Introduction to Convex Optimization

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Convex Optimization Introduction to convex optimization Teemu Pennanen April 3, 2019 2 Contents 1 Convexity 7 1.1 Examples . 7 1.2 Extended real-valued functions . 16 1.3 Convexity . 18 1.4 Convexity in algebraic operations . 23 1.5 Convex sets and functions under scaling . 32 1.6 Separation of convex sets . 36 2 Topological properties 39 2.1 Topological spaces . 39 2.2 Existence of optimal solutions . 42 2.3 Compactness in Euclidean spaces . 46 2.4 Interiors of convex sets . 47 2.5 Continuity of convex functions . 50 3 Duality 55 3.1 Conjugate convex functions . 55 3.2 Parametric optimization and saddle-point problems . 64 3.3 Calculus of subgradients and conjugates . 68 3.4 Parametric optimization and saddle-point problems: Part II . 72 3.5 Parametric dual . 75 3.6 Some closedness criteria . 76 3 4 CONTENTS Preface Optimization problems arise whenever decisions are to be made. Many phenom- ena in natural sciences can also be described in terms of minima or maxima of certain functions. In the words of Leonhard Euler, \...nothing whatsoever takes place in the universe in which some relation of maximum or minimum does not appear". These lecture notes study general aspects of convex optimization problems where one seeks to minimize a convex function over a linear space. In a cer- tain sense, convex optimization problems form the nicest class of optimization problems. Stronger analytical results e.g. on the existence and uniqueness of solutions and on optimality conditions are available as soon as the problem is known to be convex. Convexity is essential also in the duality theory of opti- mization. Under convexity, one can treat nonsmooth and infinite-dimensional problems with the same ease as the smooth and finite-dimensional ones. Con- vexity is indispensable in numerical optimization in higher dimensions. When analyzing a given optimization problem, convexity is the first thing to look for. Many aspects of more specific problem classes such as stochastic optimiza- tion, robust optimization, calculus of variations, optimal control, semidefinite programming and multicriteria optimization can be treated under convex analy- sis. Although convexity rules out some important problems e.g. in combinatorial optimization, it arises quite naturally in many applications. Classical applica- tion fields include operations research, engineering, physics and economics. More recently, convex optimization has found important applications in mathemati- cal finance and financial engineering. Even some combinatorial problems can be analyzed with techniques of convex analysis. Selected applications will be treated in the following sections. These notes study convex optimization in general topological vector spaces. The generality is motivated by various important applications e.g. in physics and financial economics which go beyond finite-dimensional spaces. In stochas- tic optimization and mathematical finance, one often encounters topological vector spaces which are not even locally convex. The material is divided into three chapters according to mathematical structure. After outlining some ap- plications, the first chapter studies convex optimization in general (real) vector spaces. Chapter 2 studies optimization problems in topological vector spaces. The last chapter is devoted to duality theory in locally convex topological vec- tor spaces. The necessary topological and functional analytic concepts will be 5 6 CONTENTS introduced as needed. Most of the material in these notes is collected from [11], [13], [16] and [7]. Chapter 1 Convexity This chapter studies convex optimization problems in general vector spaces. The aim is to summarize some basic facts in convexity that do not require topology or duality. Most results are quite simple but already useful in practice. We start by studying convex functions on the real line and then proceed to study convexity preserving operations that result in convex functions on more general vector spaces. Knowledge of such operations is useful in identification of convexity in applications as well as in building tractable optimization models in decision sciences. We will also study differential and asymptotic scaling properties of convex sets and functions. Such properties are involved in conditions for optimality and existence of solutions, respectively. We will see that convexity makes the scaling behaviour remarkably tractable and allows for useful geometric interpre- tations and calculus rules in practice. We end this chapter by presenting the fundamental separation theorems that yield more familiar separation theorems when applied in topological vector spaces. Before going to the general theory, we outline some applications where con- vexity arises quite naturally. That these problems are in fact convex, will be verified as applications as we proceed with the general theory. 1.1 Examples This section discusses some well-known optimization problems where convexity has an important role. The choice of applications is rather arbitrarily and many important applications e.g. in statistics and inverse problems have been omitted. Mathematical programming Mathematical programming is the discipline that studies numerical solution of optimization problems mostly in finite-dimensional spaces of real or integer vari- ables. Computationally efficient algorithms are available for many classes of 7 8 CHAPTER 1. CONVEXITY convex optimization problems over real variables. Even in combinatorial opti- mization, many computational techniques are based on convex approximations. Optimization routines are usually designed for classes of optimization problems that can be written in a \standard" format. The classical linear programming format is minimize x · c over x 2 Rn + (LP) subject to Ax = b; Rn Rm×n Rm Pn where c 2 , A 2 , b 2 and c · x = i=1 cixi. Linear programming models were studied already by Kantorovich in the 1930's as a general format of planning problems in operations research; see [6]. They gained popularity with George Dantzig's invention of the simplex algorithm [3] which is still widely used. For large problems, modern interior point methods often outperform simplex methods both in theory and practice. An important special case of the LP-model is the linear network flow problem X A minimize ci;jxi;j over x 2 R (i;j)2A X X subject to xi;j − xj;i = si 8i 2 N fjj(i;j)2Ag fjj(j;i)2Ag li;j ≤ xi;j ≤ ui;j 8(i; j) 2 A; where N is the set of nodes and A ⊆ f(i; j) j i; j 2 N g is the set of arcs of a network. A notable feature of such models is that if the parameters si, li;j and ui;j have integer values, then there is an optimal solution x with all xi;j integer; see e.g. Rockafellar [15] or Bertsekas [2]. Important special cases of the general network optimization problem include shortest path, assignment, transportation and max-flow problems. There are also natural infinite-dimensional extensions where the finite network is replaced by a measurable space (Ω; F) and flows are described in terms of measures on the product space (Ω × Ω; F ⊗ F). The most famous instance is the Monge-Kantorovich mass transportation problem; see e.g. [9]. Nonlinear extensions can be found in [?]. Replacing the linear functions in the LP-model by more general ones, one obtains the nonlinear programming model n minimize f0(x) over x 2 R (NLP) subject to fj(x) ≤ 0; j = 1; : : : ; m: This is a common format for computational optimization routines. More flexible and often more natural format is the composite optimization model minimize h(F (x)) over x 2 Rn; (CO) n m+1 where F = (f0; : : : ; fm) is a vector-valued function from R to R and h is a m+1 function on R . In this model, all the functions fj are treated symmetrically 1.1. EXAMPLES 9 much as in multicriteria optimization. Allowing h to take on infinite-values, one obtains (NLP) as a special case of (CO); see Section 1.4 below. Some modern convex optimization solvers assume the problem format minimize c · x over x 2 K (CP) subject to Ax = b; where K ⊂ Rn is a convex cone, A is a matrix and b is a vector of appropriate Rn dimensions. Note that with K = +, (CP) becomes (LP). With appropri- ate choices of K, one can express quite a large class of nonlinear optimization problems in the above format. See e.g. the MOSEK \modeling cookbook" [?]. Stochastic optimization Most decision making problem in practice involve uncertain factors that have an essential effect on the outcome of a decision. Let X be the space where an optimal decision is sought and assume that the decision maker describes her views about the uncertain factors by a probability space (Ω; F;P ). The basic static stochastic optimization problem can be written as minimize Ef(x; ·) over x 2 X; (SP) where f : X × Ω ! R is such that ! 7! f(x; !) is measurable for every x 2 X. Despite its simplicity, the above format is quite universal and has applica- tions from financial risk management and derivative pricing to statistics and machine learning; see below. Maximum entropy principle One of the fundamental principles in probabilistic modeling is that of maximum entropy. In a basic form, it states that if all one knows about the uncertainty j m over possible states Ω of a system is the expectations of a collection fφ gj=1 of random variables, then one should describe the system by a probability measure that solves the problem P dP minimize E ln over p 2 Pµ; dµ (ME) subject to EP φj = φ¯j j = 1; : : : ; m; where Pµ denotes the set of probability measures that are absolutely continuous with respect to a given reference measure µ on Ω. The objective is known as the entropy of P with respect to µ. The rationale is that the maximum entropy measure is the most \uninformative" among the probability measures that are consistent with the information on the expectations of φj.
Recommended publications
  • Ce Document Est Le Fruit D'un Long Travail Approuvé Par Le Jury De Soutenance Et Mis À Disposition De L'ensemble De La Communauté Universitaire Élargie
    AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm THESE` pr´esent´eepar NGUYEN Manh Cuong en vue de l'obtention du grade de DOCTEUR DE L'UNIVERSITE´ DE LORRAINE (arr^et´eminist´eriel du 7 Ao^ut 2006) Sp´ecialit´e: INFORMATIQUE LA PROGRAMMATION DC ET DCA POUR CERTAINES CLASSES DE PROBLEMES` EN APPRENTISSAGE ET FOUILLE DE DONEES.´ Soutenue le 19 mai 2014 devant le jury compos´ede Rapporteur BENNANI Youn`es Professeur, Universit´eParis 13 Rapporteur RAKOTOMAMONJY Alain Professeur, Universit´ede Rouen Examinateur GUERMEUR Yann Directeur de recherche, LORIA-Nancy Examinateur HEIN Matthias Professeur, Universit´eSaarland Examinateur PHAM DINH Tao Professeur ´em´erite, INSA-Rouen Directrice de th`ese LE THI Hoai An Professeur, Universit´ede Lorraine Co-encadrant CONAN-GUEZ Brieuc MCF, Universit´ede Lorraine These` prepar´ ee´ a` l'Universite´ de Lorraine, Metz, France au sein de laboratoire LITA Remerciements Cette th`ese a ´et´epr´epar´ee au sein du Laboratoire d'Informatique Th´eorique et Appliqu´ee (LITA) de l'Universit´ede Lorraine - France, sous la co-direction du Madame le Professeur LE THI Hoai An, Directrice du laboratoire Laboratoire d'Informatique Th´eorique et Ap- pliqu´ee(LITA), Universit´ede Lorraine et Ma^ıtre de conf´erence CONAN-GUEZ Brieuc, Institut Universitaire de Technologie (IUT), Universit´ede Lorraine, Metz.
    [Show full text]
  • Lipschitz Continuity of Convex Functions
    Lipschitz Continuity of Convex Functions Bao Tran Nguyen∗ Pham Duy Khanh† November 13, 2019 Abstract We provide some necessary and sufficient conditions for a proper lower semi- continuous convex function, defined on a real Banach space, to be locally or globally Lipschitz continuous. Our criteria rely on the existence of a bounded selection of the subdifferential mapping and the intersections of the subdifferential mapping and the normal cone operator to the domain of the given function. Moreover, we also point out that the Lipschitz continuity of the given function on an open and bounded (not necessarily convex) set can be characterized via the existence of a bounded selection of the subdifferential mapping on the boundary of the given set and as a consequence it is equivalent to the local Lipschitz continuity at every point on the boundary of that set. Our results are applied to extend a Lipschitz and convex function to the whole space and to study the Lipschitz continuity of its Moreau envelope functions. Keywords Convex function, Lipschitz continuity, Calmness, Subdifferential, Normal cone, Moreau envelope function. Mathematics Subject Classification (2010) 26A16, 46N10, 52A41 1 Introduction arXiv:1911.04886v1 [math.FA] 12 Nov 2019 Lipschitz continuous and convex functions play a significant role in convex and nonsmooth analysis. It is well-known that if the domain of a proper lower semicontinuous convex function defined on a real Banach space has a nonempty interior then the function is continuous over the interior of its domain [3, Proposition 2.111] and as a consequence, it is subdifferentiable (its subdifferential is a nonempty set) and locally Lipschitz continuous at every point in the interior of its domain [3, Proposition 2.107].
    [Show full text]
  • Nonlinear Monotone Operators with Values in 9(X, Y)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 140, 83-94 (1989) Nonlinear Monotone Operators with Values in 9(X, Y) N. HADJISAVVAS, D. KRAVVARITIS, G. PANTELIDIS, AND I. POLYRAKIS Department of Mathematics, National Technical University of Athens, Zografou Campus, 15773 Athens, Greece Submitted by C. Foias Received April 2, 1987 1. INTRODUCTION Let X be a topological vector space, Y an ordered topological vector space, and 9(X, Y) the space of all linear and continuous mappings from X into Y. If T is an operator from X into 9(X, Y) (generally multivalued) with domain D(T), T is said to be monotone if for all xieD(T) and Aie T(x,), i= 1, 2. In the scalar case Y = R, this definition coincides with the well known definition of monotone operator (cf. [ 12,4]). An important subclass of monotone operators T: X+ 9(X, Y) consists of the subdifferentials of convex operators from X into Y, which have been studied by Valadier [ 171, Kusraev and Kutateladze [ 111, Papageorgiou [ 131, and others. Some properties of monotone operators have been investigated by Kirov [7, 81, in connection with the study of the differentiability of convex operators. In this paper we begin our investigation of the properties of monotone operators from X into 3(X, Y) by introducing, in Section 3, the notion of hereditary order convexity of subsets of 9(X, Y). This notion plays a key role in our discussion and expresses a kind of separability between sets and points, Its interest relies on the fact that the images of maximal monotone operators are hereditarily order-convex.
    [Show full text]
  • Contents 1. Introduction 1 2. Cones in Vector Spaces 2 2.1. Ordered Vector Spaces 2 2.2
    ORDERED VECTOR SPACES AND ELEMENTS OF CHOQUET THEORY (A COMPENDIUM) S. COBZAS¸ Contents 1. Introduction 1 2. Cones in vector spaces 2 2.1. Ordered vector spaces 2 2.2. Ordered topological vector spaces (TVS) 7 2.3. Normal cones in TVS and in LCS 7 2.4. Normal cones in normed spaces 9 2.5. Dual pairs 9 2.6. Bases for cones 10 3. Linear operators on ordered vector spaces 11 3.1. Classes of linear operators 11 3.2. Extensions of positive operators 13 3.3. The case of linear functionals 14 3.4. Order units and the continuity of linear functionals 15 3.5. Locally order bounded TVS 15 4. Extremal structure of convex sets and elements of Choquet theory 16 4.1. Faces and extremal vectors 16 4.2. Extreme points, extreme rays and Krein-Milman's Theorem 16 4.3. Regular Borel measures and Riesz' Representation Theorem 17 4.4. Radon measures 19 4.5. Elements of Choquet theory 19 4.6. Maximal measures 21 4.7. Simplexes and uniqueness of representing measures 23 References 24 1. Introduction The aim of these notes is to present a compilation of some basic results on ordered vector spaces and positive operators and functionals acting on them. A short presentation of Choquet theory is also included. They grew up from a talk I delivered at the Seminar on Analysis and Optimization. The presentation follows mainly the books [3], [9], [19], [22], [25], and [11], [23] for the Choquet theory. Note that the first two chapters of [9] contains a thorough introduction (with full proofs) to some basics results on ordered vector spaces.
    [Show full text]
  • NOTE on the CONTINUITY of M-CONVEX and L-CONVEX FUNCTIONS in CONTINUOUS VARIABLES 1. Introduction Two Kinds of Convexity Concept
    Journal of the Operations Research Society of Japan 2008, Vol. 51, No. 4, 265-273 NOTE ON THE CONTINUITY OF M-CONVEX AND L-CONVEX FUNCTIONS IN CONTINUOUS VARIABLES Kazuo Murota Akiyoshi Shioura University of Tokyo Tohoku University (Received March 27, 2008) Abstract M-convex and L-convex functions in continuous variables constitute subclasses of convex func- tions with nice combinatorial properties. In this note we give proofs of the fundamental facts that closed proper M-convex and L-convex functions are continuous on their effective domains. Keywords: Combinatorial optimization, convex function, continuity, submodular func- tion, matroid. 1. Introduction Two kinds of convexity concepts, called M-convexity and L-convexity, play primary roles in the theory of discrete convex analysis [6]. They are originally introduced for functions in integer variables by Murota [4, 5], and then for functions in continuous variables by Murota{ Shioura [8, 10]. M-convex and L-convex functions in continuous variables constitute subclasses of convex functions with additional combinatorial properties such as submodularity and diagonal dom- inance (see, e.g., [6{11]). Fundamental properties of M-convex and L-convex functions are investigated in [9], such as equivalent axioms, subgradients, directional derivatives, etc. Con- jugacy relationship between M-convex and L-convex functions under the Legendre-Fenchel transformation is shown in [10]. Subclasses of M-convex and L-convex functions are investi- gated in [8] (polyhedral M-convex and L-convex functions) and in [11] (quadratic M-convex and L-convex functions). As variants of M-convex and L-convex functions, the concepts of M\-convex and L\-convex functions are also introduced by Murota{Shioura [8, 10], where \M\" and \L\" should be read \M-natural" and \L-natural," respectively.
    [Show full text]
  • On Barycenters of Probability Measures
    On barycenters of probability measures Sergey Berezin Azat Miftakhov Abstract A characterization is presented of barycenters of the Radon probability measures supported on a closed convex subset of a given space. A case of particular interest is studied, where the underlying space is itself the space of finite signed Radon measures on a metric compact and where the corresponding support is the convex set of probability measures. For locally compact spaces, a simple characterization is obtained in terms of the relative interior. 1. The main goal of the present note is to characterize barycenters of the Radon probability measures supported on a closed convex set. Let X be a Fr´echet space. Without loss of generality, the topology on X is generated by the translation-invariant metric ρ on X (for details see [2]). We denote the set of Radon probability measures on X by P(X). By definition, the barycen- ter a ∈ X of a measure µ ∈ P(X) is a = xµ(dx) (1) XZ if the latter integral exists in the weak sense, that is, if the following holds Λa = Λxµ(dx) (2) XZ for all Λ ∈ X∗, where X∗ is the topological dual of X. More details on such integrals can be found in [2, Chapter 3]. Note that if (1) exists, then a = xµ(dx), (3) suppZ µ arXiv:1911.07680v2 [math.PR] 20 Apr 2020 and, by the Hahn–Banach separation theorem, one has a ∈ co(supp µ), where co(·) stands for the convex hull. From now on, we will use the bar over a set in order to denote its topological closure.
    [Show full text]
  • Chapter 5 Convex Optimization in Function Space 5.1 Foundations of Convex Analysis
    Chapter 5 Convex Optimization in Function Space 5.1 Foundations of Convex Analysis Let V be a vector space over lR and k ¢ k : V ! lR be a norm on V . We recall that (V; k ¢ k) is called a Banach space, if it is complete, i.e., if any Cauchy sequence fvkglN of elements vk 2 V; k 2 lN; converges to an element v 2 V (kvk ¡ vk ! 0 as k ! 1). Examples: Let ­ be a domain in lRd; d 2 lN. Then, the space C(­) of continuous functions on ­ is a Banach space with the norm kukC(­) := sup ju(x)j : x2­ The spaces Lp(­); 1 · p < 1; of (in the Lebesgue sense) p-integrable functions are Banach spaces with the norms Z ³ ´1=p p kukLp(­) := ju(x)j dx : ­ The space L1(­) of essentially bounded functions on ­ is a Banach space with the norm kukL1(­) := ess sup ju(x)j : x2­ The (topologically and algebraically) dual space V ¤ is the space of all bounded linear functionals ¹ : V ! lR. Given ¹ 2 V ¤, for ¹(v) we often write h¹; vi with h¢; ¢i denoting the dual product between V ¤ and V . We note that V ¤ is a Banach space equipped with the norm j h¹; vi j k¹k := sup : v2V nf0g kvk Examples: The dual of C(­) is the space M(­) of Radon measures ¹ with Z h¹; vi := v d¹ ; v 2 C(­) : ­ The dual of L1(­) is the space L1(­). The dual of Lp(­); 1 < p < 1; is the space Lq(­) with q being conjugate to p, i.e., 1=p + 1=q = 1.
    [Show full text]
  • Set Optimization with Respect to Variable Domination Structures
    Set optimization with respect to variable domination structures Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen Fakult¨atII Chemie, Physik und Mathematik der Martin-Luther-Universit¨at Halle-Wittenberg vorgelegt von Frau Le Thanh Tam geb. am 05.05.1985 in Phu Tho Gutachter: Frau Prof. Dr. Christiane Tammer (Martin-Luther-Universit¨atHalle-Wittenberg) Herr Prof. Dr. Akhtar Khan (Rochester Institute of Technology) Tag der Verteidigung: 02.10.2018 List of Figures K 2.1 Set relations t ; t 2 fl; u; pl; pu; cl; cug in the sense of Definition 2.2.5. 20 4.1 Illustration for Example 4.2.4......................... 45 4.2 Illustration for Theorems 4.3.1, 4.3.2 and 4.3.5............... 51 4.3 Illustration for Theorems 4.3.7 and 4.3.8.................. 53 5.1 Illustration for Example 5.1.7......................... 60 5.2 Illustration for Example 5.1.10........................ 61 5.3 Illustration for Example 5.1.11........................ 62 5.4 Illustration for Example 5.1.15........................ 65 5.5 A model of location optimization w.r.t. variable domination structures. 75 6.1 Illustration for Example 6.1.1......................... 87 6.2 Illustration for Example 6.1.2......................... 88 8.1 Dose response curves in lung cancer treatment............... 110 8.2 Discretization of patient into voxels and of beam into bixels, [32]..... 111 2 8.3 Visualization of two outcome sets A; Be ⊂ R of a uncertain bicriteria optimization problem with undesired elements............... 129 1 Contents 1 Introduction1 2 Preliminaries7 2.1 Binary Relations...............................7 2.1.1 Linear Spaces, Topological Vector Spaces and Normed Spaces..7 2.1.2 Order Relations on Linear Spaces.................
    [Show full text]
  • Arxiv:2104.13510V2 [Math.FA]
    Fenchel-Rockafellar Theorem in Infinite Dimensions via Generalized Relative Interiors D. V. Cuong 1,2, B. S. Mordukhovich3, N. M. Nam4, G. Sandine5 Abstract. In this paper we provide further studies of the Fenchel duality theory in the general framework of locally convex topological vector (LCTV) spaces. We prove the validity of the Fenchel strong duality under some qualification conditions via generalized relative interiors imposed on the epigraphs and the domains of the functions involved. Our results directly generalize the classical Fenchel-Rockafellar theorem on strong duality from finite dimensions to LCTV spaces. Key words. Relative interior, quasi-relative interior, intrinsic relative interior, quasi-regularity, Fenchel duality. AMS subject classifications. 49J52, 49J53, 90C31 1 Introduction Duality theory has a central role in optimization theory and its applications. From a primal optimization problem with the objective function defined in a primal space, a dual problem in the dual space is formulated with the hope that the new problem is easier to solve, while having a close relationship with the primal problem. Its important role in optimization makes the duality theory attractive for extensive research over the past few decades; see, e.g., [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 18, 19, 20, 25, 26, 28] and the references therein. Given a proper convex function f and a proper concave function g defined on Rn, the classical Fenchel-Rockafellar theorem asserts that inf f(x) g(x) x Rn = sup g (x∗) f ∗(x∗) x∗ Rn , (1.1) { − | ∈ } { ∗ − | ∈ } under the assumption that ri (dom (f)) ri (dom (g)) = ; see [27, Theorem 31.1].
    [Show full text]
  • A NOTE on GENERALIZED INTERIORS of SETS Let X Be A
    DIDACTICA MATHEMATICA, Vol. 31(2013), No 1, pp. 37{42 A NOTE ON GENERALIZED INTERIORS OF SETS Anca Grad Abstract. This article familiarizes the reader with generalized interiors of sets, as they are extremely useful when formulating optimality conditions for problems defined on topological vector spaces. Two original results connecting the quasi- relative interior and the quasi interior are included. MSC 2000. 49K99, 90C46 Key words. convex sets, algebraic interior, topological interior, quasi interior, quasi-relative interior 1. INTRODUCTION Let X be a topological vector space and let X∗ be the topological dual space of X. Given a linear continuous functional x∗ 2 X∗ and a point x 2 X, we denote by hx∗; xi the value of x∗ at x. The normal cone associated with a set M ⊆ X is defined by fx∗ 2 X∗ : hx∗; y − xi ≤ 0 for all y 2 Mg if x 2 M N (x) := M ; otherwise. Given a nonempty cone C ⊆ X, its dual cone is the set C+ := fx∗ 2 X∗ : hx∗; xi ≥ 0 for all x 2 Cg: We also use the following subset of C+: (1) C+0 := fx∗ 2 X∗ : hx∗; xi > 0 for all x 2 Cnf0gg: 2. GENERALIZED INTERIORS OF SETS. DEFINITIONS AND BASIC PROPERTIES Interior and generalized interior notions of sets are highly important when tackling optimization problems, as they are often used in formulating regular- ity conditions. Let X be a nontrivial vector space, and let M ⊆ X be a set. The algebraic interior of M is defined by x 2 X : for each y 2 X there exists δ > 0 such that core M := : x + λy 2 M for all λ 2 [0; δ] The intrinsic core of M is defined by x 2 X : for each y 2 aff(M − M) there exists δ > 0 icr M := such that x + λy 2 M for all λ 2 [0; δ] 38 Anca Grad 2 (see Holmes G.
    [Show full text]
  • The Quadratic Sub-Lagrangian of Prox-Regular Funct Ions
    University of Alberta The Quadratic Sub-Lagrangian of Prox-Regular Funct ions Wzren L. Hare O A thesis submitted to the Faculty of Graduate Studies and Research in partial ikiEUment of the requirements for the degree of Mâster of Science in Mathernat ics Department of Mathematics Edmonton, Alberta Spring 2000 National Library Bibliothèque nationale 1*1 ofCanada du Canada Acquisitions and Acquisitions et Bibliographic Services services bibliographiques 395 Wellington Street 395. rue Wellington Ottawa ON KIA ON4 Ottawa ON KIA ON4 Canada racla The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Lhrary of Canada to Bibliothèque nationale du Canada de reproduce, loan, distri%uteor seIl reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la fonne de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantid extracts fiom it Ni la thèse ni des extraits substantiels may be printed or othenvise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation, Abstract Given a finite valured convex function, f, the Cr-Lagrangian, as defined by Lemaréchal, Oustr-jr, and Sagastiz&bal, provides an envelcpe of f that maintains these propemties. By selecting the appropriate UV decomposition on Rnone can also ensure that the U-Lagrangian is not only continuous at the origin, but differentiab-le there.
    [Show full text]
  • Lecture Slides on Convex Analysis And
    LECTURE SLIDES ON CONVEX ANALYSIS AND OPTIMIZATION BASED ON 6.253 CLASS LECTURES AT THE MASS. INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS SPRING 2014 BY DIMITRI P. BERTSEKAS http://web.mit.edu/dimitrib/www/home.html Based on the books 1) “Convex Optimization Theory,” Athena Scien- tific, 2009 2) “Convex Optimization Algorithms,” Athena Sci- entific, 2014 (in press) Supplementary material (solved exercises, etc) at http://www.athenasc.com/convexduality.html LECTURE 1 AN INTRODUCTION TO THE COURSE LECTURE OUTLINE The Role of Convexity in Optimization • Duality Theory • Algorithms and Duality • Course Organization • HISTORY AND PREHISTORY Prehistory: Early 1900s - 1949. • Caratheodory, Minkowski, Steinitz, Farkas. − Properties of convex sets and functions. − Fenchel - Rockafellar era: 1949 - mid 1980s. • Duality theory. − Minimax/game theory (von Neumann). − (Sub)differentiability, optimality conditions, − sensitivity. Modern era - Paradigm shift: Mid 1980s - present. • Nonsmooth analysis (a theoretical/esoteric − direction). Algorithms (a practical/high impact direc- − tion). A change in the assumptions underlying the − field. OPTIMIZATION PROBLEMS Generic form: • minimize f(x) subject to x C ∈ Cost function f : n , constraint set C, e.g., ℜ 7→ ℜ C = X x h1(x) = 0,...,hm(x) = 0 ∩ | x g1(x) 0,...,gr(x) 0 ∩ | ≤ ≤ Continuous vs discrete problem distinction • Convex programming problems are those for which• f and C are convex They are continuous problems − They are nice, and have beautiful and intu- − itive structure However, convexity permeates
    [Show full text]