Show full text]
  • The Dragonfly Fauna of the Aude Department (France): Contribution of the ECOO 2014 Post-Congress Field Trip
    Tome 32, fascicule 1, juin 2016 9 The dragonfly fauna of the Aude department (France): contribution of the ECOO 2014 post-congress field trip Par Jean ICHTER 1, Régis KRIEG-JACQUIER 2 & Geert DE KNIJF 3 1 11, rue Michelet, F-94200 Ivry-sur-Seine, France; [email protected] 2 18, rue de la Maconne, F-73000 Barberaz, France; [email protected] 3 Research Institute for Nature and Forest, Rue de Clinique 25, B-1070 Brussels, Belgium; [email protected] Received 8 October 2015 / Revised and accepted 10 mai 2016 Keywords: ATLAS ,AUDE DEPARTMENT ,ECOO 2014, EUROPEAN CONGRESS ON ODONATOLOGY ,FRANCE ,LANGUEDOC -R OUSSILLON ,ODONATA , COENAGRION MERCURIALE ,GOMPHUS FLAVIPES ,GOMPHUS GRASLINII , GOMPHUS SIMILLIMUS ,ONYCHOGOMPHUS UNCATUS , CORDULEGASTER BIDENTATA ,MACROMIA SPLENDENS ,OXYGASTRA CURTISII ,TRITHEMIS ANNULATA . Mots-clés : A TLAS ,AUDE (11), CONGRÈS EUROPÉEN D 'ODONATOLOGIE ,ECOO 2014, FRANCE , L ANGUEDOC -R OUSSILLON ,ODONATES , COENAGRION MERCURIALE ,GOMPHUS FLAVIPES ,GOMPHUS GRASLINII ,GOMPHUS SIMILLIMUS , ONYCHOGOMPHUS UNCATUS ,CORDULEGASTER BIDENTATA ,M ACROMIA SPLENDENS ,OXYGASTRA CURTISII ,TRITHEMIS ANNULATA . Summary – After the third European Congress of Odonatology (ECOO) which took place from 11 to 17 July in Montpellier (France), 21 odonatologists from six countries participated in the week-long field trip that was organised in the Aude department. This area was chosen as it is under- surveyed and offered the participants the possibility to discover the Languedoc-Roussillon region and the dragonfly fauna of southern France. In summary, 43 sites were investigated involving 385 records and 45 dragonfly species. These records could be added to the regional database. No less than five species mentioned in the Habitats Directive ( Coenagrion mercuriale , Gomphus flavipes , G.
    [Show full text]
  • Dragonflies and Damselflies in Your Garden
    Natural England works for people, places and nature to conserve and enhance biodiversity, landscapes and wildlife in rural, urban, coastal and marine areas. Dragonflies and www.naturalengland.org.uk © Natural England 2007 damselflies in your garden ISBN 978-1-84754-015-7 Catalogue code NE21 Written by Caroline Daguet Designed by RR Donnelley Front cover photograph: A male southern hawker dragonfly. This species is the one most commonly seen in gardens. Steve Cham. www.naturalengland.org.uk Dragonflies and damselflies in your garden Dragonflies and damselflies are Modern dragonflies are tiny by amazing insects. They have a long comparison, but are still large and history and modern species are almost spectacular enough to capture the identical to ancestors that flew over attention of anyone walking along a prehistoric forests some 300 million river bank or enjoying a sunny years ago. Some of these ancient afternoon by the garden pond. dragonflies were giants, with This booklet will tell you about the wingspans of up to 70 cm. biology and life-cycles of dragonflies and damselflies, help you to identify some common species, and tell you how you can encourage these insects to visit your garden. Male common blue damselfly. Most damselflies hold their wings against their bodies when at rest. BDS Dragonflies and damselflies belong to Dragonflies the insect order known as Odonata, Dragonflies are usually larger than meaning ‘toothed jaws’. They are often damselflies. They are stronger fliers and referred to collectively as ‘dragonflies’, can often be found well away from but dragonflies and damselflies are two water. When at rest, they hold their distinct groups.
    [Show full text]
  • The Impacts of Urbanisation on the Ecology and Evolution of Dragonflies and Damselflies (Insecta: Odonata)
    The impacts of urbanisation on the ecology and evolution of dragonflies and damselflies (Insecta: Odonata) Giovanna de Jesús Villalobos Jiménez Submitted in accordance with the requirements for the degree of Doctor of Philosophy (Ph.D.) The University of Leeds School of Biology September 2017 The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. The work in Chapter 1 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G., Dunn, A.M. & Hassall, C., 2016. Dragonflies and damselflies (Odonata) in urban ecosystems: a review. Eur J Entomol, 113(1): 217–232. I was responsible for the collection and analysis of the data with advice from co- authors, and was solely responsible for the literature review, interpretation of the results, and for writing the manuscript. All co-authors provided comments on draft manuscripts. The work in Chapter 2 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G. & Hassall, C., 2017. Effects of the urban heat island on the phenology of Odonata in London, UK. International Journal of Biometeorology, 61(7): 1337–1346. I was responsible for the data analysis, interpretation of results, and for writing and structuring the manuscript. Data was provided by the British Dragonfly Society (BDS). The co-author provided advice on the data analysis, and also provided comments on draft manuscripts.
    [Show full text]
  • Swaegers Etal 2014
    doi: 10.1111/jeb.12481 Ecological and evolutionary drivers of range size in Coenagrion damselflies J. SWAEGERS*, S. B. JANSSENS†,S.FERREIRA‡§¶,P.C.WATTS¶**, J. MERGEAY††, M. A. MC PEEK‡‡ &R.STOKS* *Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium †Botanic Garden Meise, Meise, Belgium ‡CIBIO/InBIO – Centro de Investigacßao~ em Biodiversidade e Recursos Geneticos da Universidade do Porto, Vairao,~ Portugal §Departamento de Biologia da Faculdade de Ci^encias da Universidade do Porto, Porto, Portugal ¶Institute of Integrative Biology, University of Liverpool, Liverpool, UK **Department of Biology, University of Oulu, Oulu, Finland ††Research Institute for Nature and Forest, Geraardsbergen, Belgium ‡‡Department of Biological Sciences, Dartmouth College, Hanover, NH, USA Keywords: Abstract Bergmann’s rule; Geographic range size is a key ecological and evolutionary characteristic of a dispersal capacity; species, yet the causal basis of variation in range size among species remains latitudinal patterns; largely unresolved. One major reason for this is that several ecological and phylogeny; evolutionary traits may jointly shape species’ differences in range size. We range size; here present an integrated study of the contribution of ecological (dispersal Rapoport’s rule. capacity, body size and latitudinal position) and macroevolutionary (species’ age) traits in shaping variation in species’ range size in Coenagrion damsel- flies. We reconstructed the phylogenetic tree of this genus to account for evolutionary history when assessing the contribution of the ecological traits and to evaluate the role of the macroevolutionary trait (species’ age). The genus invaded the Nearctic twice independently from the Palearctic, yet this was not associated with the evolution of larger range sizes or dispersal capacity.
    [Show full text]
  • Dragonf Lies and Damself Lies of Europe
    Dragonf lies and Damself lies of Europe A scientific approach to the identification of European Odonata without capture A simple yet detailed guide suitable both for beginners and more expert readers who wish to improve their knowledge of the order Odonata. This book contains images and photographs of all the European species having a stable population, with chapters about their anatomy, biology, behaviour, distribution range and period of flight, plus basic information about the vagrants with only a few sightings reported. On the whole, 143 reported species and over lies of Europe lies and Damself Dragonf 600 photographs are included. Published by WBA Project Srl CARLO GALLIANI, ROBERTO SCHERINI, ALIDA PIGLIA © 2017 Verona - Italy WBA Books ISSN 1973-7815 ISBN 97888903323-6-4 Supporting Institutions CONTENTS Preface 5 © WBA Project - Verona (Italy) Odonates: an introduction to the order 6 WBA HANDBOOKS 7 Dragonflies and Damselflies of Europe Systematics 7 ISSN 1973-7815 Anatomy of Odonates 9 ISBN 97888903323-6-4 Biology 14 Editorial Board: Ludivina Barrientos-Lozano, Ciudad Victoria (Mexico), Achille Casale, Sassari Mating and oviposition 23 (Italy), Mauro Daccordi, Verona (Italy), Pier Mauro Giachino, Torino (Italy), Laura Guidolin, Oviposition 34 Padova (Italy), Roy Kleukers, Leiden (Holland), Bruno Massa, Palermo (Italy), Giovanni Onore, Quito (Ecuador), Giuseppe Bartolomeo Osella, l’Aquila (Italy), Stewart B. Peck, Ottawa (Cana- Predators and preys 41 da), Fidel Alejandro Roig, Mendoza (Argentina), Jose Maria Salgado Costas, Leon (Spain), Fabio Pathogens and parasites 45 Stoch, Roma (Italy), Mauro Tretiach, Trieste (Italy), Dante Vailati, Brescia (Italy). Dichromism, androchromy and secondary homochromy 47 Editor-in-chief: Pier Mauro Giachino Particular situations in the daily life of a dragonfly 48 Managing Editor: Gianfranco Caoduro Warming up the wings 50 Translation: Alida Piglia Text revision: Michael L.
    [Show full text]
  • (Zygoptera: Lestidae) Autecology, Ecological
    Odonalologica 13 (3): 461-466 September I, 1984 SHORT COMMUNICATIONS Food and time resource partitioningin two coexisting Lestes species (Zygoptera: Lestidae) G. Carchini and P. Nicolai Dipartimento di BiologiaAnimale e dell’Uomo, Università di Roma, Viale dell’Università 32, I-00185 Roma, Italy Received August 12, 1982 / Revised and Accepted January 28, 1983 Two coexisting populations of Lestes virens (Charp.) and L. barbarus (Fab.) at a studied in 1979 and 1980 temporary pond were to investigate a possible partitioning and Results show that larval of time food resources. larval diets are affected by size in both the the concludedthat species. Since life cycles of two species are displaced, it is such displacement facilitates coexistence by reducing food competition. INTRODUCTION Although many studies have been carried out to describe lestid autecology, little informationexists on the ecological relationships among coexisting species conditions. in natural This paper reports on investigations into resource partitioning between two coexisting Lestes species, i.e. L. virens (Charp.) and L. barbarus (Fab.). The fact that the live in a small two species are morphologically very similar, pond which contains water for only a short period, where no other Zygoptera exist and where there are fewer predators than in permanent habitats, would imply a remarkable overlap of respective niches. The fact that the two Lestes populations are abundant and well-established is, therefore, to be ascribed to mechanisms that make coexistence possible. On the basis ofworks by BENKE & BENKE (1975), JOHANNSSON (1978) and JOHNSON & CROWLEY (1980), these mechanisms are thought to consist of spatial, temporal and/or food resource partitioning.
    [Show full text]
  • Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria
    Historia naturalis bulgarica, 22: 45-71, 2015 Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria Zdravko Hubenov, Lyubomir Kenderov, Ivan Pandourski Abstract: The role of the Atanasovsko Lake for storage and protection of the specific faunistic diversity, characteristic of the hyper-saline lakes of the Bulgarian seaside is presented. The fauna of the lake and surrounding waters is reviewed, the taxonomic diversity and some zoogeographical and ecological features of the invertebrates are analyzed. The lake system includes from freshwater to hyper-saline basins with fast changing environment. A total of 6 types, 10 classes, 35 orders, 82 families and 157 species are known from the Atanasovsko Lake and the surrounding basins. They include 56 species (35.7%) marine and marine-brackish forms and 101 species (64.3%) brackish-freshwater, freshwater and terrestrial forms, connected with water. For the first time, 23 species in this study are established (12 marine, 1 brackish and 10 freshwater). The marine and marine- brackish species have 4 types of ranges – Cosmopolitan, Atlantic-Indian, Atlantic-Pacific and Atlantic. The Atlantic (66.1%) and Cosmopolitan (23.2%) ranges that include 80% of the species, predominate. Most of the fauna (over 60%) has an Atlantic-Mediterranean origin and represents an impoverished Atlantic-Mediterranean fauna. The freshwater-brackish, freshwater and terrestrial forms, connected with water, that have been established from the Atanasovsko Lake, have 2 main types of ranges – species, distributed in the Palaearctic and beyond it and species, distributed only in the Palaearctic. The representatives of the first type (52.4%) predomi- nate. They are related to the typical marine coastal habitats, optimal for the development of certain species.
    [Show full text]
  • Odonatological Abstract Service
    Odonatological Abstract Service published by the INTERNATIONAL DRAGONFLY FUND (IDF) in cooperation with the WORLDWIDE DRAGONFLY ASSOCIATION (WDA) Editors: Dr. Klaus Reinhardt, Dept Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK. Tel. ++44 114 222 0105; E-mail: [email protected] Martin Schorr, Schulstr. 7B, D-54314 Zerf, Germany. Tel. ++49 (0)6587 1025; E-mail: [email protected] Dr. Milen Marinov, 7/160 Rossall Str., Merivale 8014, Christchurch, New Zealand. E-mail: [email protected] Published in Rheinfelden, Germany and printed in Trier, Germany. ISSN 1438-0269 years old) than old beaver ponds. These studies have 1997 concluded, based on waterfowl use only, that new bea- ver ponds are more productive for waterfowl than old 11030. Prejs, A.; Koperski, P.; Prejs, K. (1997): Food- beaver ponds. I tested the hypothesis that productivity web manipulation in a small, eutrophic Lake Wirbel, Po- in beaver ponds, in terms of macroinvertebrates and land: the effect of replacement of key predators on epi- water quality, declined with beaver pond succession. In phytic fauna. Hydrobiologia 342: 377-381. (in English) 1993 and 1994, fifteen and nine beaver ponds, respec- ["The effect of fish removal on the invertebrate fauna tively, of three different age groups (new, mid-aged, old) associated with Stratiotes aloides was studied in a shal- were sampled for invertebrates and water quality to low, eutrophic lake. The biomass of invertebrate preda- quantify differences among age groups. No significant tors was approximately 2.5 times higher in the inverte- differences (p < 0.05) were found in invertebrates or brate dominated year (1992) than in the fish-dominated water quality among different age classes.
    [Show full text]